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Use of Primal-Dual Technique in the Network

Algorithm for Two-Way Contingency Tables ∗

Taiji Suzuki†‡, Satoshi Aoki†§ and Kazuo Murota†¶

May, 2004

Abstract

The network algorithm of Mehta and Patel is one of the most effi-
cient algorithms to execute a generalized Fisher’s exact test in two-way
contingency tables. In this article an efficient algorithm for solving the
longest path problem in the network algorithm is proposed. The effi-
ciency of the proposed algorithm relies on the primal dual technique for
convex network flow problems and the use of maximum likelihood esti-
mate as the initial value. The algorithm is more efficient than previous
algorithms, especially for large contingency tables (say, r × c > 50).
This work is intended to indicate a fruitful interplay between statistics
and combinatorical optimization.

1 Introduction

The network algorithm of Mehta and Patel [7] is currently the most efficient
algorithm for computing the exact p-value of the generalized Fisher’s exact
test in two-way contingency tables. The algorithm is basically a dynamic
programming algorithm representing the recurrence relation in the form of
a network, and the algorithm avoids useless enumerations by solving certain
subproblems, shortest-path and longest-path problems in the network. Some
methods for approximately solving these subproblems have been proposed
successfully by Mehta and Patel [7] and Aoki [2]. Joe’s method [6] for
computing the exact optimal values of these subproblems has resulted in a
further improvement of efficiency in computation time and required memory
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of the network algorithm. This is implemented as FEXACT, a source code
in Fortran77, by Clarkson, Fan and Joe [3].

In this article we propose a new algorithm that exactly solves the longest-
path problem in the network algorithm. Our algorithm consists of solving
a min-cost integer-flow problem with a discrete convex cost function by
the standard primal-dual framework [1] [9]. The algorithm sets the initial
flow and potential with the aid of a statistical knowledge of the maximum
likelihood estimate. This is a key for the efficiency of the algorithm as they
are guaranteed to be near the optimal values. Our method for the longest-
path problem compares favorably with Joe’s method both in computation
time and required memory. Whereas the required computer memory and
CPU time grow exponentially with the problem size in Joe’s algorithm, this
is not the case with our algorithm, in which the CPU time grows almost
linearly with the problem size. It is noted, however, that our algorithm
and Joe’s enumerate the same set of paths since both algorithms perform
trimming on the basis of the exact longest-path length.

In this article two different kinds of networks are involved. One is the
network due to Mehta and Patel to represent the dynamic programming
structure and the other is a network, to be introduced in Section 3.1, for
computing the longest-path length with the aid of the maximum likelihood
estimate. This work is intended to indicate a fruitful interplay between
statistics and combinatorial optimization.

The outline of this paper is as follows. In Section 2 a brief outline of
the network algorithm is given. In Section 3, the proposed algorithm is
described, whereas the detail of the validity is explained in Appendix A.
Section4 presents computational results, and Section 5 provides conclusion
and discussion.

2 Network Algorithm of Mehta and Patel

In this section we show a brief outline of the network algorithm of Mehta
and Patel. We refer the reader to Mehta and Patel [7] [8], Joe [6], Clarkson,
Fan and Joe [3] for technical details of the algorithm.

Let X = (xij)1≤i≤r,1≤j≤c be an r× c contingency table which is assumed
to have nonnegative elements. Let Ri =

∑c
j=1 xij be the ith row sum, and

Cj =
∑r

i=1 xij be the jth column sum, and put N =
∑r

i=1 Ri =
∑c

j=1 Cj .
We denote by F the set of all r×c contingency tables with the same row and
column sums as the given X. Under the null hypothesis of row and column
independence, the conditional probability of observing Y = (yij) ∈ F is
described as

P (Y ) =

∏r
i=1 Ri!

∏c
j=1 Cj !

N !
∏r

i=1

∏c
j=1 yij !

= D




r∏

i=1

c∏

j=1

yij !



