MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Practical Efficiency of Maximum Flow
Algorithms Using M A Orderings

Yuji MATSUOKA and Satoru FUJISHIGE
(Communicated by Satoru IWATA)

METR 2004-27 May 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author’s copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Practical Efficiency of Maximum Flow Algorithms
Using MA Orderings

Yuji Matsuoka* and Satoru Fujishige
May, 2004

Abstract

Fujishige proposed a polynomial-time maximum flow algorithm using max-
imum adjacency (MA) orderings. Computational results by Fujishige and
Isotani showed that the algorithm was slower in practice than Goldberg and
Tarjan’s algorithm. In this paper we propose an improved version of Fu-
jishige’s algorithm using preflows. Our computational results show that the
improved version is much faster than the original one and is competitive
with Goldberg and Tarjan’s algorithm.

1 Introduction

Maximum adjacency (MA) ordering has effectively applied to graph connec-
tivitiy problems by Nagamochi and Ibaraki [8, 9]. Fujishige [3] presented an
application of MA ordering to the maximum flow problem to devise a new
polynomial-time algorithm. For a capacitated network with n vertices, m
arcs, and the maximum capacity U, Fujishige’s algorithm finds a maximum
flow in O(n(m + nlogn)lognU) time. Even under the similarity assump-
tion, this complexity is not the best ruuning time bound for the maximum
flow problem. In addition, Shioura [10] proved that the time complexity of
Fujishige’s algorithm is not strongly polynomial by giving an instance with
a real-valued capacity function for which it does not terminate. In practice,
computational results in [4] show that Fujishige’s algorithm is slower than
Goldberg and Tarjan’s algorithm [5].

In this paper, we present a new variant of Fujishige’s algorithm using
preflows. We prove that its complexity is O(n(m + nlogn)lognU), which

*Department of Mathematical Informatics, Graduate School of Informa-
tion Science and Technology, University of Tokyo, Tokyo 113-8656, Japan
(yuji-matsuoka@mist.i.u-tokyo.ac.jp).

tResearch Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502,
Japan, (fujishig@kurims.kyoto-u.ac.jp).

is the same as the original one. We compare it with the original version
of Fujishige’s algorithm and Goldberg and Tarjan’s algorithm. Our compu-
tational experiments on six problem families reveals that the new version
is faster than the original one for all the problem families. In comparison
with two codes of Goldberg and Tarjan’s algorithm, our algorithm is the
fastest for two problem families and is not so slower for the others. We may
conclude that the new version of Fujishige’s algorithm is competitive with
Goldberg and Tarjan’s algorithm in practice.

The present paper is organized as follows. Section 2 gives definitions
concerning flows and networks. In Section 3 we give a full description of the
new version of Fujishige’s algorithm. In Section 4 we show computational
results comparing the new version with the original version and Goldberg
and Tarjan’s algorithm. Section 5 provides our conclusion.

2 Maximum Flow and Residual Network

Let N = (G = (V,A),sT,s7,¢) be a flow network, where G = (V, A) is a

directed graph with a vertex set V and an arc set A, s™ € V an entrance (or

a source), s~ € V an exit (or a sink), and ¢ : A — Z, a capacity function

taking on nonnegative integers. We assume |V| = n, the cardinality of V.
A function ¢ : A — Z is called a flow in N if it satisfies

(1) (Capacity constraints) Va € A : 0 < p(a) < c(a).

(2) (Flow conservation) Yo € V \ {sT,s7} : dp(v) = 0, where for each
veV

Op(w)= > wla— Y)

a=(v,w)€EA a=(w,w)EA

For a flow ¢ in N, the value of flow ¢ is defined to be dp(sT)(= —dp(s7))
and is denoted by 0(¢). A mazimum flow is a flow of maximum value.
Given a flow in NV, the residual network N, = (G, = (V, Ay), 57,57, ¢,)
with an underlying graph G, and a capacity function ¢, : A, — Z is de-
fined by
_ At -
Ap=AJUA,,
+
A<p - {CL ‘ a € Aa QO(CL) < C(a)}7
A, ={ala€ A, 0<¢p(a)} (a:a reorientation of a),
_ Jcla) —pla) (a€AZ)
cp(a) = _ -
p(a) (a € Ay).
Suppose that we are given a flow ¢ in N. For any flow ¢ in the residual
network N, such that a € Af and a € A imply ¢(a) = 0 or ¢(a) = 0, we

