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The Quadratic Semi-Assignment Polytope

Hiroo SAITO∗ Tetsuya FUJIE† Tomomi MATSUI∗ Shiro MATUURA∗

June 2004

Abstract

We study a polytope which arises from a mixed integer programming formulation
of the quadratic semi-assignment problem. We introduce an isomorphic projection
in order to transform the polytope to another essentially equivalent and tractable
polytope. As a result, some basic polyhedral properties, such as the dimension,
the affine hull, and the trivial facets, are obtained in quite a simple way. We fur-
ther present valid inequalities called clique- and cut-inequalities and give complete
characterizations for them to be facet-defining. We also discuss a simultaneous
lifting of the clique-type facets. Finally, we show an application of the quadratic
semi-assignment problem to hub location problems with some computational ex-
periences.

Keywords: Quadratic semi-assignment problem, Polytope, Facet, Hub
location

1 Introduction

The quadratic semi-assignment problem is a linearly constrained 0-1 quadratic pro-
gramming problem. Let M and N be mutually disjoint sets with |M | = m and
|N | = n. Given weights aik (∀i ∈ M,∀k ∈ N) and bikjl (∀i,∀j ∈ M, i < j,∀k, ∀l ∈ N),
the quadratic semi-assignment problem is formulated as follows:

QSAP min.
∑

i∈M

∑

k∈N

aikxik +
∑

i,j∈M
i<j

∑

k∈N

∑

l∈N

bikjlxikxjl

s. t.
∑

k∈N

xik = 1 (∀i ∈ M),

xik ∈ {0, 1} (∀i ∈ M,∀k ∈ N).

The quadratic semi-assignment problem is NP-hard. An application of the problem
can be found in the area of scheduling [13, 20, 21]. Skutella dealt with the problem of
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scheduling unrelated parallel machines which is formulated as a special case of QSAP
and proposed an approximation algorithm [18]. A hub location problem is also an
application of the quadratic semi-assignment problem [16] (see Appendex B).

We consider a mixed integer programming (MIP) formulation of the problem and
introduce an associated polytope which we call quadratic semi-assignment polytope
(QSAP-polytope). The aim of this paper is to investigate theoretical aspects of the
QSAP-polytope. A mixed integer programming formulation of QSAP is given inde-
pendently by Billionnet and Elloumi [3] and by Saito, Matuura, and Matsui [16] in the
context of a hub location problem (see Appendix B). The computational experience
in [16] shows that for ‘most’ of the generated instances, the linear programming relax-
ation of the MIP is integral. Our additional computational experience in Appendix B
of this paper shows that ‘all’ of the generated instances (including that in [16]) can be
solved to optimality by adding triangle inequalities to the linear relaxation problems.
This motivates us to study a polytope associated with the MIP formulation in view of
the quadratic semi-assignment problem.

We define the quadratic semi-assignment polytope by the convex hull of all the
feasible solutions of the MIP. First, we show the dimension of the QSAP-polytope and
then prove that the affine hull of the polytope is composed of the equality system of
the MIP formulation (Theorem 8). Similarly, we prove that the inequality constraints
of the MIP formulation are facet-defining (Theorem 10). Next, we discuss clique-
inequalities and cut-inequalities, originally introduced for unconstrained 0-1 quadratic
programming problems by Padberg [14]. We show necessary and sufficient conditions
that the inequalities define facets of the polytope (Theorems 13–16). We also obtain
another class of facets by simultaneous lifting of the clique-type facets (Theorem 18).
In Section 2, we discuss connections between the QSAP-polytope and other polytopes:
the Boolean quadric polytope [14], the quadratic assignment polytope [8, 15], and the
stable set polytope in a higher dimension [6]. Our results are obtained by employing
the star-transformation developed for the quadratic assignment polytope by Jünger
and Kaibel [8]. By modifying the transformation for the QSAP-polytope, we obtain a
tractable full-dimensional polytope, which is essentially equivalent to the original one.

The rest of this paper is organized as follows. In Section 2, we define the quadratic
semi-assignment polytope and present the mixed integer programming reformulation of
QSAP. In Section 3, we introduce the star-transformation to the QSAP-polytope, and
obtain some basic polyhedral properties. In Sections 4.1 and 4.2, we give necessary
and sufficient conditions that the clique- and the cut-inequalities define facets. In
Section 4.3, we discuss simultaneous lifting of clique-inequalities. In Appendix A, we
show some facet defining inequalities which are neither clique- nor cut-inequalities.
Finally, we present some computational experiences in Appendix B.

2 QSAP-Polytope and MIP Formulation

In this section, we first introduce the quadratic semi-assignment polytope. Second, we
show a MIP formulation of QSAP in [3, 16]. We also mention some polytopes related
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to the QSAP-polytope.
To linearize the objective function of QSAP, we introduce auxiliary variables y =

(yikjl) satisfying yikjl = xikxjl. Then the objective function of QSAP is written by
∑

i∈M

∑

k∈N

aikxik +
∑

i,j∈M
i<j

∑

k∈N

∑

l∈N

bikjlyikjl,

which is called the linearization technique in [1].
We explain the above linearization from the graph theoretical point of view. To

this end, we define the graph G = (V, E) by the node set V := M×N and the edge set
E :=

{
{(i, k), (j, l)} ∈ (

V
2

) | i 6= j
}

, where
(
V
2

)
is the set of all the 2-subsets of V . We

associate the weights aik and bikjl to the node (i, k) ∈ V and the edge {(i, k), (j, l)} ∈ E,
respectively. It is easy to see that the characteristic vector χT ∈ RV of a node subset
T ⊆ V is a feasible solution of QSAP if and only if T forms an m-clique of G (see
Figure 1). Hence, QSAP turns into a problem to find an m-clique which minimizes
the sum of its node and edge weights.