−1

,
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where D = (
∏r

i=1 Ri!
∏c

j=1 Cj !)/N !. Freeman and Halton [4] defined the
p-value for the conditional test of independence as p =

∑
Y ∈T P (Y ), where

T = {Y ∈ F | P (Y ) ≤ P (X)} for the observed table X. If p ≤ α, for a
prespecified critical point α (for example, α = 0.05), we reject the hypothesis
of independence.

In the network algorithm, F is identified with a network consisting of c+1
stages labelled successively c, c − 1, · · · , 0. Stage k contains nodes labelled
by (k : Rk) = (k : R1k, · · · , Rrk), which represents the stage number k
and the row sum vector Rk from the first to the kth column of a certain
element in F . Stage c has node (c : R1, · · · , Rr) only and Stage 0 has node
(0 : 0, · · · , 0) only. A directed arc emanates from node (k : R1k, · · · , Rrk)
to node (k − 1 : R1,k−1, · · · , Rr,k−1) if and only if Rik − Ri,k−1 ≥ 0 for
all i = 1, · · · , r. Then a path from (c : R1, · · · , Rr) to (0 : 0, · · · , 0) has
a one-to-one correspondence with an element in F , say, Y = (yij) with
yik = Rik − Ri,k−1. The length of an arc with (y1k, · · · , yrk) is defined
as (

∏r
i=1 yik!)−1 and the length of a path is defined to be the product of

the lengths of the arcs on the path. In particular, the length of a path
from (c : R1, · · · , Rr) to (0 : 0, · · · , 0) that is identified with Y ∈ F equals
P (Y )/D. Figure 1 shows an example of the constructed network for an

observed table X =
1 0 1

0 1 0

2 2 2

, which is taken from [7]. The dotted path in

Figure 1 represents X.
The network algorithm proceeds visiting nodes along arcs from the start

node (c : R1, · · · , Rr). At each visited node, say Nk = (k : R1k, · · · , Rrk),
let P be the path that is traversed from the start node (c : R1, · · · , Rr)
to Nk, and PAST be the length of P. The algorithm also calculates the
shortest path length SP and longest path length LP of a path from node
Nk to (0 : 0, · · · , 0). By using SP, LP and PAST, useless traversing of
arcs can be eliminated and hence the computation time can be reduced
as follows. If LP · PAST · D ≤ P (X), all the paths sharing the traversed
path P contribute to the p-value, with the total contribution being equal to

PAST ·D · (
Pk

j=1 Cj)!Qr
i=1 Rik!·Qk

j=1 Cj !
. If SP · PAST ·D > P (X), none of such paths

contribute to the p-value. In either case, the further path traversing beyond
P may be trimmed. Note that PAST is not determined by Nk alone but
depends on the traversed path P, whereas SP and LP are associated with
Nk.

For the exactness of the calculated p-value we may use an upper bound
of LP or a lower bound of SP in place of the exact values of LP or SP. The
degree of approximation, however, much affects the computational efficiency.
That is, tighter bounds lead to higher computational efficiency as a result
of earlier path trimming. A number of methods have been proposed for
computing SP and LP or their bounds [2], [6], [7]. In particular, Joe’s
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Figure 1: Example [7] of the network with R1 = 2, R2 = 1, R3 = 6, C1 =
3, C2 = 3, C3 = 3.

methods [6] for computing exact SP and LP are implemented as FEXACT
in [3], in which LP is computed by judicious enumeration of submatrices
that satisfy a necessary condition of optimality. Although FEXACT (f3xact,
the subroutine of FEXACT for computing LP, more precisely) is sufficiently
fast for smaller contingency tables, the required computer memory and CPU
time grow exponentially with the problem size, as the method is based on
enumeration of candidate submatrices. In contrast, our algorithm, to be
described in Section 3.1, is free from such exponentially increasing resource
requirement.

