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Abstract

Multimodular functions and L-convex functions have been investi-
gated almost independently, but they are, in fact, equivalent objects
that can be related through a simple coordinate transformation. Some
facts known for L-convex functions can be translated to new results
for multimodular functions, and vice versa. In particular, the local
optimality condition for global optimality found in the literature of
multimodular functions should be rectified, and a discrete separation
theorem holds for multimodular functions.

Keywords: discrete convex function; multimodular function; L-convex
function; local optimality
AMS Classifications: 90C10; 90C25, 90C35, 90C27.

1 Introduction

Discrete convex functions have long been attracting research interest in oper-
ations research and related disciplines [2, 7, 11, 13]. Among others, submod-
ular functions, defined on subsets or integer vectors, certainly form a central
class of discrete convex functions and the relationship between submodular-
ity and convexity is now fully understood [3, 5, 9, 11, 14]. Ramifications of
submodular functions have been investigated, quite independently, in vari-
ous contexts; multimodular functions in discrete-event control [1, 2, 8], sub-
modular integrally convex functions in nonlinear discrete optimization [4],
and L-convex functions in discrete convex analysis [10, 11].

The objective of this short note is to indicate a close relationship, equiv-
alence through a simple coordinate transformation, between multimodular
functions and L-convex functions, and to derive some new results for mul-
timodular functions from facts known about L-convex functions, and vice
versa. Specifically, it is pointed out that (i) the local optimality condition for
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global optimality found in the literature of multimodular functions should
be rectified (Example 1, Theorem 1), (ii) a discrete separation theorem holds
for multimodular functions (Theorem 2), and (iii) an L-convex function can
be characterized in terms of the convexity of its piecewise linear extension
(Theorem 3).

2 Definitions

We consider functions defined on integer lattice points, f : Zn → R∪{+∞},
that may possibly take +∞, where the effective domain of f is denoted by
dom f = {x ∈ Zn | f(x) < +∞}. For a subset Y of V = {1, . . . , n}, we
denote by χY the characteristic vector of Y ; the ith component of χY equals
one or zero according to whether i belongs to Y or not. For i ∈ V , χi is a
short-hand notation for χ{i}. For vectors x, y ∈ Zn we denote by x ∨ y and
x∧y the vectors of componentwise maximum and minimum of x and y, i.e.,

(x ∨ y)i = max(xi, yi), (x ∧ y)i = min(xi, yi) (i ∈ V ).

A function f : Zn → R∪{+∞} is said to be submodular if f(x)+f(y) ≥
f(x ∨ y) + f(x ∧ y) for all x, y ∈ Zn. A function f : Zn → R ∪ {+∞} with
dom f 6= ∅ is said to be multimodular if the function f̃ : Zn+1 → R∪{+∞}
defined by

f̃(x0, x) = f(x1 − x0, x2 − x1, . . . , xn − xn−1) (x0 ∈ Z, x ∈ Zn) (1)

is submodular in n + 1 variables.
A function g : Zn → R∪{+∞} with dom g 6= ∅ is said to be L-convex if

(i) it is submodular and (ii) there exists r ∈ R such that g(p+1) = g(p)+ r
for all p ∈ Zn, where 1 = (1, 1, . . . , 1) ∈ Zn. A function g : Zn → R∪{+∞}
is called L\-convex 1) if the function g̃ : Zn+1 → R ∪ {+∞} defined by

g̃(p0, p) = g(p− p01) (p0 ∈ Z, p ∈ Zn) (2)

is L-convex in n+1 variables. Whereas L\-convex functions are conceptually
equivalent to L-convex functions by the relation (2), the class of L\-convex
functions in n variables is strictly larger than that of L-convex functions
in n variables. It is shown in [6] that L\-convex functions are the same as
submodular integrally convex functions introduced in [4].

Multimodularity and L\-convexity have the following relationship.