Figure 1: The graph G with m = 4 and n = 3, and an m-clique.

We define the quadratic semi-assignment polytope QSAPm,n by the convex hull of
all the feasible solutions, where E(T ) = {{u, v} ∈ E | u, v ∈ T} for any node subset
T ⊆ V .

Definition 1. QSAPm,n = conv{(χC , χE(C)) ∈ RV × RE | C is an m-clique of G}.
Next, we present a MIP formulation of QSAP discussed in [3, 16]. For T ⊆ V , we

define x(T ) :=
∑

v∈T xv and y(T ) := y(E(T )). For mutually disjoint subsets S, T ⊆ V ,
we denote the cut set by E(S : T ) := {{u, v} ∈ E | u ∈ S, v ∈ T} and we abbreviate
y(E(S : T )) to y(S : T ). We omit brackets for singletons, e.g., we use χu instead of
χ{u}. We also use χuv instead of χ{{u,v}}. For all i ∈ M , we define a subset of V by
rowi = {(i, k) | k ∈ N}. Then we have a MIP formulation of QSAP.

MIP min.
∑

v∈V

avxv +
∑

e∈E

beye

s. t. x(rowi) = 1 (∀i ∈ M), (1)
− xik + y((i, k) : rowj) = 0 (∀(i, k) ∈ V,∀j ∈ M, i 6= j), (2)
ye ≥ 0 (∀e ∈ E), (3)
xv ∈ {0, 1} (∀v ∈ V ). (4)
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We note that this MIP formulation is based on the proposition below. The role of the
linear constraints (1)–(3) for the polytope QSAPm,n will be discussed in Section 3.

Proposition 2. A vector (x, y) ∈ RV × RE is a vertex of QSAPm,n if and only if it
satisfies (1), (2), (3), and (4).

Finally, we remark on some polytopes related to QSAPm,n. Padberg dealt with
a quadratic programming problem with 0-1 constraints and introduced the Boolean
quadric polytope defined by

BQPn = conv{(χC , χEn(C)) ∈ RVn × REn | C is a clique of Kn},

where Kn = (Vn, En) is a complete graph with n vertices [14]. Jünger and Kaibel
studied the quadratic assignment polytope QAPn which arises from the quadratic
assignment problem [8]. Let G = (V, E) be a graph with V = N × N and E =
{{(i, j), (k, l)} ∈ (V

2

) | i 6= k, j 6= l}. Then the quadratic assignment polytope is
defined by

QAPn = conv{(χC , χE(C)) ∈ RV × RE | C is an n-clique of G}.

We can show the following property easily.

Proposition 3. The polytope QSAPm,n is isomorphic to a face of the Boolean quadric
polytope BQPmn, and the quadratic assignment polytope QAPn is isomorphic to a face
of the polytope QSAPn,n.

As a generalization of BQPn, Fujie et al. [6] studied the polytope

ESTAB(H) = conv{(χC , χF (C)) ∈ RW × RF | C is a clique of H}

for any graph H = (W,F ), where H is a complement of H. An isomorphic image of
QSAPm,n, to be denoted by QSAP?

m,n? in Section 3, becomes a special case of ESTAB.
More precisely, we have that QSAP?

m,n? = ESTAB(G?) (for the definition of the graph
G?, see the next section). We also note that QSAP?

m,2−1 = BQPm.

3 Star Transformation and Basic Facial Structures

In this section, we introduce an isomorphic projection, which we call star-transformation,
for QSAPm,n in order to obtain a full-dimensional polytope. The basic polyhedral
properties of QSAPm,n are derived from those of the full-dimensional polytope. This
is a straightforward modification of the star-transformation developed for the QAP-
polytope by Jünger and Kaibel [8].

We define the star-transformation in graph-theoretical terms. Let G? = (V ?, E?)
be a graph with node set V ? := M × (N \ {n}) and edge set E? := {{(i, k), (j, l)} ∈(
V ?

2

) | i 6= j}. It is easy to see that a map κ : 2V → 2V ?
defined by κ(T ) = T ∩ V ∗ is a

bijection between the set of m-cliques in G and the set of cliques in G?, where empty
set is also a clique (see Figure 2).
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Figure 2: The effect of the star-transformation.

This leads us to introduce a polytope defined on G?, which is denoted by QSAP?
m,n? .

For G? and QSAP?
m,n? , we use similar notations to those of G and QSAPm,n, respec-

tively.

Definition 4. QSAP?
m,n? = conv{(χC , χE?(C)) ∈ RV ? ×RE? | C is a clique of G?}.

Proposition 5. The polytope QSAP?
m,n? is full-dimensional, i.e., dim(QSAP?

m,n?) =
|V ?|+ |E?|.
Proof. The vectors (0, 0), (χu, 0) (∀u ∈ V ?), (χu +χv, χuv) (∀{u, v} ∈ E?) are affinely
independent in QSAP?

m,n? .

