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Abstract.
L-convex functions are nonlinear discrete functions on integer points that are

computationally tractable in optimization. In this paper, a discrete Hessian
matrix and a local quadratic expansion are defined for L-convex functions.
We characterize L-convex functions in terms of the discrete Hessian matrix

and the local quadratic expansion.

Key words. discrete optimization; discrete convex function;

Hessian matrix

1 Introduction

Submodular functions are recognized as one of the most fundamental classes
of set functions in many disciplines related to discrete optimization [2, 12,
13]. The concept of L-convex functions was proposed by Murota [8] as a

natural extension of Lovász extensions of submodular set functions [6] and
plays a central role in the theory of discrete convex analysis [9]. Multi-
modular functions introduced by Hajek [4] (see also [1]) may be understood

as an equivalent variant of L-convex functions (see Remark 2.5). L-convex
functions provide a nice framework of nonlinear combinatorial optimization;
global optimality is guaranteed by local optimality and descent algorithms

work for minimization.
The objective of this paper is to introduce a discrete Hessian matrix and

a quadratic expansion for L-convex functions and give characterizations of

L-convex functions in terms of these objects.
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In convex analysis of continuous variables, for a function g with appro-
priate differentiability, the most fundamental fact is as follows:

g is convex

⇐⇒ The Hessian matrix of g is positive semidefinite at each point
⇐⇒ The local quadratic approximation to g is convex at each point.

We shall construct a discrete version of this equivalence for L-convex func-

tions.
In general terms, a matrix H may be regarded as a discrete analogue of

the Hessian matrix associated with a discrete function g, if

• H is a symmetric matrix defined from the local behavior of g,

• H vanishes if g is affine,

• H is linear in g, and

• H coincides with the coefficient matrix A if g(x) = 1

2
x⊤Ax.

Given a class, say C, of discrete functions, we would like to characterize
the class of the discrete Hessian matrices by introducing a class, say H, of

matrices such that

• a matrix belongs to H if and only if it is the discrete Hessian matrix

of some function in C around some point,

• a function belongs to C if and only if the associated discrete Hessian
matrix belongs H around each point, and

• a function belongs to C if and only if the local quadratic approximation
defined by the discrete Hessian matrix belongs to C around each point.

Our discrete Hessian matrix for L-convex functions satisfies these properties.
We put V = {1, . . . , n}. For vectors p, q ∈ ZV , we write p∨q and p∧p for

their componentwise maximum and minimum. We write 1 = (1, 1, . . . , 1) ∈
ZV . A function g : ZV → R ∪ {+∞} is called L-convex [8, 9] if it satisfies

(SBF) g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ p) (p, q ∈ ZV ),
(TRF) ∃r ∈ R such that g(p + 1) = g(p) + r (p ∈ ZV ),

where it is understood that the inequality (SBF) is satisfied if g(p) or g(q)
is equal to +∞.

A function g : ZV → R ∪ {+∞} is called L♮-convex [3, 9] if it is

obtained from an L-convex function g̃(p0, p1, . . . , pn) by restriction, i.e.,
g(p1, . . . , pn) = g̃(0, p1, . . . , pn).

Theorem 1.1 ([9, 11]). A quadratic function

g(p) = p⊤Ap =
∑

i,j∈V

aijpipj (p ∈ ZV )
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with aij = aji ∈ R (i, j ∈ V ) is L♮-convex if and only if

aij ≤ 0 (i, j ∈ V, i 6= j),
∑

j∈V

aij ≥ 0 (i ∈ V ).

Accordingly, g is L-convex if and only if

aij ≤ 0 (i, j ∈ V, i 6= j),
∑

j∈V

aij = 0 (i ∈ V ).

The following characterization of L♮-convexity is known.

Theorem 1.2 ([3]). A function g : ZV → R ∪ {+∞} is L♮-convex if and

only if g satisfies discrete midpoint convexity

g(p) + g(q) ≥ g

(⌈

p + q

2

⌉)

+ g

(⌊

p + q

2

⌋)

(p, q ∈ ZV ), (1.1)

where ⌈·⌉ and ⌊·⌋ mean the rounding-up and -down of a vector to the nearest

integer vector.

For L-convex functions in continuous variables, the ordinary Hessian

matrix can be used for a characterization of L-convexity [10]. This, however,
cannot be readily adapted for functions in discrete variables. The discrete
Hessian matrix is considered for discrete convex functions by Yüceer [14]

to introduce the concept of strong discrete convexity. This, however, is not
suitable for L-convex functions. The discrete Hessian matrix for M-convex
functions is defined in [5] with discussion on its relationship to tree metrics.