3 New Algorithm Based on Min-Cost Flow

In this section a new algorithm for computing the exact value of the longest-
path length LP is proposed. It consists of solving a sequence of min-cost
integer-flow problems by the primal-dual method. The outline of the algo-
rithm is as follows. A good initial pair of flow and potential is constructed
from the maximum likelihood estimate under the model of no interaction
between the row and column. The pair satisfies the complementarity condi-
tion for optimality, although the flow does not necessarily meet the supply-
demand requirement. Then, according to the primal-dual framework, the

4



algorithm repeats augmenting flows and updating potentials while maintain-
ing the complementarity condition. By virtue of the good initial value the
number of iterations in the primal-dual algorithm is bounded by r × c.

3.1 Formulation to a Min-Cost Flow Problem

Let R be the set of real numbers, Z be the set of integer numbers, and
Z+ be the set of nonnegative integers. We describe the algorithm at node
(c : R1, · · · , Rr) at stage c, where the adaptation to other nodes at general
stages should be obvious.

The problem of computing LP is written in the following form:

Problem 1

Max. Γ̃(Y ) =




r∑

i=1

c∑

j=1

yij !



−1

,

s. t.
r∑

i=1

yij = Cj ,
c∑

j=1

yij = Ri,

yij ∈ Z+ (1 ≤ i ≤ r, 1 ≤ j ≤ c),

where Y = (yij). We assume without loss of generality that Ri > 0 (1 ≤
∀i ≤ r) and Cj > 0 (1 ≤ ∀j ≤ c).

To formulate the above problem to a convex optimization problem we
convert the objective function Γ̃(Y ) to Γ(Y ) = − log(Γ̃(Y )) =

∑r
i=1

∑c
j=1 f(yij)

with f : Z → R ∪ {+∞} defined by

f(y) =

{
log(y!) (y ≥ 0),
+∞ (otherwise).

Note that f is a convex function over integers in the sense that

f(y + 1) + f(y − 1)− 2f(y) = log
y + 1

y
> 0 (y ≥ 1). (1)

Then Problem 1 is equivalent to the following convex integer programming
problem:

Problem 2

Min. Γ(Y ) =
r∑

i=1

c∑

j=1

f(yij), (2)

s. t.
r∑

i=1

yij = Cj ,

c∑

j=1

yij = Ri, (3)

yij ∈ Z (1 ≤ i ≤ r, 1 ≤ j ≤ c). (4)
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yij
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R1 C1

Rr Cc

Figure 2: Network G(V, A)

This problem can easily be identified as a convex integer transportation
problem, i.e., a min-cost integer-flow problem on a bipartite graph with a
convex cost function. The underlying graph, say, G(V, A) is a complete
bipartite graph on the vertex set V = VR ∪ VC that consists of the set of
the row numbers VR = {1, 2, · · · , r} and the set of the column numbers
VC = {1, 2, · · · , c} of the contingency table. The arcs are directed from VR

to VC, i.e., A = {(i, j) | i ∈ VR, j ∈ VC}. The graph G(V, A) is illustrated
in Figure 2. Each arc (i, j) ∈ A has cost f(yij) for the flow vector y =
(yij)(i,j)∈A. Our aim is to minimize the total cost

∑
(i,j)∈A f(yij) under the

supply-demand condition (3).
A necessary and sufficient condition for optimality, so-called potential

criterion, is available in network flow theory. By a potential we mean p =
(pR, pC) with pR : VR → R and pC : VC → R. The subdifferential of
f : Z → R at z ∈ Z+ is defined as

∂f(z) = {q ∈ R | q · d + f(z) ≤ f(z + d), ∀d ∈ Z}.
We put log 0 = −∞ by convention.

Lemma 1 For z ∈ Z+,

∂f(z) = {q ∈ R | log z ≤ q ≤ log(z + 1)}. (5)

Proof. By the convexity (1), we see that q ∈ ∂f(z) if and only if

q · d + f(z) ≤ f(z + d) for d = ±1.