We show some trivial facet defining inequalities of QSAP?
m,n? . Since QSAP?

m,n? is
full-dimensional, these inequalities are essentially unique up to positive multiples. At
the last of this section, we will see that they correspond to facets of QSAPm,n.

Proposition 6. The inequalities

ye ≥ 0 (∀e ∈ E?), (5)
− xik + y((i, k) : row?

j ) ≤ 0 (∀(i, k) ∈ V ?, ∀j ∈ M, i 6= j), (6)

x(row?
i ∪ row?

j )− y(row?
i ∪ row?

j ) ≤ 1 (∀i,∀j ∈ M, i < j) (7)

define facets of QSAP?
m,n?.

Proof. It is easy to show the validity of (5)–(7). To prove that they define facets, we ex-
plicitly provide with dim(QSAP?

m,n?) affinely independent vectors in the corresponding
faces.

For (5), the vectors

(0, 0), (χu, 0) (∀u ∈ V ?), (χu + χv, χuv) (∀{u, v} ∈ E? \ {e})

are affinely independent in the face {(x, y) ∈ QSAP?
m,n? | ye = 0}.

For (6), we put v = (i, k). Then the vectors

(0, 0), (χu, 0) (∀u ∈ V ? \ {v}), (χv + χw, χvw) (∀w ∈ row?
j ),

(χv1 + χv2 , χv1v2) (∀{v1, v2} ∈ E?(V ? \ {v}),
(χu + χv + χw, χuv + χuw + χvw) (∀u /∈ row?

j ∪ {v}, ∃w ∈ row?
j )
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are affinely independent in the face {(x, y) ∈ QSAP?
m,n? | −xv + y(v : row?

j ) = 0}.
Finally, for (7), we put T = row?

i ∪ row?
j . Then the vectors

(χu, 0) (∀u ∈ T ),
(χu + χw, χuw) (∀w ∈ V ? \ T,∃u ∈ T ),
(χu + χv, χuv) (∀{u, v} ∈ E?(T )),
(χu + χv + χw, χuv + χuw + χvw) (∀{u, v} ∈ E?(T : V ? \ T ),∃v ∈ T ),
(χu + χw1 + χw2 , χuw1 + χuw2 + χw1w2) (∀{w1, w2} ∈ E?(V ? \ T ),∃u ∈ T )

are affinely independent in the face {(x, y) ∈ QSAP?
m,n? | x(T )− y(T ) = 1}.

To derive some basic polyhedral structures of QSAPm,n, we describe the star-
transformation from geometric point of view. More precisely, we give an explicit de-
scription of an affine map such that the image of QSAPm,n is isomorphic to QSAP?

m,n? .
For this purpose, we introduce an affine map φ : RV × RE → RV × RE defined by

(φ(x, y))v :=
{

xv (∀v ∈ V ?),
xv − (1− x(row?(v))) (∀v ∈ V \ V ?),

(φ(x, y))e :=





ye (∀e ∈ E?),
ye − (xu − y(u : row?(v))) (∀e = {u, v} ∈ E(V ? : V \ V ?)),
ye − (1− x(row?(u) ∪ row?(v))

+ y(row?(u) ∪ row?(v))) (∀e = {u, v} ∈ E(V \ V ?)),

where row(v) = rowi and row?(v) = row?
i for any v ∈ rowi. Let A and U be affine

subspaces defined by

A :=
{

(x, y) ∈ RV × RE

∣∣∣∣
x(rowi) = 1 (∀i ∈ M),
−xik + y((i, k) : rowj) = 0 (∀(i, k) ∈ V,∀j ∈ M, i 6= j)

}

and

U := {(x, y) ∈ RV × RE | xv = 0 (∀v ∈ V \ V ?), ye = 0 (∀e ∈ E \ E?)}.

It is obvious that QSAPm,n ⊆ A and QSAP?
m,n? ⊆ RV ? × RE? ∼= U . The definition of

φ directly implies that φ(A) ⊆ U . Furthermore, the following lemma holds.

Lemma 7. The map φ : A → U is an affine isomorphism.

Proof. It is easy to see that the matrix corresponding to the affine map φ is a lower
triangular matrix whose diagonal elements are all ones. Thus, the map φ is an affine
isomorphism.

Let π : RV ×RE → RV ? ×RE?
be a linear map defined by π(x, x̄, y, ȳ) = (x, y), where

x ∈ RV ?
, x̄ ∈ RV \V ?

, y ∈ RE?
, and ȳ ∈ RE\E?

. Then the star-transformation is
described as

QSAP?
m,n? = π ◦ φ(QSAPm,n).
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We define a linear map ι : RV ? × RE? → RV × RE by

(ι(x, y))v :=
{

xv (∀v ∈ V ?),
0 (∀v ∈ V \ V ?),

(ι(x, y))e :=
{

ye (∀e ∈ E?),
0 (∀e ∈ E \E?).

Since affine independency is invariant under ι, we have dim(QSAP?
m,n?) ≤ dim(φ(QSAPm,n)).

Thus, Lemma 7 implies the first result of this paper.

Theorem 8.

1. The dimension of QSAPm,n is

dim(QSAPm,n) = dim(RV × RE)− (m +
1
2
m(m− 1)(2n− 1)).

