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Abstract

Given a pair of non-negative integers m and n, P (m,n) denotes a
subset of 2-dimensional triangular lattice points defined by P (m,n) def.=
{(xe1 + ye2) | x ∈ {0, 1, . . . , m − 1}, y ∈ {0, 1, . . . , n − 1}} where
e1

def.= (1, 0), e2
def.= (1/2,

√
3/2). Let Tm,n(d) be an undirected graph

defined on vertex set P (m,n) satisfying that two vertices are adjacent
if and only if the Euclidean distance between the pair is less than or
equal to d. Given a non-negative vertex weight vector w ∈ ZP (m,n)

+ , a
multicoloring of (Tm,n(d),w) is an assignment of colors to P (m,n) such
that each vertex v ∈ P (m,n) admits w(v) colors and every adjacent
pair of two vertices does not share a common color.

We propose a polynomial time approximation algorithm for multi-
coloring (Tm,n(d),w). Our algorithm is based on the well-solvable cases
that the graph Tm,n(d) is a perfect graph. We also showed a necessary
and sufficient condition that Tm,n(d) is perfect. For any d ≥ 1, our al-
gorithm finds a multicoloring which uses at most α(d)ω+O(d3) colors,
where ω denotes the weighted clique number. When d = 1,

√
3, 2,

√
7, 3,

1 Supported by Superrobust Computation Project of the 21st Century COE Program
“Information Science and Technology Strategic Core.”
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the approximation ratio α(d) = (4/3), (5/3), (7/4), (7/4), respectively.

When d > 1, we showed that α(d) ≤
(

1 + 2√
3+ 2

√
3−3
d

)
.

We also showed the NP-completeness of the problem to determine
the existence of a multicoloring of (Tm,n(d),w) with strictly less than
(4/3)ω colors.

1 Introduction

Given a pair of non-negative integers m and n, P (m,n) denotes the subset
of 2-dimensional integer triangular lattice points defined by

P (m,n) def.= {(xe1 + ye2) | x ∈ {0, 1, 2, . . . , m− 1}, y ∈ {0, 1, 2, . . . , n− 1}}

where e1
def.= (1, 0), e2

def.= (1/2,
√

3/2). Given a finite set of 2-dimensional
points P ⊆ R2 and a positive real d, a unit disk graph, denoted by (P, d), is
an undirected graph with vertex set P such that two vertices are adjacent
if and only if the Euclidean distance between the pair is less than or equal
to d. We denote the unit disk graph (P (m,n), d) by Tm,n(d).

Given an undirected graph H and a non-negative integer vertex weight
w′ of H, a multicoloring of (H, w′) is an assignment of colors to vertices of
H such that each vertex v admits w′(v) colors and every adjacent pair of two
vertices does not share a common color. A multicoloring problem on (H, w′)
finds a multicoloring of (H, w′) which minimizes the required number of
colors. The multicoloring problem is also known as weighted coloring [4],
minimum integer weighted coloring [15] or w-coloring [12].

In this paper, we study weighted unit disk graphs on triangular lattice
points (Tm,n(d),w). First, we show a necessary and sufficient condition
that Tm,n(d) is a perfect graph. If the graph is perfect, we can solve the
multicoloring problem easily. Next, we propose a polynomial time approxi-
mation algorithm for multicoloring (Tm,n(d),w). Our algorithm is based on
the well-solvable case that the given graph is perfect. For any d ≥ 1, our
algorithm finds a multicoloring which uses at most


1 +

⌊
2√
3
d
⌋

⌊
3+
√

4d2−3
2

⌋

 ω +

(⌊
3+
√

4d2−3
2

⌋
− 1

)
bd + 1c2

colors, where ω denotes the weighted clique number. Table 1 shows the
values of the above approximation ratio in case that d is small.
We also show the NP-completeness of the problem to determine the existence
of a multicoloring of (Tm,n(d),w) which uses strictly less than (4/3)ω colors.