Substituting (1) yields (5). ¥
The optimality condition for Problem 2 is given as follows.
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Theorem 1 (Potential criterion) For a feasible integer flow y : A → Z in
Problem 2, the two conditions (OPT) and (POT) below are equivalent.

• (OPT) y is an optimal integer flow.

• (POT) There exists a potential p = (pR, pC) : VR ∪ VC → R such that

pC(j)− pR(i) ∈ ∂f(yij) for all (i, j) ∈ A.

Proof. This fact, implicit in Minoux [9], seems to be a folklore. This follows,
for example, from Integrality Theorem for Flows and Network Equilibrium
Theorem in Rockafellar [11]. This theorem is also a special case of Theorem
9.16 in Murota [10]. ¥

3.2 Initial Value

Good initial values of y and p that satisfy (POT) can be constructed from
the maximum likelihood estimate under the hypothesis of independence.
These initial values play an important role in this algorithm because these
are guaranteed to be near the optimal value.

Lemma 2 (Initial Value) A pair of flow y and potential p = (pR, pC) defined
by

yij =
⌊

RiCj

N

⌋
, pR(i) = − log

Ri

N
, pC(j) = log Cj (i ∈ VR, j ∈ VC) (6)

satisfies the condition (POT).

Proof. Obviously pC(j) − pR(i) = log(RiCj/N) lies between log yij =
log(bRiCj/Nc) and log(yij + 1) = log(bRiCj/Nc + 1). This implies (POT)
by Lemma 1. ¥

The initial y in (6) does not necessarily meet (3), but satisfies
∑c

j=1 yij ≤
Ri,

∑r
i=1 yij ≤ Cj . Then it is natural to increase the flow and reduce the

residual N −∑
i,j yij while keeping y and p satisfying (POT).

Remark 1 The initial values (6) are derived from the maximum likelihood
estimate under the model of no interaction between the row and column.
The detailed statistical discussion is found in Aoki [2]. Joe [5] also makes
a convincing argument about the relevance of the maximum likelihood esti-
mate with reference to Schur concavity.

7



3.3 Flow Augmentation

Starting with the initial value of y and p given by (6), the algorithm iterates
the flow augmentation by the standard primal-dual method [1] adapted to
convex cost functions. The flow augmentation process reduces the flow de-
ficiency by more than one unit at every iteration. If N −∑

i,j yij = 0, then
the algorithm stops.

In the primal-dual method we employ an auxiliary network (Gyp, lyp).
The node set of the graph Gyp is defined as Ṽ = {s}∪V , where s is a source
node. The arc set is Ayp = A∗yp ∪B∗

yp ∪ C∗
yp, where

A∗yp = {(i, j) | i ∈ VR, j ∈ VC},
B∗

yp = {(j, i) | yij > 0, i ∈ VR, j ∈ VC},

C∗
yp = {(s, i) |

c∑

j=1

yij < Ri, i ∈ VR}.

The function lyp : Ayp → R, representing arc lengths, is defined by

lyp(a) =





log(yij + 1) + pR(i)− pC(j) (a = (i, j) ∈ A∗yp),
− log(yij)− pR(i) + pC(j) (a = (j, i) ∈ B∗

yp),
0 (a ∈ C∗

yp).

The procedure can be described as follows.

Step 0 Set the initial values of flow y and potential p = (pR, pC)
by:

yij =
⌊

RiCj

N

⌋
, pR(i) = − log

Ri

N
, pC(j) = log Cj

(∀i ∈ VR,∀j ∈ VC).

Step 1 Set Q = {j ∈ VC | ∑r
i=1 yij < Cj}. If Q = ∅, then

output y and p as optimal flow and optimal potential, and
exit. Otherwise, construct the auxiliary network (Gyp, lyp).

Step 2 In (Gyp, lyp) solve the single source shortest path prob-
lem from the start node s, to obtain the shortest distance
dR(i) for i ∈ VR and dC(j) for j ∈ VC. Let T be the set of
arcs that can be contained in some shortest path tree from
s.