2

define a flow ¢ @ v in the original network A/ by

¢(a) +¢(a) ifac A} and ¢(a) >0
e D Y(a) = pla) —(a) ifaec A7 and (a) >0
o(a) otherwise

for each a € A. The value 9(p @ 1) of the new flow ¢ ® 1) in N is greater
than that of ¢ by 0(¢)).

Preflows will be used in our new version of Fujishige’s algorithm. A
function ¢ : A — Z is called a preflow in N if it satisfies

(1) (Capacity constraints) Va € A : 0 < ¢(a) < c(a).
(2) (Relaxed flow conservation) Vv € V '\ {s1} : dp(v) <0,

An excess of a preflow ¢ at v is defined by —dp(v). We say that a vertex v is
active if —9¢(v) > 0. For a preflow ¢ in N we define 9(p) = —9¢(s™). The
residual network N, for a preflow ¢ is defined in the same way as above.

3 A new version of Fujishige’s algorithm

An MA ordering from s in N, is obtained as follows. Note that here we
proceed through each arc backward.

Procedure MA-Ordering(N,, s)
Step 0: For each u € V, put b(u) < 0 and let L,, be an empty list.
Put i < 0, vg < s, b(vg) «— 0o and W « {s}.
Step 1: For each w € V' \ W with (w,v;) € A,
put b(w) « b(w) + cy(w,v;) and add arc (w,v;) to list Ly,.
Step 2: Let v;11 be a vertex that attains the maximum of b(w) (w € V\W).
If b(vit1) = 0 or [W| = n, then return (vo(= s),v1,--- ,v;), b, and
L,(ueV).
Otherwise, put W «— W U {v;11}, i < i+ 1, and go to Step 1.

The complexity of Procedure MA-Ordering is O(m + nlogn) if we use a
Fibonacci heap. Let W be the vertex set {vo(= s),v1,--- , v} obtained by
the procedure. Then W corresponds to the set of vertices that are reachable
to s along directed paths. It should also be noted here that vertex set W and
lists L,,(w € W\ {s}) of out-going arcs form an acyclic subgraph, denoted
by Hy, of G, and that (vo(= s),v1,--- ,vi) gives a topological ordering of
vertices in H,.

We now describe the new MA-ordering maximum-flow algorithm using
preflows as follows.

A New Version of the M A-Ordering Maximum-Flow Algorithm

Procedure FMAP
Step 0: For each a = (sT,u) € A, put ¢(a) « c(a).
For each arc a = (v,w) € A with v # s, put p(a) « 0.
Step 1-1: Perform MA-Ordering(N,,s™), and get (vo(=s7),v1,- -, Vk).
If 0p(v;) =0 for alli =1,--- k, then go to Step 2-1.
Step 1-2: Fori =k, k—1,---,1 do the following:
For each arc (v;,u) in list L,,, push (v;, u):
If (vi,u) € A} then p(vi, u) « @(vi, u)+min{—dp(v;), ¢, (v, u)},
If (vi, u) € Ay then ¢(u, v;) « @(u, v;)—min{—0p(v;), cy(vi, u)}.
Go to Step 1-1.
Step 2-1: Perform MA-Ordering(N,,,s*) and get (vo(= sT),v1,- -+, vg).
If 9p(v) =0 for allv € V' \ {sT, s}, return ¢ (a maximum flow).
Step 2-2: Fori =k, k—1,---,1 do the following:
For each arc (v;,u) in list L,,, push (v, u):
If (v;, u) € A then (vi, u) — @(vy, u)+min{ = (v;), cy(vi, u)},
If (vi, u) € Ay then ¢(u, v;) « @(u, v;)—min{—0p(v;), cy(vi, u)}.
Go to Step 2-1.