The multicoloring problem has been studied in several context. When
a given graph is the triangular lattice graph Tm,n(1), the problem is re-
lated to the radio channel (frequency) assignment problem. McDiarmid and
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Table 1: Approximation ratio
d 1 · · · √

3 · · · √
7 · · · 2

√
3 · · · √

13 · · · √
19 · · ·

ratio 4/3 5/3 7/4 2 9/5 2
d

√
21 · · · 3

√
3 · · · √

31 · · · · · · ∞
ratio 11/6 2 13/7 · · · 1 + 2/

√
3

Reed [9] showed that the multicoloring problem on triangular lattice graphs
is NP-hard. Some authors [9, 12] independently gave (4/3)-approximation
algorithms for this problem. In case that a given graph H is a square lattice
graph or a hexagonal lattice graph, the graph H becomes bipartite and so we
can obtain an optimal multicoloring of (H, w′) in polynomial time (see [9] for
example). Halldórsson and Kortsarz [5] studied planar graphs and partial k-
trees. For both classes, they gave a polynomial time approximation scheme
(PTAS) for variations of multicoloring problem with min-sum objectives.
These objectives appear in the context of multiprocessor task scheduling.
For coloring (general) unit disk graphs, there exists a 3-approximation algo-
rithm [6, 8, 14]. Here we note that the approximation ratio of our algorithm
is less than 1 + 2/

√
3 < 2.155 for any d ≥ 1.

2 Well-Solvable Cases and Perfectness

In this section, we discuss some well-solvable cases such that the multicol-
oring number is equivalent to the weighted clique number.

An undirected graph G is perfect if for each induced subgraph H of G,
the chromatic number of H, denoted by χ(H), is equal to its clique number
ω(H). The following theorem is a main result of this paper.

Theorem 1 The graph Tm,3(d) is perfect, ∀m ∈ Z+, ∀d ≥ 1.
When n ≥ 4 and d ≥ 1, we have the following;

[∀m ∈ Z+, Tm,n(d) is perfect ] if and only if d ≥ √
n2 − 3n + 3.

Table 2 shows the perfectness and imperfectness of Tm,n(d) for small n and
d.

To show the above theorem, we introduce some definitions. We say that
an undirected graph has a transitive orientation property, if each edge can
be assigned a one-way direction in such a way that the resulting directed
graph (V, F ) satisfies that [(a, b) ∈ F and (b, c) ∈ F imply (a, c) ∈ F ].
An undirected graph which is transitively orientable is called comparability
graph. The complement of a comparability graph is called co-comparability
graph. It is well-known that every co-comparability graph is perfect.

Lemma 1 For any integer n ≥ 3, if d ≥ √
n2 − 3n + 3, then Tm,n(d) is a

co-comparability graph.
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Table 2: Perfectness and imperfectness

HHHHHn
d

1 · · ·√3 · · · 2 · · · √
7 · · · 3 · · · 2√3 · · · √

13 · · · 4 · · ·√19 · · · √
21 · · ·

1
2
3
4 Perfect
5
6 Imperfect
...

Proof: It suffices to show that the complement of Tm,n(d) is a comparability
graph. Let Tm,n(d) be the complement of Tm,n(d). We direct each edge in
Tm,n(d) as follows. For any edge e = {v1, v2} in Tm,n(d), we direct the
edge e from v1 to v2 when the x-coordinate of v1 is strictly less than that of
v2. We show that the obtained directed graph, denoted by G′, satisfies the
transitivity.

Clearly, G′ is acyclic. Assume that G′ contains a pair of directed edges
(v1, v2) and (v2, v3). We denote the position of vi by (xi, yi) where xi and
yi are the x-coordinate and the y-coordinate, respectively. The definition of
G′ implies that x1 < x2 < x3. In the following, we show that x2−x1 > d/2.
(Case 1) Consider the case that |y2 − y1| < (

√
3/2)(n − 1). Then, it is

clear that |y2 − y1| ≤ (
√

3/2)(n− 2). Since the distance between v1 and v2

is greater than d and n ≥ 3, we have that x2 − x1 >
√

d2 − |y2 − y1|2 ≥√
d2 − (3/4)(n− 2)2 >

√
d2 − (3/4)(n2 − 3n + 3) ≥

√
d2 − (3/4)d2 = d/2.