Step 3 Modify the potential p = (pR, pC) as follows:
{

pR(i) ← pR(i) + dR(i) (∀i ∈ VR),
pC(j) ← pC(j) + dC(j) (∀j ∈ VC).

8



Step 4 Let v ∈ Q be a node which is reachable from s along
T . Let Pv be a shortest path from s to v, and augment a
unit flow along Pv as follows:

yij ←





yij + 1 ((i, j) ∈ Pv ∩A∗yp),
yij − 1 ((j, i) ∈ Pv ∩B∗

yp),
yij (otherwise).

Then delete arcs from T as follows:

T ← T \ (Pv ∩ (A∗yp ∪B∗
yp)).

If
∑r

i=1 yiv = Cv, delete v from Q. If there remains a node
j ∈ Q which is reachable from s along T , repeat Step 4, else
go to Step 1.

The number of iterations in our algorithm is bounded by the size of
problem as follows.

Lemma 3 The number of iterations is no more than r × c.

Proof. Let α be the number of iterations. Since the algorithm augments
at least one unit flow, we have

α ≤ N −
r∑

i=1

c∑

j=1

bRiCj/Nc.

Using
∑r

i=1 Ri =
∑c

j=1 Cj = N we obtain

α ≤
r∑

i=1

c∑

j=1

(RiCj/N − bRiCj/Nc) ≤
r∑

i=1

c∑

j=1

1 = r × c.

¥
In actual executions of the algorithm, the number of iterations is often

much smaller than r × c.

Remark 2 In the network algorithm we have to solve Problem 2 for many
different sets of marginals R and C. For two problems with near marginals,
we can make use of the solution of one of the two problems in solving the
other problem. Let us consider the special case that two problems have
identical column marginals C and near row marginals R and R̃ that satisfy

R̃i =





Ri + 1 (i = u)
Ri − 1 (i = v)
Ri (otherwise)
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for some u and v. In this case, if the optimal flow y and the optimal potential
p under row marginals R and column marginals C is known, only one flow
augmentation is required to compute LP under row marginals R̃ and column
marginals C: augment a unit flow from u to v.

It may be worth mentioning that, when Ru = 0, the potential pR(u) is
not defined in our description of the algorithm because of the assumption
of Ri > 0 (∀i ∈ VR). In this case pR(u) should be set to satisfy (POT), for
example, as pR(u) = max{pC(j) | j ∈ VC, Cj 6= 0}.

4 Computational Results

We compared the CPU time for solving Problem 2 between our algorithm
and FEXACT which is a source code of FORTRAN77 implemented by
Clarkson, Fan and Joe [3] based on the theoretical analysis of Joe [6]. FEX-
ACT is adopted for the comparison because it is known to be more efficient
than previously published methods using approximate upper bounds of LP;
see [3] for comparison with Mehta and Patel’s method [7], and [12] for that
with Aoki’s [2]. The programs were coded in C or C++ and compiled by
C++ compiler. We have converted by f2c the FORTRAN77 source code
of FEXACT to a C source code. Both algorithms have been executed on
a machine with Intel Pentium M processor 1300MHz and 512MB memory.
The results are displayed in Figure 3, in which the CPU time for solving
Problem 2 by our algorithm and FEXACT and the stack size required in
FEXACT, both in log-scale, are plotted against r × c, the size of problems.
The observed data with a common row size r are connected by line segments.

Figure 3 shows that, while FEXACT requires CPU time of almost ex-
ponential order with respect to the size r × c, our algorithm requires CPU
time of almost linear order. For other test data, the two algorithms behave
in a similar way, but with different multiplicative factors. Our algorithm is
uniformly faster, although there are some other cases in which FEXACT is
fast at small sized problems (for example r × c ≤ 50). At r × c > 50, in
particular, our algorithm is almost always faster in all our computational
experiments. According to Figure 3, for example, at r × c = 60 our algo-
rithm is about 100 times faster and at r × c = 140 about 107 times faster
than FEXACT.