Step 1 (the cycle of Steps 1-1 and 1-2) repeatedly performs MA-Ordering
and push operations. When there are no active vertices that are reachable
to s, the iteration of Step 1 terminates. Then obtained ¢ has the following
property:

Lemma 3.1. When we finish the iteration of Step 1, then computed preflow
© is of maximum value.

Proof. For the preflow ¢, we have 0p(v) = 0 for any vertex v that is reach-
able to s~. This implies that 0(¢)(= —0¢(s™)) attains the maximum value
among values of all preflows in N. O

This lemma shows that denoting W = {vg(= s7),v1,- - ,vi}, we have a
mincut V' \ W in A when finishing Step 1. Therefore, we can get a minimun
cut and a preflow of maximum value in Step 1, and we convert the preflow of
maximum value into a flow of maximum value in Step 2 (the cycle of Steps
2-1 and 2-2).

Now, we examine the complexity of the algorithm. First note that Step
2 is at most the same complexity as Step 1, so we only have to examine Step
1. Since Step 1-1 requires O(m + nlogn) time and Step 1-2 requires O(m)
time, each iteration of Step 1 requires O(m + nlogn) time. The following
lemma tells us how many times Step 1 is repeated.

Lemma 3.2. Suppose that there exits an active vertex after finishing an
execution of Step 1-2. Let ¢ be a preflow ¢ available immediately before the
execution of Step 1-2 and let ¢ be @ obtained after the execution of Step 1-2,
then we have 0(Q) — 0(@) > (0* — 0(@))/n, where 0* is the mazimum flow
value in N .

Proof. Let v; be the active vertex nearest to s~ in the order of the currently
obtained MA ordering. Define W; = {vg, v1,- -+ ,v—1}. Let b be b available
in the beginning of the execution of Step 1-2. Since d¢(v;) < 0, dp(v;) =0
(i =1,2,---,1 — 1) and b(v;) = Y {cz(v,u) | (v, u) € Ly}, the flow value
increased by the execution of Step 1-2 satisfies

-1

0(@) = 0(@) = b(u) + Y _(—0¢(v))).

j=1
It follows from the definition of an MA ordering that

k
ke(W) = b(v;) < (k— 1+ 1)b(wy),
j=l
where k3 (W;) = > {cs(u,v) | (u,v) € W, w e V\W;, v e W} On the
other hand, since ¢ is a preflow in Nz, we have

-1

0" = 0(@) < kp(W)) + Y _(—03(v))).

j=1
It follows from the above three inequalities that

-1
0" —(¢) < (k= 1+ 1)b(v) + Y _(—0%(v;))

Lemma 3.2 shows that
0" = o(") < (1=)" — o)),

where o) denotes the preflow ¢ computed at the end of the ith execution
of Step 1-2. This implies that every O(n) iterations of Step 1 (the cycle of
Step 1-1 to Step 1-2) at least halve the difference 0* — v(y). Since initially
we have 0* — 0(¢) < nU — 0 where U denotes the maximum arc capacity,
and since ¢ computed while executing our algorithm is integer-valued, our
algorithm finds a maximum flow by repeating Step 1 O(nlognU) times.
Hence, we have the following theorem.

Theorem 3.3. Our algorithm finds a mazimum flow after O(nlognU) it-
erations of Step 1 and Step 2. Hence the complexity of our algorithm is
O(n(m + nlogn)lognU).

Note that the complexity of our algorithm is the same as the original
version of Fujishige’s [3]. While Fujishige’s algorithm does not terminate for
the instance network of a real-valued capacity function shown by Shioura
[10], our algorithm finds a maximum flow after five iterations for the in-
stance. However, any better estimation of the complexity of our algorithm
proposed here has not been found yet.

4 Computational Results

In this section we describe computational results on our new version of
Fujishige’s algorithm, comparing it with the original version and Goldberg
and Tarjan’s algorithm.