2. The affine subspace A is the affine hull of QSAPm,n.

Proof. Since φ(A) = U , we have dim(A) = dim(U). It is easy to show that ι(QSAP?
m,n?) ⊆

φ(QSAPm,n) and dim(QSAP?
m,n?) ≤ dim(φ(QSAPm,n)). Hence,

dim(A) = dim(U) = dim(RV × RE)− (m +
1
2
m(m− 1)(2n− 1)) = dim(RV ? × RE?

)

= dim(QSAP?
m,n?) ≤ dim(φ(QSAPm,n)) = dim(QSAPm,n) ≤ dim(A).

The equality dim(QSAPm,n) = dim(A) implies the second statement.

Finally, we consider a lifting of facets of QSAP?
m,n? to those of QSAPm,n. The

following lemma shows that a simple lifting, called zero-lifting, is applicable.

Lemma 9. If
∑

v∈V ? avxv +
∑

e∈E? beye ≤ c defines a facet of QSAP?
m,n?, then

the zero-lifting of the inequality, i.e.,
∑

v∈V ? avxv +
∑

v∈V \V ? 0 · xv +
∑

e∈E? beye +∑
e∈E\E? 0 · ye ≤ c defines a facet of QSAPm,n.

Proof. The validity is clear. Since
∑

v∈V ? avxv +
∑

e∈E? beye ≤ c defines a facet of
QSAP?

m,n? , there exists a set P ? of dim(QSAP?
m,n?) affinely independent vectors on

the facet. Lemma 7 shows that P := φ−1 ◦ ι(P ?) is also a set of affinely independent
vectors. It is easy to show that P is contained in the face of QSAPm,n defined by the
corresponding zero-lifting. Since dim(QSAPm,n) = dim(QSAP?

m,n?), the zero-lifting
defines a facet of QSAPm,n.

By Lemma 9, we can show that the nonnegativity constraints (3) in MIP define facets
of QSAPm,n

Theorem 10. For any e ∈ E, the inequality ye ≥ 0 defines a facet of QSAPm,n.

Proof. By Lemma 9, the zero-liftings of (5), (6), and (7) of QSAP?
m,n? are facet defining

for QSAPm,n. For each inequality in (6) and (7), we can obtain an inequality ye ≥ 0
by adding some of equalities in (1) and (2).
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We remark that 0 ≤ x ≤ 1 and y ≤ 1 are redundant constraints for MIP. Hence,
they do not define facets of QSAPm,n.

Proposition 11. For any v ∈ V and any e ∈ E, the inequalities 0 ≤ xv ≤ 1 and
ye ≤ 1 are implied by (1), (2), and (3).

Proof. The inequality 0 ≤ xv ≤ 1 holds because xik = y((i, k) : rowj)), ye ≥ 0, and
x(rowi) = 1. Since ye ≥ 0 and y((i, k) : rowj)) = xik ≤ 1, we have ye ≤ 1.

4 Families of Facets of QSAPm,n

In this section, we present two families of valid inequalities of QSAPm,n, called clique-
inequalities and cut-inequalities, and give complete characterizations for them to be
facet-defining. Since Lemma 9 ensures that it is enough to deal with the full-dimensional
polytope QSAP?

m,n? , we concentrate on QSAP?
m,n? throughout this section.

Padberg proposed families of valid inequalities for the Boolean quadric polytope
called clique-inequalities and cut-inequalities and showed the conditions for them to be
facet-defining [14]. Jünger and Kaibel introduced a family of valid inequalities for the
QAP-polytope called ST-inequalities [9], which are also valid for the Boolean quadric
polytope. Since QSAP?

m,n? is isomorphic to a face of BQPm×n? , ST-inequalities of
BQPm×n? are also valid for QSAP?

m,n? . We note that clique- and cut-inequalities are
special cases of ST-inequalities.

Proposition 12. For any pair of subsets S, T ⊆ V ? with S ∩ T = ∅ and β ∈ Z, the
ST-inequality

−βx(S) + (β − 1)x(T )− y(S)− y(T ) + y(S : T ) ≤ β(β − 1)
2

(8)

is valid for QSAP?
m,n?.

Proof. The inequality (x(T ) − x(S) − β)(x(T ) − x(S) − (β − 1)) ≥ 0 holds for any
integer β and vector x ∈ {0, 1}V ?

. By substituting yuv = xuxv, we have (8).

We introduce clique-inequalities

(β − 1)x(T )− y(T ) ≤ β(β − 1)
2

(T ⊆ V ?, β ∈ Z) (9)

and cut-inequalities

−x(S)− y(S)− y(T ) + y(S : T ) ≤ 0 (S, T ⊆ V ?, S ∩ T = ∅). (10)

Note that the inequalities (9) and (10) are ST-inequalities with S = ∅ and with β = 0,
respectively. The clique- and cut-inequalities constitute a fairly large class of valid
inequalities. For example, the facet defining inequality (5) is obtained by setting
T = {u, v} and β = 1 in (9). If we take S = {v} and T = ∅ in (10), however, we have
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xv ≥ 0 which does not define a facet. Thus our issue is to decide the condition for
parameters S, T , and β of (9) and (10) to be facet-defining.

In Sections 4.1 and 4.2, we completely determine the conditions for the clique- and
cut-inequalities to be facet-defining. In Section 4.3, we present another family of facets
by simultaneous lifting.

4.1 Clique-inequalities

It is easy to see that (9) does not define a facet for any β ≤ 0 and for any T ⊆ V ?

with |M(T )| = 1, where M(T ) = {i ∈ M | rowi ∩ T 6= ∅}. Hence, it is necessary that
|M(T )| ≥ 2 and β ≥ 1 for (9) to be facet-defining.