(Case 2) Assume that |y2 − y1| ≥ (
√

3/2)(n − 1). Since v1, v2 ∈ P (m,n),
it is clear that |y2 − y1| = (

√
3/2)(n − 1). Without loss of generality, we

can assume that (x2, y2) = (x1, y1) + (x′e1 + (n− 1)e2) for some integer x′.
Since 0 < x2 − x1 = (n − 1)/2 + x′, we have x′ > −(n − 1)/2. If x′ ≤ −1,
then |x2− x1|2 + |y2− y1|2 = (x′ + (n− 1)/2)2 + (3/4)(n− 1)2 ≤ (−1 + (n−
1)/2)2 + (3/4)(n− 1)2 = n2 − 3n + 3 ≤ d2 and it contradicts with the non-
adjacency between v1 and v2 on Tm,n(d). Thus the integrality of x′ implies
that x′ ≥ 0 and |x2−x1| = (n−1)/2+x′ ≥ (n−1)/2 = |y2−y1|/

√
3. Then the

inequalities d2 < |x2−x1|2 + |y2−y1|2 ≤ |x2−x1|2 +3|x2−x1|2 = 4|x2−x1|2
implies that d/2 < x2 − x1.

Similarly, we can show that x3 − x2 > d/2. Thus we have x3 − x1 > d
and the distance between v1 and v3 is greater than d. From the definition
of G′, the digraph G′ contains the edge (v1, v3).

The following lemma deals with the special case that n = 3, d = 1.

Lemma 2 For any m ∈ Z+ and 1 ≤ ∀d <
√

3, the graph Tm,3(d) is perfect.
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Proof: We only need to consider the case that d = 1, since Tm,n(d) =
Tm,n(1) when 1 ≤ d <

√
3. Let H be an induced subgraph of Tm,3(1).

When ω(H) ≤ 2, H has no 3-cycle. Then it is easy to show that H has no
odd cycle and thus χ(H) = ω(H), since H is bipartite. If ω(H) ≥ 3, then it
is clear that ω(H) = 3 and χ(H) ≤ 3, since ω(Tm,3(1)) = 3 and Tm,3(1) has
a trivial 3-coloring.
Note that though the graph Tm,3(1) is perfect, the graph Tm,3(1) is not
co-comparability graph.

From the above, the perfectness of a graph satisfying the conditions of
Theorem 1 is clear. In the following, we discuss the inverse implication. We
say that an undirected graph G has an odd-hole, if G contains an induced
subgraph isomorphic to an odd cycle whose length is greater than or equal
to 5. It is obvious that if a graph has an odd-hole, the graph is not perfect.
In the following, we denote a point (xe1 + ye2) ∈ P (m,n) by 〈x, y〉.

Lemma 3 If 1 ≤ d <
√

7, then ∀m ≥ 5, Tm,4(d) has at least one odd-hole.

Proof: If 1 ≤ d <
√

3, then a subgraph induced by

{ 〈2, 0〉, 〈1, 1〉, 〈0, 2〉, 〈0, 3〉, 〈1, 3〉, 〈2, 3〉, 〈3, 2〉, 〈3, 1〉, 〈3, 0〉 }
is a 9-hole. If

√
3 ≤ d < 2, then a subgraph induced by

{ 〈3, 0〉, 〈1, 1〉, 〈0, 2〉, 〈1, 3〉, 〈2, 3〉, 〈4, 2〉, 〈4, 1〉 }
is a 7-hole. If 2 ≤ d <

√
7, then a subgraph induced by

{ 〈2, 0〉, 〈0, 2〉, 〈1, 3〉, 〈3, 2〉, 〈3, 0〉 }
is a 5-hole. When 1 ≤ d <

√
7, T5,4(d) has at least one odd-hole, and hence

the proof is completed.

Lemma 4 If 1 ≤ d <
√

13, then ∀m ≥ 6, Tm,5(d) has at least one odd-hole.

Proof: If 1 ≤ d <
√

7, then odd-holes in the proof of Lemma 3 are induced
subgraph of T6,5(d). If

√
7 ≤ d < 3, then a subgraph induced by

{ 〈2, 0〉, 〈0, 2〉, 〈1, 4〉, 〈4, 2〉, 〈4, 0〉 }
is a 5-hole. If 3 ≤ d <

√
13, then a subgraph induced by

{ 〈3, 0〉, 〈0, 3〉, 〈2, 4〉, 〈5, 3〉, 〈5, 0〉 }
is a 5-hole. When 1 ≤ d <

√
13, T6,5(d) has at least one odd-hole, and hence

the proof is completed.