4.1 Computational Setup

Our experiments were conducted on TOSHIBA WXPHESP1 JP001 with an
Intel Pentium M, CPU 1.30 GHz, 512 megabytes of memory and running
Microsoft Windows XP Home Edition verson 2002. All programs are writ-
ten in C language and compiled with the gcc using the -O3 optimization
option. Program FMA implements the original version of Fujishige’s algo-
rithm. While the program in [4] used a Fibonacci heap as the data structure,
we use an ordinary (non-Fibonacci) heap for practical efficiency. Program
H_PRF is Goldberg and Tarjan’s algorithm using the highest-label-first
criterion, and program @_PRF is Goldberg and Tarjan’s algorithm using
a queue to select active vertices. Both programs are the same as used by
Cherkassky and Goldberg in [2].

All the running times reported here are in seconds, and we only report
the user CPU time, excluding the input and output time. Except for the
AK family explained below, we generated five instances for each problem
family of specified size, using different random seeds. Each number in the
figures is the averaged time over five runs.

4.2 Problem Instances

We used six problem families, which were produced by three generators:
GENRMF, WASHINGTON, and AK. These generators are available from
DIMACS [7].

GENRMEF family The GENRMF generator produces networks consisting
of b grid-like frames of size (a x a). The number of vertices is a?b and
that of arcs 5a?b — 4ab — a?. All vertices in each frame are connected

to its grid neighbors and each vertex is connected by an arc to a
vertex randomly chosen from the next frame. Arc capacities within a
frame are cg X a X a and those between frames are randomly chosen
integers from the range [c1,c2]. The source vertex is in a corner of
the first frame, and the sink is in a corner of the last frame. We used
GENRMEF to produce three kinds of networks as follows:

e GENRMF-LONG family: The number of vertices in a generated net-
work is n = 2%. We set parameters as a = 2t/4 h=2%/2 ¢ =1 and
cz2 = 10000.

e GENRMF-LONGER family: The number of vertices in a generated
network is n = 2%. We set parameters as a = 4, b = 2% ¢; =1 and
¢ = 10000.

e GENRMF-WIDE family: The number of vertices in a generated net-
work is n = 2%. We set parameters as a = 22¢/5 b = 2%/5 ¢; =1 and
¢ = 10000.

WASHINGTON Family The WASHINGTON generator generates ran-
dom level graphs with a rows and b columns. The number of vertices
is ab + 2 and that of arcs is 3ab — b. For each column except for the
last one, every vertex is connected to three randomly chosen vertices
in the next column. The source vertex is connected to every vertex in
the first row, and the sink vertex to every vertex in the last row. Ca-
pacities of the connecting arcs are randomly chosen integers from the
range [1, c]. Capacities of the source and sink arcs are from the range
[1,3c]. We used WASHINGTON to gererate two families as follows:

e WASHINGTON-RLG-LONG family: The number of vertices in a gen-
erated network is n = 2%. We set parameters as a = 64, b = 2*76 and
¢ = 10000.

e WASHINGTON-RLG-WIDE family: The number of vertices in a gen-
erated network is n = 2%. We set parameters as a = 2*76, b = 64 and
¢ = 10000.

AK Family The AK generator produces the problem families that are hard
for Goldberg and Tarjan’s push-relabel algorithms. Generated net-
works are deterministic for each value of n. The details for generated
networks are described in [2].

e AK family: The number of vertices in a gererated network is n = 2%.

4.3 Experiments

To examine practical efficiency of our proposed algorithm, we implemented
it by using the adjacency list representation of input graphs. For data
structures in MA orderings, we chose an ordinary heap to select vertices
of maximum b(w) and maintained the list L,, as a queue. We denote this
program by FMAP. We also used an ordinary heap instead of a Fibonacci
heap for the original version of Fujishige’s algorithm, denoted by FMA.

We made computatinal experiments for the following four programs:
FMA, FMAP, Q_PRF, and H_.PRF. Our results are shown in Figures 1~6,
one for each family.

Figure 1 shows results for the GENRMF-LONG family. The new version
is faster than the original version and is almost as fast as Q_PRF.

Figure 2 shows results for the GENRMF-LONGER family. Our proposed
algorithm is the best for this family.

Figure 3 shows results for the GENRMF-WIDE family. The new version
is much faster than the original version. However it is somewhat slower than
both codes of Goldberg and Tarjan’s algorithm.