Theorem 13. Let T ⊆ V ? be a node subset with |M(T )| = 2. Then the clique-
inequality (9) defines a facet of QSAP?

m,n? if and only if one of the following conditions
holds:

1. β = 1 and T = {u, v} ∈ E?,

2. β = 2 and T = row?
i ∪ row?

j with i, j ∈ M (i 6= j).

Proof. Assume that β = 1. If T = {u, v} ∈ E?, we can see that (9) defines a facet
by Proposition 6. Conversely, suppose that |T | ≥ 3, then (9) is the summation of
−ye ≤ 0 (e ∈ E?(T )). Let β = 2. If T = row?

i ∪ row?
j with i 6= j, we can see that

(9) defines a facet by Proposition 6. For any T ⊂ row?
i ∪ row?

j , (9) is the summation
of inequalities (5) and (6), which proves the converse. Finally, we show that (9) does
not define a facet if β ≥ 3. We may assume that T = row?(T ). Since x(T )− y(T ) ≤ 1
defines a facet and x(T ) ≤ 2 is valid for QSAP?

m,n? , we have

(β − 1)x(T )− y(T ) ≤ 1 + 2(β − 2) ≤ β(β − 1)
2

.

Theorem 14. Let T ⊆ V ? be a node subset with |M(T )| ≥ 3. Then the clique-
inequality (9) defines a facet of QSAP?

m,n? if and only if 2 ≤ β ≤ |M(T )| − 1.

Proof. We first prove that if 2 ≤ β ≤ |M(T )|−1 then (9) defines a facet of QSAP?
m,n? .

Suppose that there is an inequality a>x + b>y ≤ c valid for QSAP?
m,n? such that

F :=
{

(x, y) ∈ QSAP?
m,n?

∣∣∣∣ (β − 1)x(T )− y(T ) =
β(β − 1)

2

}

⊆{(x, y) ∈ QSAP?
m,n? | a>x + b>y = c}.

(a) For any {u, v}, {u, w} ∈ E?(T ), by the condition, there exists R ⊆ T\row?({u, v, w})
such that each of R∪ {v} and R∪ {w} is a (β − 1)-clique and each of R∪ {u, v}
and R∪ {u, w} is a β-clique. Since their incidence vectors lie on F , it holds that

a(R ∪ {v}) + b(R ∪ {v}) = c, (11)
a(R ∪ {u, v}) + b(R ∪ {u, v}) = c. (12)

9



Subtracting (11) from (12), we have

au + b(u : (R ∪ {v})) = 0. (13)

Similarly, we have

au + b(u : (R ∪ {w})) = 0. (14)

From (13) and (14), buv = buw holds. Thus, we can conclude that there is a
number µ such that be = µ for any e ∈ E?(T ). From (13) and (11), we have

au = −(β − 1)µ (∀u ∈ T ), c = −β(β − 1)
2

µ.

(b) For any {u, v} ∈ E?(T : V ? \ T ) such that u ∈ T and v ∈ V ? \ T , there exists a
(β − 1)-clique R ⊆ T such that R ∪ {u} is a β-clique. Then we have

a(R) + b(R) = c, (15)
a(R ∪ {u}) + b(R ∪ {u}) = c, (16)
a(R ∪ {v}) + b(R ∪ {v}) = c, (17)

a(R ∪ {u, v}) + b(R ∪ {u, v}) = c. (18)

By considering (18)− (17)− (16)+ (15), we have buv = 0. Subtracting (15) from
(17) yields av + b(v : R) = 0. Since buv = 0, we can conclude that av = 0 for any
v ∈ V ? \ T .

(c) For any {u, v} ∈ E?(V ? \ T ), there exists a (β − 1)-clique R ⊆ T . Then we have

a(R ∪ {u, v}) + b(R ∪ {u, v}) = c. (19)

From (a), (b), and (19), we can conclude that buv = 0.

(d) Since (0, 0) ∈ QSAP?
m,n? and a>x + b>y ≤ c is valid for QSAP?

m,n? , we have
µ ≤ 0.

From (a)–(d), a>x + b>y ≤ c is a nonnegative multiple of (9). Hence, (9) defines a
facet of QSAP?

m,n? .
Next, we prove the converse by showing that the clique-inequality (9) does not

define a facet of QSAP?
m,n? if |M(T )| ≤ β.

(i) Suppose |M(T )| ≤ β − 2. Then it is clear that (9) does not define a facet.

(ii) Suppose |M(T )| = β − 1. We define B := row?(T ). It is easy to see that

(β − 2)x(B)− y(B) ≤ (β − 1)(β − 2)
2
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is the summation of inequalities in (7). By considering a cut-inequality−xv+y(v :
U) ≤ 0 with a proper choice of U ⊂ V ? for each v ∈ B \ T , we have

(β − 2)x(T )− y(T ) ≤ (β − 1)(β − 2)
2

.

Together with x(T ) ≤ |M(T )| = β − 1, we have

(β − 1)x(T )− y(T ) ≤ (β − 1)(β − 2)
2

+ β − 1 =
β(β − 1)

2
.

(iii) Suppose |M(T )| = β. Then, the proof is similar to that of |M(T )| = β − 1.