Lemma 1 ([11, p.183]) A function f : Zn → R ∪ {+∞} is multimodular
if and only if it can be represented as

f(x) = g(x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · ·+ xn) (x ∈ Zn) (3)
1)“L\-convex” should be read “L-natural-convex.”
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for some L\-convex function g. Conversely, a function g : Zn → R∪ {+∞}
is L\-convex if and only if it can be represented as

g(p) = f(p1, p2 − p1, p3 − p2, . . . , pn − pn−1) (p ∈ Zn) (4)

for some multimodular function f .

3 Multimodular Function Minimization

Minimization is most fundamental for discrete convex functions, and global
optimality (minimality) is often characterized by local optimality with a
suitable definition of locality.

For multimodular functions the following statement has been made in
[1, Cor. 2.2] and [2, p. 19, Cor. 2]: For a multimodular function f and
x ∈ dom f , we have

f(x) ≤ f(y) (∀ y ∈ Zn) ⇐⇒ f(x) ≤ f(x± χi) (∀ i ⊆ V ).

However, this is not correct, as the following example shows.2)

Example 1 For a multimodular function f(x1, x2) = 2x2
1+2(x1+x2)2−3x1,

we have
f(−1, 1) = 5, f(0, 1) = 2, f(1, 1) = 7.
f(−1, 0) = 7, f(0, 0) = 0, f(1, 0) = 1,
f(−1,−1) = 13, f(0,−1) = 2, f(1,−1) = −1.

The origin x = (0, 0) is a local minimum, satisfying f(x) ≤ f(x ± χi) for
i = 1, 2, but it is not the global minimum since f(0, 0) > f(1,−1).

The correct optimality criterion can be obtained readily from the follow-
ing corresponding result for L\-convex functions.

Lemma 2 ([11, Theorem 7.14]) For an L\-convex function g and p ∈
dom g, we have

g(p) ≤ g(q) (∀ q ∈ Zn) ⇐⇒ g(p) ≤ g(p± χY ) (∀Y ⊆ V ).

A combination of the above lemma with the relationship shown in Lemma 1
yields the following optimality criterion for multimodular functions.

Theorem 1 For a multimodular function f and x ∈ dom f , we have

f(x) ≤ f(y) (∀ y ∈ Zn) ⇐⇒ f(x) ≤ f(x± y) (∀ y ∈ T ),

where T is the set of vectors of the form χi1 − χi2 + · · · + (−1)k−1χik for
some increasing sequence of indices i1 < i2 < · · · < ik.

2)This serves also as a counterexample to [2, p. 253, Cor. 11].
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(Proof) By Lemma 1 we have f(x) = g(p) if x = Dp, where D = (dij |
1 ≤ i, j ≤ n) is a bidiagonal matrix with dii = 1 for i = 1, . . . , n and
di+1,i = −1 for i = 1, . . . , n − 1. The set T is obtained as T = {Dp | p =
χY for some Y ⊆ V }. Then the claim follows from Lemma 2.

When n = 2, for example, we have T = {χ1, χ2, χ1 − χ2}. The added
direction χ1 − χ2 detects the nonoptimality of x = (0, 0) in Example 1.

Here is a remark on minimization algorithms. For L\-convex functions
the algorithm of Favati–Tardella [4] is the first polynomial-time algorithm;
it is based on the ellipsoid method. A steepest descent-type polynomial-
time algorithm is given by [12] (see also [11, Section 10.3]). The algorithm
is based on the recently developed combinatorial algorithms for submodular
set-function minimization as well as on a scaling technique. By the relation-
ship stated in Lemma 1 these algorithms can be adapted for multimodular
function minimization.

4 Other Implications

Two other implications of the relationship given in Lemma 1 are indicated.

4.1 Discrete separation theorem

In general terms, a discrete separation theorem is a statement that, for
f : Zn → R∪{+∞} and h : Zn → R∪{−∞} belonging to certain classes of
discrete convex/concave functions, if f(x) ≥ h(x) for all x ∈ Zn, then there
exist α∗ ∈ R and ξ∗ ∈ Rn such that

f(x) ≥ α∗ + 〈ξ∗, x〉 ≥ h(x) (∀x ∈ Zn),

where 〈·, ·〉 denotes the standard inner product (pairing), and we can take
α∗ ∈ Z and ξ∗ ∈ Zn if f and h are integer-valued. A discrete separation
theorem often captures deep combinatorial properties beyond mere convex-
extensibility (see, e.g., [5, Section 4.2], [11, Section 1.4.4]).