2 Results

For a discrete function g : ZV → R, any p ∈ ZV , and any i, j ∈ V with
i 6= j, we define

ηij(g; p) = −g(p + χi + χj) + g(p + χi) + g(p + χj) − g(p),

ηi(g; p) = g(p) + g(p + 1 + χi) − g(p + 1) − g(p + χi),

where χi denotes the characteristic vector for i ∈ V . For a discrete function

g : ZV → R and p ∈ ZV , we define a discrete analogue H(g; p) = (Hij(g; p) |
i, j ∈ V ) of the Hessian matrix by

Hij(g; p) = −ηij(g; p) (i 6= j),

Hii(g; p) = ηi(g; p) +
∑

j 6=i

ηij(g; p) = ηi(g; p)−
∑

j 6=i

Hij(g; p).

For each p ∈ ZV , we regard

U(p) = {p + χi + χj | i, j ∈ V, i 6= j}

3



as a kind of neighborhood in considering our local quadratic expansion. The
local quadratic expansion of g, denoted ĝ(q; p), is defined as

ĝ(q; p) =
1

2

∑

i,j∈V

Hij(g; p)(q − p)i(q − p)j

+
∑

i∈V

(g(p + χi) − g(p)−
1

2
Hii(g; p))(q − p)i + g(p).

(2.1)

Note that an alternative expression

ĝ(q; p) =
1

2

∑

i6=j

Hij(g; p)(q − p)i(q − p)j

+
∑

i∈V

(g(p + χi) − g(p))(q − p)i + g(p)

is good for q ∈ U(p).
The following lemma shows that the matrix H(g; p) may be qualified

as a discrete version of the Hessian matrix and ĝ(q; p) is a local quadratic

expansion of g(q) in the sense that ĝ(q; p) interpolates g(q) on U(p). Recall
the general view made in Introduction.

Lemma 2.1. For g, h : ZV → R and p ∈ ZV , we have the following.

(1) H(g + h; p) = H(g; p) + H(h; p).

(2) If g is an affine function, then H(g; p) = 0.

(3) g(q) = ĝ(q; p) for q ∈ U(p).

(4) If g(q) = b + c⊤q + 1

2
q⊤Aq with A = (aij | i, j ∈ V ), then H(g; p) = A

and g(q) = ĝ(q; p) for any q ∈ ZV .

Proof. (1) This is immediate from the definition of H(g; p).

(2) Let g(p) = b + c⊤p. Then ηij(g; p) = 0 (i, j ∈ V, i 6= j) and ηi(g; p) = 0
(i, j ∈ V ). Therefore Hij(g; p) = 0.

(3) For q = p + χi + χj ∈ U(p), we have

ĝ(q; p) =
1

2
(Hii(g; p) + Hjj(g; p)) + Hij(g; p)

+g(p + χi) − g(p) −
1

2
Hii(g; p) + g(p + χj) − g(p)

−
1

2
Hjj(g; p) + g(p)

= g(p + χi + χj) − g(p + χi) − g(p + χj) + g(p)

+g(p + χi) + g(p + χj) − g(p)

= g(p + χi + χj).
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(4) By (1) and (2), we have H(g; p) = H(1

2
p⊤Ap; p). For i, j ∈ V with

i 6= j, we have

Hij

(

1

2
p⊤Ap; p

)

= −ηij

(

1

2
p⊤Ap; p

)

=
1

2
(p + χi + χj)

⊤A(p + χi + χj)

−
1

2
(p + χi)

⊤A(p + χi) −
1

2
(p + χj)

⊤A(p + χj)

+
1

2
p⊤Ap

=
1

2
(p⊤Ap + 2p⊤Aχi + 2p⊤Aχj + aii + ajj + 2aij)

−
1

2
(p⊤Ap + 2p⊤Aχi + aii)

−
1

2
(p⊤Ap + 2p⊤Aχj + ajj) +

1

2
p⊤Ap

= aij .

For i ∈ V , we have

Hii

(

1

2
p⊤Ap; p

)

= ηi

(

1

2
p⊤Ap; p

)

+
∑

j 6=i

ηij

(

1

2
p⊤Ap; p

)

=
1

2
p⊤Ap +

1

2
(p + 1 + χi)

⊤A(p + 1 + χi)

−
1

2
(p + 1)⊤A(p + 1) −

1

2
(p + χi)

⊤A(p + χi)

−
∑

j 6=i

aij

= 1⊤Aχi −
∑

j 6=i

aij = aii.