Figure 4 shows results for the WASHINGTON-RLG-LONG family. The
new version is slower than both codes of Goldberg and Tarjan’s algorithm.

Figure 5 shows results for the WASHINGTON-RLG-WIDE family. For
this family our proposed algorithm performs much better than the original
version and is slightly faster than H_PRF.

Figure 6 shows results for the AK family. For this special data family
our proposed algorithm outperforms the others.

Our experiments show that the new version is faster than the original
version for all the problem instances given above. Our proposed algorithm
outperformed the two codes of Goldberg and Tarjan’s algorithm for two
problem families: GENRMF-LONGER family and AK family. For the other
families the proposed algorithm is not so slower than Goldberg and Tarjan’s.
The computational results show that our algorithm is practically efficient.

Running time (s)

10000 T T T T T T

1000

100

0.1 |
001 1 1 1 1 1 1 1
12 13 14 15 16 17 18
Number of vertices (power of 2)
input data Running time(s)
n m logoU || FMA | FMAP | Q_.PRF | H PRF

4096 18368 19.3 0.10 0.03 0.03 0.03

9100 41760 19.9 0.64 0.13 0.11 0.09

15488 71687 20.2 1.48 0.27 0.22 0.13

30589 | 143364 20.7 4.30 0.72 0.59 0.34

65536 | 311040 21.3 13.27 2.11 1.87 1.01

130682 | 625537 21.8 39.11 4.93 5.03 2.37

270848 | 1306607 22.3 || 119.76 14.60 14.21 7.13

Figure 1: Computational results on GENRMF-LONG family data.

Running time (s)

10000 T T T T T T

1000

100

-X
e

0.01 ! 1 1 1 1 1 1
12 13 14 15 16 17 18

Number of vertices (power of 2)

input data Running time(s)

n m log,U || FMA | FMAP | Q_PRF | H.PRF
4096 10224 17.3 0.02 0.01 0.02 0.03
8192 20464 | 173 || 0.10 0.03 0.08 0.05
16384 65520 | 17.3 || 0.19 0.09 0.22 0.11
32768 | 131056 | 17.3 || 0.43 0.17 0.64 0.23
65536 | 262128 17.3 0.98 0.39 1.78 0,93
131072 524272 17.3 1.85 0.74 5.26 1.23
262144 | 1048560 17.3 3.72 1.56 19.17 2.53

Figure 2: Computational results on GENRMF-LONGER, family data.

10

Running time (s)

10000 T T T T T T T

1000

100

=
o
T

0.1 |
.
001 1 1 1 1 1 1 1
12 13 14 15 16 17 18
Number of vertices (power of 2)
input data Running time(s)
n m log, U FMA | FMAP | Q_PRF | H.PRF
3920 18256 22.9 1.13 0.14 0.06 0.06
8214 38813 23.7 6.93 0.61 0.25 0.18

16807 80262 24.5 30.33 2.17 0.80 0.52

65025 | 314840 26.1 425.72 17.89 6.78 3.63

123210 | 599289 26.9 || 1503.79 49.21 18.33 10.13

259308 | 1267875 27.7]| 6118.04 | 151.70 58.28 27.28

Figure 3: Computational results on GENRMF-WIDE family data.

11

10000 T T T T T T

1000 _

Running time (s)

100

0.1
0.01 : ' ' ' ' : :
12 13 14 15 16 17 18
Number of vertices (power of 2)
input data Running time(s)

n m logyU || FMA | FMAP | Q.PRF | H PRF

4098 12224 14.8 0.24 0.06 0.02 0.09

8194 | 24512 14.8 0.83 0.22 0.07 0.23

16386 | 49088 14.8 2.17 0.60 0.16 0.51

32770 | 98240 14.8 4.76 1.49 0.36 1.32

65538 | 196544 14.8 || 10.89 3.71 0.94 2.57

131074 | 391168 14.8 || 21.51 8.28 2.17 4.79

262146 | 786368 14.8 || 46.94 20.28 6.47 11.70

Figure 4: Computational results on WASHINGTON-RLG-LONG family

data.