As for the memory requirement, our algorithm has a decisive advantage
over FEXACT (Figure 3). FEXACT uses a stack for computing LP, and the
size of the stack increases exponentially with the problem size; for example,
the size of the stack is about 1000 at r × c = 70 and about 105 at r × c =
140. FEXACT uses a stack to enumerate contingency tables via dynamic
programming. Though the enumeration is kept minimum by exploiting the
theoretical results of Joe [6], the stack gets exponentially large with the
problem size, and even worse, the size of the stack cannot be predicted in
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Figure 3: CPU time for solving Problem 2 by FEXACT and our algorithm
and required stack size in FEXACT, plotted against problem size r × c.
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advance. Our algorithm, on the other hand, does not involve any dynamic
memory allocation and hence is much stabler in memory requirement.

As for the overall CPU time of network algorithm, the difference between
our algorithm and FEXACT is small in the range of the problem sizes which
the network algorithm can treat. This is because in this range the CPU time
for computing LP does not differ so much between the two algorithms and
because it is not dominant in the overall CPU time (Table 1). In view of
the above computational results, it can be said, however, that when the
treatable problem size is made much larger by the development of computer
power in the future, the use of our algorithm is obviously more effective with
respect to CPU time and memory requirement.

5 Discussion

In the cases that the difference among row (or column) sums is small, FEX-
ACT obtains LP immediately by a heuristic method based on Theorem 4
of Joe [6]. It is easily suspected that a hybrid algorithm of our algorithm
and FEXACT may be useful in such cases. That is, at the entrance of the
algorithm, if the difference among row or column sums is small, we attempt
at applying the heuristic method, and if the heuristic method is not ap-
plicable, we use our algorithm. Our additional computational experiments
showed, however, that whereas this hybrid algorithm is effective in solving
Problem 2, it does not yield improvement in the overall CPU time of net-
work algorithm. This is because the time saved by the heuristic method is
often less than the time consumed by testing whether the heuristic method
is applicable or not. We have thus confirmed the use of our algorithm is
most practical with respect to memory requirement and CPU time.

The efficiency of our algorithm relies on the fact that the maximum
likelihood estimate, when discretized, serves as a good initial value for the
maximization problem in discrete variables. We believe, with optimism, that
this is also the case in fairly general situations, for example, in maximizing
a Schur concave function that has a statistical meaning; see Joe [6].

Appendix A: Primal-Dual Method

This appendix explains the detail of the primal-dual method.
For a given flow y, we call a node i ∈ VR (or j ∈ VC) saturated if∑c

j=1 yij = Ri (or
∑r

i=1 yij = Cj), else we call it non-saturated.
Concerning the auxiliary network (Gyp, lyp) the next lemma holds.

Lemma 4 y and p satisfy (POT), if and only if lyp(a) ≥ 0 (∀a ∈ Ayp).

We call the process to augment a flow keeping satisfying (POT) augmen-
tation process. Before we state the detail of the augmentation process, we

12



Table 1: CPU time of the network algorithm using our algorithm and FEX-
ACT

CPU time (s)
Problems Contingency table p-value Our algorithm FEXACT

1 0 2 3 4 1 1 4 0.2599 0.035 0.036
5 0 4 4 2 3 0
2 4 5 4 2 4 3

2 3 0 4 0 2 0 0.0116 0.059 0.060
5 3 0 1 5 0
2 2 2 2 0 1
0 3 0 0 4 1

3 8 3 3 2 2 1 3 0.0460 4.739 4.708
8 9 1 1 2 2 1
2 3 7 3 3 1 0
1 0 3 1 0 2 1

4 2 1 0 2 3 1 2 0.8296 0.748 1.001
2 1 2 3 2 2 1
0 0 2 1 2 1 0
1 2 2 1 0 0 1
0 0 0 3 0 1 0
1 1 2 1 0 0 0