Hence, we obtain H(g; p) = A.
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The latter statement is obtained by the following direct computations:

1

2
(q − p)⊤H(g; p)(q − p) =

1

2
q⊤Aq − q⊤Ap +

1

2
p⊤Ap,

∑

i∈V

(g(p + χi) − g(p) −
1

2
Hii(g; p))(q − p)i

=
∑

i∈V

{(

b + c⊤p + ci +
1

2
p⊤Ap + χ⊤

i Ap +
1

2
aii

− b − c⊤p −
1

2
p⊤Ap −

1

2
aii

)

(q − p)i

}

=
∑

i∈V

(ci + χ⊤
i Ap)(q − p)i

= c⊤(q − p) + q⊤Ap − p⊤Ap.

Hence, we obtain

ĝ(q; p)

=

(

1

2
q⊤Aq − q⊤Ap +

1

2
p⊤Ap

)

+
(

c⊤(q − p) + q⊤Ap − p⊤Ap
)

+

(

b + c⊤p +
1

2
p⊤Ap

)

= b + c⊤q +
1

2
q⊤Aq

= g(q).

The following theorems establish characterizations of the class of the
discrete Hessian matrices for L♮-convex functions and L-convex functions.

Theorem 2.2. For g : ZV → R, the following conditions are equivalent.

(a) g is an L♮-convex function.

(b) For each p ∈ ZV , H(g; p) satisfies

Hij(g; p) ≤ 0 (i, j ∈ V, i 6= j), (2.2)

and

∑

j∈V

Hij(g; p) ≥ 0 (i ∈ V ). (2.3)

(c) For each p ∈ ZV , ĝ(q; p) is an L♮-convex function in q.
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Proof. [(b) ⇐⇒ (c)] The equivalence between (b) and (c) is immediate from
Theorem 1.1, where it is noted that the addition of a linear function preserves
L♮-convexity.

[(a)⇒(b)] We have (2.2) from the submodularity of g. Discrete midpoint
convexity (1.1) for p and p + 1 + χi shows (2.3).

[(b)⇒(a)] Given a function g(p) satisfying the condition (b), define g̃

by g̃(p0, p) = g(p − p01). We will show the L-convexity of g̃. First, g̃ is
constant in the direction of 1̃ = (1, 1, . . . , 1) ∈ ZV ∪{0}. With the notation
p̃ := (p0, p) ∈ ZV ∪{0}, the submodularity of g̃ is equivalent to

g̃(p̃ + χ̃i) + g̃(p̃ + χ̃j) ≥ g̃(p̃ + χ̃i + χ̃j) + g̃(p̃) (p̃ ∈ ZV ∪{0}), (2.4)

where χ̃i ∈ ZV ∪{0} denotes the characteristic vector for i ∈ V ∪ {0}. From
(2.2), for p − p01 ∈ ZV , we have

g(p− p01 + χi) + g(p− p01 + χj) ≥ g(p− p01 + χi + χj) + g(p− p01)

(i, j ∈ V, i 6= j).

This shows (2.4) for the case of i, j 6= 0. From (2.3), we have ηi(g; p) ≥ 0
for any i ∈ V and p ∈ ZV . This, for p − (p0 + 1)1 ∈ ZV , means

g(p− (p0 + 1)1) + g(p− p01 + χj) ≥ g(p− (p0 + 1)1 + χj) + g(p− p01)

(j ∈ V ).

This shows (2.4) for the case of i = 0, j 6= 0.

Theorem 2.3. For g : ZV → R, the following conditions are equivalent.

(a) g is an L-convex function.

(b) For each p ∈ ZV , H(g; p) satisfies

Hij(g; p) ≤ 0 (i, j ∈ V, i 6= j), (2.5)

and

∑

j∈V

Hij(g; p) = 0 (i ∈ V ). (2.6)

(c) For each p ∈ ZV , ĝ(q; p) is an L-convex function in q.

Proof. [(b) ⇐⇒ (c)] The equivalence between (b) and (c) is immediate from
Theorem 1.1, where it is noted that the addition of a linear function preserves
L-convexity.

[(a) ⇐⇒ (b)] If we put ∆(p) = g(p + 1) − g(p), then we have ηi(g; p) =
∆(p + χi) − ∆(p). Theorem 2.2 and the following two observations prove
Theorem 2.3.
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(1) g is L-convex
⇐⇒ g is L♮-convex and ∆(p) is constant for any p.