Lemma 5 For any integer n ≥ 4, if 1 ≤ d <
√

n2 − 3n + 3, then ∃m ∈ Z+,
Tm,n(d) is imperfect.
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Proof: In the following, we show that ∀n ≥ 4, if 1 ≤ d <
√

n2 − 3n + 3,
then ∃m ∈ Z+, Tm,n(d) has at least one odd-hole, by induction on n. When
n = 4, 5, it is clear from Lemmas 3 and 4, respectively.

Now we consider the case that n = n′ ≥ 6 under the assumption that if
1 ≤ d <

√
(n′ − 1)2 − 3(n′ − 1) + 3, then ∃m′ ∈ Z+, Tm′,n′−1(d) has at least

one odd-hole. If 1 ≤ d <
√

(n′ − 1)2 − 3(n′ − 1) + 3 =
√

n′2 − 5n′ + 7, then
Tm′,n′(d) has at least one odd-hole, since Tm′,n′−1(d) is an induced subgraph
of Tm′,n′(d). In the remained case that

√
n′2 − 5n′ + 7 ≤ d <

√
n′2 − 3n′ + 3,

the set of points

{ 〈n′ − 3, 0〉, 〈0, n′ − 2〉, 〈n′ − 4, n′ − 1〉, 〈2n′ − 7, n′ − 2〉, 〈2n′ − 6, 0〉 }

is contained in P (m′′, n′), if m′′ = 2n′ − 5. It is easy to see that the above
five vertices induces a 5-hole of Tm′′,n′(d), when n′ ≥ 6 and

√
n′2 − 5n′ + 7 ≤

d <
√

n′2 − 3n′ + 3 (see Appendix: Lemma 9).
Lemma 5 shows the imperfectness of every graph which violates a condition
of Theorem 1. Thus, we completed a proof of Theorem 1. From the above
lemmas, the following is immediate.

Corollary 1 Let d > 1 be a real number. Then, Tm,n(d) is a co-comparability
graph, if and only if n ≤ 3+

√
4d2−3
2 .

Next, we consider the multicoloring problems. Given an undirected
graph G = (V, E) and vertex weight vector w ∈ ZV

+, the multicoloring
number χ(G, w) is the least number of colors required in a multicoloring of
(G, w). The weighted clique number ω(G, w) is the weight of a maximum
weight clique in (G, w). It is clear that χ(G, w) ≥ ω(G, w). First, we de-
scribe a property which helps the multicoloring case theoretically. We say
that an undirected graph G has an odd-antihole, if the complement of G
contains an induced subgraph isomorphic to an odd cycle whose length is
greater than or equal to 5.

Lemma 6 Undirected graph G = (V, E) is perfect if and only if [∀w ∈ ZV
+,

χ(G, w) = ω(G, w) ] holds.

Proof: Let Gw = (Vw, Ew) be a graph obtained from G by replacing each
vertex v with w(v)-clique. If two vertices u, v of Gw correspond to a unique
vertex of G, we say that the pair {u, v} belongs to a same class. It suffices
to show that G is perfect if and only if Gw is perfect. Since G is an induced
subgraph of Gw, the perfectness of Gw implies that G is perfect. Next we
show that if Gw is not perfect then G is not perfect. In [1], it was shown
that if a graph is not perfect, there exists an odd-hole or odd-antihole.

Consider the case that Gw contains an odd-hole C. If C contains a pair
of vertices in a same class, it contradicts with the assumption that C is an
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induced subgraph. Otherwise, C is also an odd-hole of G and thus G is not
perfect.

Consider the case that Gw contains an odd-antihole C. We only need to
consider the case that C contains a pair of vertices {u, v} in a same class.
Clearly, u and v are adjacent on Gw. Since the complement of C is an odd
cycle, u has a pair of vertices u′, u′′ such that neither {u, u′} nor {u, u′′} is
adjacent pair. Since {u, v} belongs to a same class, both {v, u′} and {v, u′′}
are non-adjacent pairs. Thus (u, u′, v, u′′) forms a 4-cycle in the complement
of C. It contradicts with the assumption that C is an odd-antihole.

By combining Theorem 1 and Lemma 6 we have the following.

Theorem 2 The equality χ(Tm,3(d),w) = ω(Tm,3(d),w) holds, ∀m ∈ Z+,
∀d ∈ R+, and ∀w ∈ ZP (m,3)

+ . When n ≥ 4, the following property holds;
[ ∀m ∈ Z+ and ∀w ∈ ZP (m,n)

+ , χ(Tm,n(d),w) = ω(Tm,n(d),w)]
if and only if d ≥ √

n2 − 3n + 3.