12

10000 T T T T T T

1000

100

Running time (s)
=
o
T

0.01

14
Number of vertices (power of 2)

15

16

17

18

input data Running time(s)

n m log, U FMA | FMAP | Q_.PRF | H.PRF
4098 | 12224 14.8 0.25 0.06 0.03 0.08
8194 | 24512 14.8 1.56 0.27 0.07 0.50
16386 | 49088 | 14.8 8.34 0.98 0.18 1.75
32770 | 98240 | 14.8 40.87 3.74 0.48 6.16
65538 | 196544 14.8 195.73 12.29 1.30 22.13
131074 | 391168 14.8 || 1017.21 55.76 3.80 94.01
262146 | 786368 14.8 || 4916.26 | 238.85 10.17 | 393.55

Figure 5: Computational results on WASHINGTON-RLG-WIDE family

data.

13

Running time (s)

10000 T

FMA'ID T T T T T
FMA ---x-—-
Q_PRF ------
H_PRF g ¥
1000 +) ol
. El
100 F X
10 b A
nl) _X
% %~
o1l
0.01 4 o ‘
12 13 14 15 16 17 18
Number of vertices (power of 2)
input data Running time(s)
n m log,U || FMA | FMAP | Q_.PRF | H.PRF
4102 6151 19.9 0.01 0.01 0.21 0.13
8198 12295 19.9 0.01 0.01 0.79 0.49
16390 | 24583 19.9 0.03 0.01 6.10 3.07
32774 | 49159 19.9 0.13 0.03 27.94 13.17
65542 98311 19.9 0.33 0.07 129.26 53.97
131078 | 196615 19.9 0.74 0.16 563.24 | 219.32
262150 | 393223 19.9 1.62 0.35 | 2167.15 | 907.39

Figure 6: Computational results on AK family data.

14

5 Conclusion

We have presented an improved version of Fujishige’s algorithm using pre-
flows and showed its behavior by giving computational results. The im-
proved version is faster than the original version for all problem instances of
our experiments and is competitive with Goldberg and Tarjan’s algorithm.
While Goldberg and Tarjan’s algorithm maintains a locally valid order of
vertices and performs local push operations, our improved algorithm per-
forms global orderings and global push operations.

It is left for future work to examine whether a better running time bound
of our improved algorithm exists or whether our algorithm is strongly poly-
nomial.

Acknowledgements

We are very grateful to Satoru Iwata for his valuable discussions and useful
comments throughout this research. The present work is partly supported
by a Grant-in-Aid from Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

[1] R. K. Ahuja, T. L. Magnati and J. B. Orlin: Network Flows — Theory,
Algorithms, and Applications. Prentice-Hall, New Jersey, 1993.

[2] B. V. Cherkassky and A. V. Goldberg: On implementing the push-
relabeled method for the maximum flow problem. Algorithmica, vol. 19
(1997), pp. 390-410.

[3] S. Fujishige: A maximum flow algorithm using MA orderings. Opera-
tions Research Letters, vol. 31 (2003), pp. 176-178.

[4] S. Fujishige and S. Isotani: New maximum flow algorithms by MA
orderings and scaling. Journal of the Operations Research Society of
Japan, vol. 46 (2003), pp. 243-250.

[5] A. V. Goldberg and R. E. Tarjan: A new approach to the maximum
flow problem. Journal of the ACM, vol. 35 (1988), pp. 921-940.

[6] A. V. Goldberg: Synthetic Maximum Flow Families. Available at
http://www.avglab.com/andrew/CATS /maxflow_synthetic.htm .

[7] D.S. Johnson and C. C. McGeoch (eds.): Network Flows and Matching:
First DIMACS Implementation Challenge. AMS, Rhode Island, 1993.

15

8]

[10]

H. Nagamochi and T. Ibaraki: Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathemat-
ics, vol. 5 (1992), pp. 54-66.

H. Nagamochi and T. Ibaraki: Graph connectivity and its augmenta-
tion: applications of MA orderings. Discrete Applied Mathematics, vol.
123 (2002), pp. 447-472.

A. Shioura: The MA-ordering max-flow algorithm is not strongly poly-
nomial for directed networks. Operations Research Letters, vol. 32
(2004), pp. 31-35.

16