(2) ∆(p) is constant for any p

⇐⇒ ∆(p + χi) = ∆(p) for any p and any i.

The characterization of L♮-convexity by our discrete Hessian reveals that
the function treated in the seminal paper of Miller [7] is L♮-convex.

Example 2.4 (Miller’s example). The following function f : Zn
+ → R is

L♮-convex:

f(x) =

∞
∑

k=0



1 −

n
∏

j=1

βj(xj + k)



 + λ

n
∑

j=1

cjxj ,

where λ > 0, cj > 0, and βj(·) is a cumulative distribution function of a

discrete nonnegative random variable represented as

βj(k) =

k
∑

m=0

ϕj(m) (k ∈ Z+)

with ϕj(m) ≥ 0 for m ≥ 0 and 1 ≤ j ≤ n; we have

ϕj(m) = e−λj
λm

j

m!
(m ∈ Z+)

with λj > 0 in Miller’s example.
The L♮-convexity of f can be shown by Theorem 2.2 as follows. The

nonnegativity of ηij(f ; x) is calculated as follows.

ηij(f ; x) = −

∞
∑

k=0

(1 −

n
∏

t=1

βt((x + χi + χj)t + k))

+

∞
∑

k=0

(1 −

n
∏

t=1

βt((x + χi)t + k))

+

∞
∑

k=0

(1 −

n
∏

t=1

βt((x + χj)t + k)) −

∞
∑

k=0

(1 −

n
∏

t=1

βt(xt + k))

=

∞
∑

k=0

((βj(xj + 1 + k) − βj(xj + k))
∏

t6=j

βt((x + χi)t + k)

−

∞
∑

k=0

((βj(xj + 1 + k) − βj(xj + k))
∏

t6=j

βt(xt)

=

∞
∑

k=0

ϕi(xi + 1 + k)ϕj(xj + 1 + k)
∏

t6=i,j

βt(xt + k) ≥ 0.
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It is noted that the nonnegativity of ηij(f ; x) has been pointed out in Yüceer
[14]. The nonnegativity of ηi(f ; x) can also be calculated as follows.

ηi(f ; x) =

∞
∑

k=0

ϕi(xi + 1 + k)
∏

j 6=i

βj(xj + k)

−

∞
∑

k=0

ϕi(xi + 2 + k)
∏

j 6=i

βj(xj + 1 + k)

= ϕi(xi + 1)
∏

j 6=i

βj(xj) ≥ 0.

The above observation implies, in particular, that we can make use of
L♮-convex function minimization algorithms ([9], Section 10.3) to minimize
f(x) more efficiently than by the known algorithm [7].

Remark 2.5 (Multimodular function). A function h : Zn → R∪{+∞}

is said to be multimodular [1, 4] if the function g̃ : Zn∪{0} → R ∪ {+∞}
defined by

g̃(p0, p) = h(p1 − p0, p2 − p1, . . . , pn − pn−1) (p0 ∈ Z, p = (p1, . . . , pn) ∈ Zn)

is submodular. This means that h is a multimodular function if and only if
there exists an L♮-convex function g : Zn → R∪{+∞} such that h(x) = g(p)

with

p1 = x1,

p2 = x1 + x2,

· · ·

pn = x1 + x2 + · · ·+ xn.

Then −ηij(g; p) and ηi(g; p) are computed as follows:

−ηij(g; p) = h(x + χi − χi+1 + χj − χj+1) + h(x)

−h(x + χi − χi+1) − h(x + χj − χj+1),

ηi(g; p) = h(x) + h(x + χ1 + χi − χi+1)

−h(x + χ1) − h(x + χi − χi+1),

where χn+1 = (0, . . . , 0).
This observation and the equivalence between (a) and (b) in Theorem

2.2 recover the original definition of multimodularity in [4]: f is said to be

multimodular if for all x in Zn,

f(x + v) + f(x + w) ≥ f(x) + f(x + v + w) (v, w ∈ F , v 6= w), (2.7)
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where F = {s0, s1, . . . , sn} with

s0 = (−1, 0, . . . , 0),

s1 = (1,−1, 0, . . . , 0),

s2 = (0, 1,−1, 0, . . . , 0),

· · ·

sn = (0, . . . , 0, 1).

This is because −ηij(g; p) ≤ 0 means (2.7) for v, w ∈ {si | i = 1, . . . , n} and

ηi(g; p− 1) ≥ 0 means (2.7) for v = s0.
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