Lastly, we discuss some algorithmic aspects. Assume that we have a
co-comparability graph G and related digraph H which gives a transitive
orientation of the complement of G. Then each independent set of G cor-
responds to a chain (directed path) of H. The multicoloring problem on
G is essentially equivalent to the minimum size chain cover problem on H.
Every clique of G corresponds to an anti-chain of H. Thus the equality
ω(G) = χ(G) is obtained from Dilworth’s decomposition theorem [2]. It is
well-known that the minimum size chain cover problem on an acyclic graph
is solvable in polynomial time by using an algorithm for minimum-cost cir-
culation flow problem (see [13] for example).

In the following, we describe an algorithm for multicoloring an weighted
graph (Tm,3(1),w). We denote the set of colors by C∗ = {1, 2, . . . , ω∗} where
ω∗ = ω(Tm,3(1),w). The following algorithm finds an assignment of colors
c : P (m,n) → 2C∗ such that ∀v ∈ P (m,n), |c(v)| = w(v) and for every edge
{u, v} ∈ Tm,3(1), c(u) ∩ c(v) = ∅.

For any x ∈ {0, 1, . . . , m − 1}, we denote the points xe1 + 2e2, xe1 +
1e1, xe1 + 0e2 by tx+1, ux+1, vx, respectively. Thus {t1, t2, . . . , tm},
{u1, u2, . . . , um} and {v0, v1, . . . , vm−1} form a partition of P (m, 3). With-
out loss of generality, we can assume that w(v0) = w(tm) = w(um) = 0.
Our algorithm assigns colors to vertices in the following manner. Assume
that we have a multicoloring c : P ′ → 2C where P ′ = {t1, t2, . . . , tj} ∪
{u1, u2, . . . , uj} ∪ {v0, v1, . . . , vj} satisfying that ∀i ∈ {1, 2, . . . , j}, c(ti) ⊆
c(vi) or c(ti) ⊇ c(vi). Next, we assign colors to uj+1. Since w(v0) = w(tm) =
w(um) = 0, we can assume that w(tj) ≥ w(vj) without loss of generality.
Since {uj , tj , uj+1} is a 3-clique, |c(uj)|+ |c(tj)|+w(uj+1) ≤ w∗. Thus there
exists a subset of colors C1 with |C1| = w(uj+1) and C1 is disjoint with
c(uj) ∪ c(tj). Then we set c(uj+1) to C1. Next, we assign colors to tj+1.
there exists a set of colors C2 ⊆ C∗ \ (c(tj) ∪ c(uj+1)) with |C2| = w(tj+1),
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since {tj , uj+1, tj+1} is a 3-clique. Then set c(tj+1) to C2. Lastly we assign
colors to vj+1.
(Case 1) If w(tj+1) ≥ w(vj+1), then set c(vj+1) to a subset of c(tj+1) whose
cardinality is w(vj+1).
(Case 2) Consider the case that w(tj+1) < w(vj+1) and w(tj) + w(tj+1) ≥
w(vj)+w(vj+1). Then there exists a subset of colors C3 ⊆ c(tj)\c(vj) whose
cardinality is w(vj+1)− w(tj+1). We set c(vj+1) = c(tj+1) ∪ C3.
(Case 3) Consider the case that w(tj+1) < w(vj+1) and w(tj) + w(tj+1) <
w(vj)+w(vj+1). Then we set c(vj+1) = c(tj+1)∪(c(tj)\c(vj))∪C4 where C4

and v(tj) ∪ c(uj+1) ∪ c(tj+1) are disjoint and w(vj+1) = w(tj+1) + (w(tj)−
w(vj)) + |C4|. Since {vj , uj+1, vj+1} is a 3-clique, it is easy to see that there
exists such a subset of colors.

A naive implementation of the above procedure gives a pseudo poly-
nomial time algorithm, since the algorithm maintains the set of colors C∗

explicitly. If we represent the assigned set of colors by the union of some
intervals and implement the above procedure carefully, we can obtain a
polynomial time algorithm with respect to m.