5 7 15 2 1 0 2 1 0.0004 232.524 232.606
9 0 3 2 1 0 1
2 3 2 2 2 0 1
1 1 1 3 2 2 1
3 1 1 3 0 3 3

6 3 3 2 3 3 1 0 1 0.0337 835.306 840.291
2 1 2 1 0 0 0 3
0 0 1 0 1 2 2 3
0 3 2 0 1 3 3 2
2 3 0 2 0 2 3 2
2 0 2 0 1 2 2 2
1 1 0 1 2 0 0 1

7 2 3 0 3 0 0 1 3 0.0821 188.567 198.416
0 0 3 1 0 1 2 1
0 1 1 1 1 3 2 3
1 1 2 3 2 3 1 3
1 2 3 0 0 1 0 3
2 0 2 1 2 0 1 2
0 0 0 0 1 2 1 2

8 3 1 3 1 3 3 0 0 0.0029 171.598 176.218
1 2 0 2 1 1 0 1
0 2 0 3 0 3 0 0
3 1 0 0 1 3 3 3
3 0 1 1 2 1 0 3
0 0 2 0 1 0 1 1
0 1 1 0 0 2 0 2

10 1 3 3 1 0 1 0 3 0.0008 5473.700 5511.070
1 4 2 1 3 1 1 3
2 1 3 0 1 3 0 3
0 1 2 1 2 5 6 3
2 0 0 1 2 6 0 2
0 0 2 1 0 0 2 0
2 0 2 0 0 1 0 2
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show the outline of the process. The augmentation process consists of two
phases: a potential update and a flow update. A potential update is a pre-
process that enables us to augment a flow keeping y and p satisfying (POT).
In a potential update process the algorithm obtains basically a shortest path
tree T on (Gyp, lyp), the root of which is the source node s, and at each node
v ∈ V , p(v) is added by a distance from s to v in order to satisfy (POT).
Next in a flow update process the algorithm augments a unit flow from s to
each non-saturated node in VC along T . For a potential update process it
is guaranteed that (POT) is still satisfied after flow update (see Lemma 5).
Then the algorithm modifies (Gyp, lyp) according to the updated y and p,
and iterates the same process on the modified (Gyp, lyp) until all the nodes
in VR (and VC) are saturated.

Next, we state the detail of the augmentation process. Let T be the
shortest path tree on (Gyp, lyp) from s. When y and p satisfy (POT), by
Lemma 4, a single-source shortest path problem from s can be solved by
an efficient algorithm such as Dijkstra’s. Then the algorithm modifies the
potential p = (pR, pC) as follows:

{
pR(i) ← pR(i) + dR(i) (∀i ∈ VR),
pC(j) ← pC(j) + dC(j) (∀j ∈ VC),

(7)

where dR(i) and dC(j) are distances from s to i ∈ VR and j ∈ VC respectively.
Next the algorithm enters the flow update phase. It picks a non-saturated

node v ∈ VC which is reachable from s along T , and augments a unit flow
along the shortest path Pv from s to v. To augment a unit flow along Pv is
described concretely as

yij ←





yij + 1 ((i, j) ∈ Pv ∩A∗yp),
yij − 1 ((j, i) ∈ Pv ∩B∗

yp),
yij (otherwise).

(8)

Then delete the arcs from T as follows:

T ← T \ (Pv ∩ (A∗yp ∪B∗
yp)). (9)

Until there exists no non-saturated node v ∈ VC which is reachable by
traversing T from s, the algorithm repeats the flow augmentation and the
arc deletion from T .

Lemma 5 The modified y and p also satisfy the condition (POT).