It is known [11, Theorem 8.16] that a discrete separation theorem holds
for L\-convex functions, from which we can derive the following theorem for
multimodular functions.

Theorem 2 Let f : Zn → R∪{+∞} and h : Zn → R∪{−∞} be functions
such that f and −h are multimodular, and assume3) that f(x0) and h(x0)
are finite for some x0 ∈ Zn. If f(x) ≥ h(x) (∀x ∈ Zn), there exist α∗ ∈ R
and ξ∗ ∈ Rn such that

f(x) ≥ α∗ + 〈ξ∗, x〉 ≥ h(x) (∀x ∈ Zn). (5)
3)This assumption can be weakened by referring to their conjugate functions, as in [11,

Theorem 8.16].
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Moreover, if f and h are integer-valued, there exist integer-valued α∗ ∈ Z
and ξ∗ ∈ Zn.

(Proof) Put g(p) = f(Dp) and k(p) = h(Dp) with the matrix D defined in
the proof of Theorem 1. Then g and −k are L\-convex by Lemma 1 and
the discrete separation theorem for L\-convex functions [11, Theorem 8.16]
yields α∗ ∈ R and η∗ ∈ Rn such that

g(p) ≥ α∗ + 〈η∗, p〉 ≥ k(p) (∀p ∈ Zn).

This implies (5) with ξ∗ = D−>η∗ since 〈η∗, p〉 = 〈η∗, D−1x〉 = 〈D−>η∗, x〉.
If f and h are integer-valued, so are g and k, and we have α∗ ∈ Z and
η∗ ∈ Zn by the integrality assertion in the discrete separation theorem for
L\-convex functions. Finally, we note that D−1 is an integral matrix (with
(D−1)ij = 1 for i ≥ j and (D−1)ij = 0 for i < j), which guarantees ξ∗ ∈ Zn

if η∗ ∈ Zn.

4.2 Characterization of L-convexity

It is known that an L\-convex function g can be extended to a convex func-
tion, and that the convex extension can be constructed as a collection of
the Lovász extensions of the submodular set-functions derived from g. A
converse of this statement can be obtained through the translation of a
fundamental fact known in the literature of multimodular functions.

Given a real vector q ∈ Rn, we denote by q̂1 > q̂2 > · · · > q̂m the distinct
values of its components and put

Uk = Uk(q) = {i ∈ V | qi ≥ q̂k} (k = 1, . . . ,m).

For a function g : Zn → R∪{+∞}, we define a function g : Rn → R∪{+∞}
according to the expression

g(p + q) = (1− q̂1)g(p) +
m−1∑

k=1

(q̂k − q̂k+1)g(p + χUk
) + q̂mg(p + χUm) (6)

for p ∈ Zn and q ∈ Rn with 0 ≤ qi < 1 for every i ∈ V . By construction
we have g(p) = g(p) for p ∈ Zn, which means that g is a piecewise linear
extension of g.

It is known [11, Theorem 7.20] that g is convex if g is L\-convex. A
fundamental theorem ([1, Cor. 2.1], [2, p. 16, Theorem 1]) in the theory of
multimodular functions implies that the converse is also true, as follows.

Theorem 3 g is L\-convex if and only if g is convex.
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(Proof) This is an immediate consequence of the combination of Lemma 1
with [1, Cor. 2.1] or [2, p. 16, Theorem 1]. It is noted that the “only if”-part
is given in [11, Theorem 7.20], and for the “if”-part an alternative proof
using results in [11] is also possible as follows. Suppose that g is convex.
Then g is submodular in each unit hypercube by the fundamental theorem
of Lovász [9] (see [11, Theorem 4.16]). This local submodularity implies
global submodularity. On the other hand, g is integrally convex by the
construction of g and the coincidence of g with g on integer vectors. Thus,
g is submodular integrally convex, and hence L\-convex by [11, Theorem
7.21].
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