3 Approximation Algorithm

In this section, we propose an approximation algorithm for multicoloring
the graph (Tm,n(d),w). When d = 1, McDiarmid and Reed [9] proposed an
approximation algorithm for (Tm,n(1),w), which finds a multicoloring with
at most (4/3)ω(Tm,n(1),w) + 1/3 colors.

In the following, we propose an approximation algorithm for (Tm,n(d),w)
when d > 1. The basic idea of our algorithm is similar to the shifting
strategy [7].

Theorem 3 When d > 1, there exists a polynomial time algorithm for mul-
ticoloring (Tm,n(d),w) such that the number of required colors is bounded
by


1 +

⌊
2√
3
d
⌋

⌊
3+
√

4d2−3
2

⌋

 ω(Tm,n(d),w) +

(⌊
3+
√

4d2−3
2

⌋
− 1

)
χ(Tm,n(d)).

Proof: We describe an outline of the algorithm. For simplicity, we define
K1 = b3+

√
4d2−3
2 c and K2 = b3+

√
4d2−3
2 c+ b 2√

3
dc.

First, we construct K2 vertex weights w′
k for k ∈ {0, 1, . . . , K2 − 1} by

setting

w′k(x, y) =

{
0, y ∈ {k, k + 1, . . . , k + b 2√

3
dc − 1} (mod K2),

K1

⌊
w(x,y)

K1

⌋
, otherwise.
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Next, we exactly solve K2 multicoloring problems defined by K2 pairs
(Tm,n(d),w′

k), k ∈ {0, 1, . . . , K2 − 1} and obtain K2 multicolorings. We can
solve each problem exactly in polynomial time, since every connected com-
ponent of the graph induced by the set of vertices with positive weight is
a perfect graph discussed in the previous section. Thus χ(Tm,n(d),w′

k) =
ω(Tm,n(d),w′

k) for any k ∈ {0, 1, . . . , K2 − 1}. Put w′′ = w −∑K2−1
k=0 w′

k.
Then each element of w′′ is less than or equal to K1 − 1. Thus we can
find a multicoloring of (Tm,n(d),w′′) from the direct sum of K1 − 1 triv-
ial colorings of Tm,n(d). The obtained multicoloring uses at most (K1 −
1)χ(Tm,n(d))colors. Lastly, we output the direct sum of K2+1 multicolorings
obtained above. The definition of the weight vector w′

k implies that ∀k ∈
{0, 1, . . . , K2 − 1}, K1 ω(Tm,n(d),w′

k) ≤ ω(Tm,n(d),w). Thus, the obtained
multicoloring uses at most (K2/K1)ω(Tm,n(d),w)+ (K1−1)χ(Tm,n(d)) col-
ors.

The following lemma gives the chromatic number of Tm,n(d).

Lemma 7 If m,n are sufficiently large, then χ(Tm,n(d)) = d̂
2

where d̂ is
the minimum Euclidean distance between two points in P (m,n) subject to
that distance being greater than d. Clearly, d < d̂ ≤ bd + 1c.

Proof: See McDiarmid [9] for example.
When d is small, Table 1 shows the approximation ratio. The following

corollary gives a simple upper bound of the approximation ratio.

Corollary 2 For any d ≥ 1, we have 1 +

j
2√
3
d
k

—
3+
√

4d2−3
2

� ≤ 1 + 2√
3+ 2

√
3−3
d

.

Here we note that if we apply our algorithm in the case that d = 1, then
the algorithm finds a multicoloring which uses at most (4/3)ω(Tm,n(1),w)+6
colors.

4 Hardness Result

In this section, we discuss the hardness of our problem. If we deal with
a rational number d as an input data, then the problem for multicoloring
(Tm,n(d),w) is NP-hard, since (Tm,n(1),w) is shown to be NP-hard by Mc-
Diarmid and Reed [9]. It is clear that even if we consider the case that
d is integer and we define the input size of d is also d (not O(log d)), the
problem remains NP-hard. Thus we only need to consider the case that d
is a constant. The following lemma gives an idea of our proof of hardness.

Lemma 8 For any d ≥ 1, the triangular lattice graph is an induced subgraph
of Tm,n(d).