4.2 Cut-inequalities

Note that the cut-inequality (10) cannot be facet defining if |M(S)| ≥ 2 and |M(T )| =
1. Throughout this subsection, we define T := V ? \ T for any T ⊆ V ?.

Let S, T ⊆ V ? be node subsets such that S ∩ T = ∅ and |M(S)| = |M(T )| = 1.
Then the cut-inequality (10) becomes

−x(S) + y(S : T ) ≤ 0 (20)

because E?(S) = E?(T ) = ∅.
Theorem 15. Let S, T ⊆ V ? be node subsets such that S ∩ T = ∅ and |M(S)| =
|M(T )| = 1. Then the cut-inequality (20) defines a facet of QSAP?

m,n? if and only if

1. M(S) 6= M(T ),

2. |S| = 1, i.e., S = {u} for some u ∈ V ?, and

3. T = row?(T ).

Proof. Since sufficiency is proved in Proposition 6, we prove the converse. If the first
condition is not satisfied, i.e., M(S) = M(T ), then (20) is the summation of −xv ≤ 0
for each v ∈ S. If the second condition is not satisfied, i.e., |S| ≥ 2, then (20) is the
summation of −xv + y(v : row?(T )) ≤ 0 for each v ∈ S and −y(S : T \ row?(T )) ≤ 0.
If the third condition is not satisfied, i.e., T ( row?(T ), then (20) is the summation of
−xu + y(u : row?(T )) ≤ 0 and −y(S : T \ row?(T )) ≤ 0.

Theorem 16. Let S, T ⊆ V ? be node subsets such that S ∩ T = ∅, |M(S)| ≥ 1, and
|M(T )| ≥ 2. Then the cut-inequality (10) defines a facet of QSAP?

m,n? if and only if

1. ∀{w1, w2} ∈ E?(T ), ∃u ∈ S such that {u,w1, w2} is a 3-clique, and

2. ∀{u1, u2} ∈ E?(S), ∃{w1, w2} ∈ E?(T ) such that {u1, u2, w1, w2} is a 4-clique.

11



Proof. First, we prove the sufficiency. Suppose that there is an inequality a>x+b>y ≤ c
valid for QSAP?

m,n? such that

F :={(x, y) ∈ QSAP?
m,n? | −x(S)− y(S)− y(T ) + y(S : T ) = 0}

⊆{(x, y) ∈ QSAP?
m,n? | a>x + b>y = c}.

(a) Since (0, 0) ∈ F , we have c = 0.

(b) For any v /∈ S, (χv, 0) ∈ F implies av = 0.

(c) For any {v1, v2} ∈ E?(S ∪ T ), (χv1 + χv2 , χv1v2) ∈ F implies bv1v2 = 0.

(d) For any {v, w} ∈ E?(S ∪ T : T ), (χv + χw, χvw) ∈ F implies bvw = 0.

(e) For any {u,w} ∈ E?(S : T ), (χu + χw, χuw) ∈ F implies au + buw = 0.

(f) For any {u, v} ∈ E?(S : S ∪ T ) such that u ∈ S and v ∈ S ∪ T , by the assumption
|M(T )| ≥ 2, there exists w ∈ T such that {u,w} ∈ E?(S : T ). Hence, buv = 0.

(g) For any {w1, w2} ∈ E?(T ), by the first condition, there exists u ∈ S such that
{u,w1, w2} is a 3-clique. Each 3-clique contains two 2-cliques {u,w1} and {u,w2}.
Thus buw1 = buw2 = −au and bw1w2 = au. Furthermore, for any u1, u2 ∈ S with
M(u1) = M(u2), there exists {w1, w2} ∈ E?(T ) such that both of {u1, w1, w2}
and {u2, w1, w2} are 3-cliques, since otherwise we must have |M(T )| = 2 and
M(u1) = M(u2) ⊆ M(T ), contradicting the first condition. Thus au1 = au2 =
bw1w2 . Hence, for each i ∈ M(S), there exists a number µi such that ∀u ∈
S ∩ row?

i , ∀{u,w} ∈ E?(S ∩ row?
i : T ), and ∀{w1, w2} ∈ E?(T ), au = −buw =

bw1w2 = µi.

(h) For any {u1, u2} ∈ E?(S), by the condition 2, there exist w1, w2 ∈ T such that
{u1, u2, w1, w2} is a 4-clique. Each 4-clique contains two 3-cliques {u1, w1, w2}
and {u2, w1, w2}. It follows that au1 = au2 . Thus we can conclude that µi = µj

for any i, j ∈ M(S). Hence, there exists a number µ such that ∀u ∈ S, ∀{u,w} ∈
E?(S : T ), ∀{w1, w2} ∈ E?(T ), and ∀{u1, u2} ∈ E?(S), buw = −au = −bw1w2 =
−bu1u2 = µ.

Since (χu, 0) ∈ QSAP?
m,n? for any u ∈ S, we have µ ≥ 0.