Proof. Let y and y′ be the flows before and after modification. Let
p = (pR, pC) and p′ = (p′R, p′C) be the potential before and after modification,
where p′R(i) = pR(i) + dR(i) and p′C(j) = pC(j) + dC(j).
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(a) For (i, j) ∈ A∗yp such that y′ij = yij . Since dR(i)+lyp(i, j)−dC(j) ≥ 0,
we have

dR(i) + lyp(i, j)− dC(j) ≥ 0
⇔ log(yij + 1) + pR(i)− pC(j) + dR(i)− dC(j) ≥ 0
⇔ log(y′ij + 1) + p′R(i)− p′C(j) ≥ 0. (10)

If (j, i) ∈ B∗
yp(⇔ yij > 0), since dC(j) + lyp(j, i) ≥ dR(i), we have

dC(j) + lyp(j, i)− dR(i) ≥ 0
⇔− log(yij)− pR(i) + pC(j) + dC(j)− dR(i) ≥ 0
⇔− log(y′ij)− p′R(i) + p′C(j) ≥ 0, (11)

else if (j, i) /∈ B∗
yp(⇔ yij = 0),

− log(y′ij)− p′R(i) + p′C(j) = ∞ > 0. (12)

(b) For (i, j) ∈ A∗yp such that y′ij = yij +1. In this case, dR(i)+lyp(i, j) =
dC(j) because (i, j) ∈ Pv. Then

dR(i) + lyp(i, j)− dC(j) = 0
⇔ log(yij + 1) + pR(i)− pC(j) + dR(i)− dC(j) = 0
⇔− log(y′ij)− p′R(i) + p′C(j) = 0, (13)

and the last expression obviously implies

log(y′ij + 1) + p′R(i)− p′C(j) ≥ 0. (14)

(c) For (j, i) ∈ B∗
yp such that y′ij = yij − 1.

In this case dC(j) + lyp(j, i) = dR(i) because (j, i) ∈ Pv. Then

dC(j) + lyp(j, i)− dR(i) = 0
⇔− log(yij)− pR(i) + pC(j)− dR(i) + dC(j) = 0
⇒− log(y′ij)− p′R(i) + p′C(j) ≥ 0, (15)

the expression of which obviously implies

log(y′ij + 1) + p′R(i)− p′C(j) = 0. (16)

From (a),(b) and (c) we obtain

∀(i, j) ∈ A,

log y′ij ≤ p′C(j)− p′R(i) ≤ log(y′ij + 1)

⇔p′C(j)− p′R(i) ∈ ∂f(y′ij). (17)
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¥
The algorithm reconstructs the auxiliary network (Gyp, lyp) based on

modified y and p, and repeats the augmentation process until all nodes in
V are saturated. When all nodes in V are saturated, the algorithm stops
and Y = (yij) is an optimal contingency table.

The following lemma guarantees the validity of the proposed algorithm.

Lemma 6 All nodes in V are reachable from s on (Gyp, lyp) till the algo-
rithm stops. So the potential is always finite at each node.

Proof. A non-saturated node i ∈ VR is reachable from s because (s, i) ∈
C∗

yp. If there exists a node i ∈ VR which is non-saturated, any j ∈ VC is
reachable from s because for any j ∈ VC there is an arc (i, j) ∈ A∗yp. For a
saturated node i ∈ VR there exists j ∈ VC which satisfies yij > 0 because∑c

j=1 yij = Ri > 0. Then there exists (j, i) ∈ B∗
yp. Since any j ∈ VC is

reachable, any saturated i ∈ VR is also reachable.

Appendix B: Further Computational Results

We show further computational results in this appendix. In the following
figures, CPU time for solving Problem 2 by FEXACT and our algorithm
and required stack size in FEXACT, both in log-scale, are plotted against
problem size r × c. We generated test problems randomly.
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Figure A1: CPU time and size of stack for problem set 1.
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Figure A2: CPU time and size of stack for problem set 2.
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Figure A3: CPU time and size of stack for problem set 3.
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Figure A4: CPU time and size of stack for problem set 4.
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Figure A5: CPU time and size of stack for problem set 5.
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Figure A6: CPU time and size of stack for problem set 6.
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