9



Table 3: Unit disk graphs on square lattice points
HHHHHHn

d
1 · · · √

2 · · · 2 · · · √
5 · · · 2√2 · · ·

1
2 Perfect
3
4 Imperfect

Proof: Let ae1 + be2 be a farthest neighbor of (0, 0) on Tm,n(d). Put e′1 =
(a, b), e′2 = (1

2a −
√

3
2 b,

√
3

2 a + 1
2b), and P ′ = {(xe′1 + ye′2) ∈ P (m,n) | x ∈

Z, y ∈ Z}. Then the subgraph of Tm,n(d) induced by P ′ is a triangular
lattice graph.

Theorem 4 Let d be a constant rational number. Given a pair (Tm,n(d),w),
it is NP-complete to determine whether (Tm,n(d),w) is multicolorable with
strictly less than (4/3)ω(Tm,n(d),w) colors or not.

Proof: It is known to be NP-complete to determine the 3-multicolorability
of a given 4-colorable weighted triangular lattice graph (Tm,n(1),w) [9]. We
can reduce a 3-multicolorability problem on Tm,n(1) to a 3-multicolorability
problem on Tm′,n′(d), by copying the vertex weights of the original prob-
lem onto a sparse triangular lattice defined in the proof of Lemma 8. The
obtained instance has O(mnd2) vertices. Since d is a constant, the time
complexity of the reduction procedure is bounded by a polynomial of the
input size of (Tm,n(1),w).

5 Discussion

In this paper, we dealt with the triangular lattice. In the following, we
discuss the square lattice. Given a pair of non-negative integers m and
n, Q(m,n) def.= {0, 1, 2, . . . , m − 1} × {0, 1, 2, . . . , n − 1} denotes the sub-
set of 2-dimensional integer square lattice points. We denote the unit
disk graph (Q(m,n), d) by Sm,n(d). In case that d <

√
2, it is clear that

Sm,n(d) = Sm,n(1) and the graph is bipartite for any m and n. If d =
√

2, we
proposed a (4/3)-approximation algorithm for multicoloring (Sm,n(

√
2),w)

in our previous paper [11]. We also showed the NP-hardness of the problem.
Unfortunately, Theorem 1 is not extensible to the square lattice case.

Table 3 shows the perfectness and imperfectness of unit disk graphs on the
square lattice for small n and d. The perfectness of Tm,3(

√
2) was shown

in [11]. The graph Sm,3(2) contains a 5-hole: {(0, 0), (2, 0), (2, 1), (1, 2), (0.2)}.
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Appendix

Lemma 9 Assume that
√

n2 − 5n + 7 ≤ d <
√

n2 − 3n + 3 and n ≥ 6. A
subgraph of Tm,n(d) induces by

{ 〈n− 3, 0〉, 〈0, n− 2〉, 〈n− 4, n− 1〉, 〈2n− 7, n− 2〉, 〈2n− 6, 0〉 }

is a 5-hole.

Proof: Since the Euclidean distance between 〈n− 3, 0〉 and 〈0, n− 2〉 is

|(n− 3)e1 + (0)e2 − {(0)e1 + (n− 2)e2}|
= |(n− 3)e1 + (−n + 2)e2|
=

√
(n− 3)2 + (−n + 2)2 + (n− 3)(−n + 2)

=
√

n2 − 5n + 7
≤ d,

the vertices 〈n− 3, 0〉 and 〈0, n− 2〉 are adjacent.
Since the Euclidean distance between 〈0, n− 2〉 and 〈n− 4, n− 1〉 is

|(0)e1 + (n− 2)e2 − {(n− 4)e1 + (n− 1)e2}|
= |(−n + 4)e1 + (−1)e2|
=

√
(−n + 4)2 + (−1)2 + (−n + 4)(−1)

=
√

n2 − 7n + 13
=

√
{n2 − 5n + 7} − 2(n− 3)

≤
√

n2 − 5n + 7 (∵ n ≥ 3)
≤ d,

the vertices 〈0, n− 2〉 and 〈n− 4, n− 1〉 are adjacent.
Since the Euclidean distance between 〈n− 4, n− 1〉 and 〈2n− 7, n− 2〉 is

|(n− 4)e1 + (n− 1)e2 − {(2n− 7)e1 + (n− 2)e2}|
= |(−n + 3)e1 + e2|
=

√
(−n + 3)2 + (1)2 + (−n + 3)(1)

=
√

n2 − 7n + 13
=

√
{n2 − 5n + 7} − 2(n− 3)