Second, we prove the converse. Suppose that the first condition does not hold, i.e.,
there exists e = {w1, w2} ∈ E?(T ) such that {u,w1, w2} is not a 3-clique for any u ∈ S.
It is sufficient to show the validity of the inequality

−x(S)− y(S)− y(T ) + y(S : T ) + ye ≤ 0 (21)

because (10) is the summation of −ye ≤ 0 and (21). For any clique C of the graph
G?, we put (x, y) = (χC , χE?(C)). If e /∈ E?(C), it is clear that (x, y) satisfies (21).
Otherwise, it is easy to see that S ∩ C = ∅ holds because the first condition does
not hold. Thus, we have x(S) = y(S) = y(S : T ) = 0. Hence, the left hand side
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of (21) is equal to −y(T ) + ye = −y(T \ {w1, w2}) ≤ 0. Next, suppose that the
second condition does not hold, i.e., there exists e = {u1, u2} ∈ E?(S) such that
{u1, u2, w1, w2} is not a 4-clique for any {w1, w2} ∈ E?(T ). It is sufficient to show that
(x, y) = (χC , χE?(C)) satisfies (21) for any clique C of G?. If e /∈ E?(C), it is clear that
(x, y) satisfies (21). Otherwise, it is easy to see that |T ∩ C| ≤ 1 holds because the
second condition does not hold. Since |T ∩C| ≤ 1, we have y(S : T ) ≤ x(S). Thus we
have −x(S)−y(S)−y(T )+y(S : T )+ye ≤ −y(S)−y(T )+ye = −y(S\{u1, u2})−y(T ) ≤
0.

4.3 Simultaneous Lifting of Clique-type Facets

We discuss a simultaneous lifting of facets. We characterize the lifted facets by vertices
of some polyhedron. Sherali et al. also dealt with a simultaneous lifting of facets for
the Boolean quadric polytope [17] (see also [6]).

When T ⊆ V ? is a node subset such that 3 ≤ |M(T )| ≤ m−1, Theorem 14 implies
that the clique inequality

x(T )− y(T ) ≤ 1 (22)

defines a facet of QSAP?
|M(T )|,n? . For any U ⊆ V ? \ row?(T ) with |M(U)| = 1, we

consider a lifting of (22) as follows:

x(T )− y(T ) + px(U) + qy(U : T ) ≤ 1 (23)

for some p, q ∈ R.
We determine the parameters (p, q) for the inequality (23) to be facet-defining. Let

W ⊆ T be an l-clique, where 0 ≤ l ≤ |M(T )|. Since (χW , χE?(W )) ∈ QSAP?
m,n? , it is

necessary that

l − l(l − 1)
2

+ p + ql ≤ 1 (24)

for the inequality (23) to be valid. It is obvious that (p, q) satisfies (24) if and only if
p + lq ≤ (l − 2)(l − 1)/2. Thus it is necessary for the inequality (23) to be valid that
(p, q) is in a polyhedron Q(T ) defined by

Q(T ) = {(p, q) ∈ R2 | p + lq ≤ (l − 2)(l − 1)
2

(0 ≤ l ≤ |M(T )|)}.

It is easy to determine the vertices and extreme rays of Q(T ) (see Figure 3).

Lemma 17. The set of vertices of Q(T ) is {(−(l − 1)(l + 2)/2, l − 1) | 0 ≤ l ≤
|M(T )| − 1} and that of extreme rays of Q(T ) is {(0,−1), (−(|M(T )| − 1), 1)}.

Theorem 18. Let T, U ⊆ V ? be a pair of node subsets satisfying M(T ) ∩M(U) = ∅,
3 ≤ |M(T )| ≤ m − 1, and |M(U)| = 1. Then the inequality (23) defines a facet of
QSAP?

m,n? if and only if (p, q) is a vertex of Q(T ).
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p

q

(1,−1) (l = 0)

(0, 0) (l = 1)

(−2, 1) (l = 2)

O

Figure 3: The polyhedron Q(T ) with |M(T )| = 3.

Proof. It is clear that the inequality (23) is valid to QSAP?
m,n? for any (p, q) ∈ Q(T ).

If (p, q) ∈ Q(T ) is not a vertex of Q(T ), then (p, q) is a convex and conic combination
of some vertices and extreme rays of Q(T ), which implies (23) is the summation of
other inequalities.

Conversely, suppose that (p, q) is a vertex of Q(T ), Lemma 17 requires that (p, q) =
(−(l − 1)(l + 2)/2, l − 1) for some l satisfying 0 ≤ l ≤ |M(T )| − 1. To show that (23)
defines a facet, suppose that there is an inequality a>x + b>y ≤ c valid for QSAP?

m,n?

such that

F :={(x, y) ∈ QSAP?
m,n? | x(T )− y(T )− (l − 1)(l + 2)

2
x(U) + (l − 1)y(U : T ) = 1}

⊆{(x, y) ∈ QSAP?
m,n? | a>x + b>y = c}.

(a) For any u ∈ T , (χu, 0) ∈ F implies au = c.

(b) For any {u, v} ∈ E?(T ), (χu + χv, χuv) ∈ F implies buv = −c.

(c) Let W be an l-clique in T . For any v ∈ U , the incidence vector of W ∪ {v} lies
on F . Then we have

cl − c
l(l − 1)

2
+ av + b(v : W ) = c. (25)

(d) Let W be an l-clique in T , then there exists a node u in T \ row?(W ) such that
W ∪{u} an (l+1)-clique in T . For any v ∈ U , the incidence vector of W ∪{u, v}
lies on F . Thus we have

c(l + 1)− c
l(l + 1)

2
+ av + b(v : W ) + buv = c. (26)

By subtracting (25) from (26), we have buv = c(l− 1). Hence av = −c(l− 1)(l +
2)/2.
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(e) For any w ∈ T ∪ U , there exists u ∈ T such that {u,w} ∈ E?(T : T ∪ U) because
|M(T )| ≥ 3. Since the incidence vector of {u,w} lies on F , we have aw +buw = 0.