≤
√

n2 − 5n + 7 (∵ n ≥ 3)
≤ d,

the vertices 〈n− 4, n− 1〉 and 〈2n− 7, n− 2〉 are adjacent.
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Since the Euclidean distance between 〈2n− 7, n− 2〉 and 〈2n− 6, 0〉 is

|(2n− 7)e1 + (n− 2)e2 − {(2n− 6)e1 + (0)e2}|
= |(−1)e1 + (n− 2)e2|
=

√
(−1)2 + (n− 2)2 + (−1)(n− 2)

=
√

n2 − 5n + 7
≤ d,

the vertices 〈2n− 7, n− 2〉 and 〈2n− 6, 0〉 are adjacent.
Since the Euclidean distance between 〈2n− 6, 0〉 and 〈n− 3, 0〉 is

|(2n− 6)e1 + (0)e2 − {(n− 3)e1 + (0)e2}|
= |(n− 3)e1 + (0)e2|
=

√
(n− 3)2 + (0)2 + (n− 3)(0)

=
√

n2 − 6n + 9
=

√
{n2 − 5n + 7} − (n− 2)

≤
√

n2 − 5n + 7 (∵ n ≥ 2)
≤ d,

the vertices 〈2n− 6, 0〉 and 〈n− 3, 0〉 are adjacent.
Since the Euclidean distance between 〈n− 3, 0〉 and 〈n− 4, n− 1〉 is

|(n− 3)e1 + (0)e2 − {(n− 4)e1 + (n− 1)e2}|
= |(1)e1 + (−n + 1)e2|
=

√
(1)2 + (−n + 1)2 + (1)(−n + 1)

=
√

n2 − 3n + 3
> d,

the vertices 〈n− 3, 0〉 and 〈n− 4, n− 1〉 are not adjacent.
Since the Euclidean distance between 〈n− 4, n− 1〉 and 〈2n− 7, n− 2〉 is

|(n− 4)e1 + (n− 1)e2 − {(2n− 7)e1 + (n− 2)e2}|
= |(−n + 4)e1 + (−n + 2)e2|
=

√
(−n + 4)2 + (−n + 2)2 + (−n + 4)(−n + 2)

=
√

3n2 − 18n + 28
=

√
{n2 − 3n + 3}+ (2n− 5)(n− 5)

≥
√

n2 − 3n + 3 (∵ n ≥ 5)
> d,

the vertices 〈n− 3, 0〉 and 〈2n− 7, n− 2〉 are not adjacent.
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Since the Euclidean distance between 〈0, n− 2〉 and 〈2n− 7, n− 2〉 is

|(0)e1 + (n− 2)e2 − {(2n− 7)e1 + (n− 2)e2}|
= |(−2n + 7)e1 + (0)e2|
=

√
(−2n + 7)2 + (0)2 + (−2n + 7)(0)

=
√

4n2 − 28n + 49
=

√
{n2 − 3n + 3}+ 3(n− 6)2 + 11(n− 6) + 4

≥
√

n2 − 3n + 3 (∵ n ≥ 6)
> d,

the vertices 〈0, n− 2〉 and 〈2n− 7, n− 2〉 are not adjacent.
Since the Euclidean distance between 〈0, n− 2〉 and 〈2n− 6, 0〉 is

|(0)e1 + (n− 2)e2 − {(2n− 6)e1 + (0)e2}|
= |(−2n + 6)e1 + (n− 2)e2|
=

√
(−2n + 6)2 + (n− 2)2 + (−2n + 6)(n− 2)

=
√

3n2 − 18n + 28
=

√
{n2 − 3n + 3}+ (2n− 5)(n− 5)

≥
√

n2 − 3n + 3 (∵ n ≥ 5)
> d,

the vertices 〈0, n− 2〉 and 〈2n− 6, 0〉 are not adjacent.
Since the Euclidean distance between 〈n− 4, n− 1〉 and 〈2n− 6, 0〉 is

|(n− 4)e1 + (n− 1)e2 − {(2n− 6)e1 + (0)e2}|
= |(−n + 2)e1 + (n− 1)e2|
=

√
(−n + 2)2 + (n− 1)2 + (−n + 2)(n− 1)

=
√

n2 − 3n + 3
> d,

the vertices 〈n− 4, n− 1〉 and 〈2n− 6, 0〉 are not adjacent.
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