(f) For any {w1, w2} ∈ E?(T ∪ U), there exists u ∈ T such that {u,w1, w2} is a
3-clique because |M(T )| ≥ 3. Since the incidence vector of {u,w1, w2} lies on F ,
we have bw1w2 = 0.

(g) For any w ∈ T ∪ U , there exists {u1, u2} ∈ E?(T ) such that {u1, u2, w} is a
3-clique because |M(T )| ≥ 3. Since the incidence vector of {u1, u2, w} lies on F ,
we have aw = 0, and thus be = 0 for any e ∈ E?(T : T ∪ U).

(h) For any {v, w} ∈ E?(U : T ∪ U) with v ∈ U and w ∈ T ∪ U , take any l-clique W
in T . Since the incidence vectors of W ∪ {v} and W ∪ {v, w} lie on F , we have
bvw = 0.

(i) Since (0, 0) ∈ QSAP?
m,n? and a>x + b>y ≤ c is valid for QSAP?

m,n? , we have
c ≥ 0.

5 Conclusions

We investigated a polytope arising from the quadratic semi-assignment problem. By
introducing the star-transformation, we obtained basic polyhedral properties of the
dimension, the affine hull and trivial facets in quite a simple way. We also showed
that the affine hull and the trivial facets correspond to the equality and the inequality
constraints in the known MIP formulation, respectively. We obtained families of facets
called clique- and cut-inequalities and gave complete characterizations for them to
be facet-defining. We derived another class of facets from the clique-type facets by
simultaneous lifting. Finally, we remark that there are some facets except the above
ones (see Appendix A).

A Other Facets of QSAP?
m,n?

In this appendix, we show some facet defining inequalities of QSAP?
m,n? which are

neither clique- nor cut-inequalities.

Proposition 19. Let S, T ⊆ V ? be node subsets such that S ∩ T = ∅, |M(S)| = 2,
|M(T )| ≥ 4, and |M(S) ∩M(T )| = 2. Then the inequality

−x(S)− y(S)− y(T ) + y(S : T ) + y(T1) ≤ 0 (27)

defines a facet of QSAP?
m,n?, where T1 = T ∩ row?(S).
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Proof. First, we show the validity of the inequality. For any clique C of the graph G?,
we define the vector (x, y) = (χC , χE?(C)). When |C ∩ T1| ≤ 1, we have y(T1) = 0.
When |C ∩ T1| = 2, we have C ∩ S = ∅ and thus y(S : T ) = 0. Hence, for each case,
the vector (x, y) satisfies the inequality (27).

Next, suppose that there is an inequality a>x + b>y ≤ c valid for QSAP?
m,n? such

that

F :={(x, y) ∈ QSAP?
m,n? | −x(S)− y(S)− y(T ) + y(T1) + y(S : T ) = 0}

⊆{(x, y) ∈ QSAP?
m,n? | a>x + b>y = c}.

Then, by the following observation, we have the desired result.

(a) Since (0, 0) ∈ F , we have c = 0.

(b) For any v /∈ S, we have av = 0.

(c) For any e ∈ E?(S ∪ T ), we have be = 0.

(d) For any e ∈ E?(T1), we have be = 0.

(e) For any e ∈ E?(S ∪ T : T ), we have be = 0.

(f) For any {u,w} ∈ E?(S : T ) such that u ∈ S and w ∈ T , we have au + buw = 0.

(g) For any {u, v} ∈ E?(S : S ∪ T ) such that u ∈ S and v ∈ S ∪ T , there exists
w ∈ T such that {u,w} ∈ E?(S : T ) because |M(T )| ≥ 4. Thus we have buv = 0.

(h) Let T2 be T2 = T \T1. For any {w1, w2} ∈ E?(T2) and for any u ∈ S, {u,w1, w2}
is a 3-clique because |M(T )| ≥ 4 and |M(S) ∩M(T )| = 2. Thus, for any u ∈ S
and any e ∈ E?(T2), there exists a number µ such that au = be = µ.

(i) For any {u1, u2} ∈ E?(S), there exist w1, w2 ∈ T such that {u1, u2, w1, w2} is a
4-clique, because |M(T )| ≥ 4. Thus, we have be = µ for any e ∈ E?(S).

(j) For any {w1, w2} ∈ E?(T1 : T2), there exists u ∈ S such that {u,w1, w2} is a
3-clique because |M(S)| = 2 and M(S) ∩M(T2) = ∅. Thus, we have be = µ for
any e ∈ E?(T1 : T2).

Hence, the inequality (27) is a product of µ and a>x + b>y ≤ c. Since (χu, 0) ∈
QSAP?

m,n? for any u ∈ S, we have µ ≥ 0.

Proposition 20. Let S, T ⊆ V ? be node subsets such that S ∩ T = ∅, |M(S)| ≥ 3,
|M(T )| = 3, and 2 ≤ |M(S) ∩M(T )| ≤ 3. Then the inequality

−x(S)− y(S)− y(T ) + y(S : T ) + y(S1) ≤ 0 (28)

defines a facet of QSAP?
m,n?, where S1 = S ∩ row?(T ).
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Proof. First, we show the validity of the inequality. For any clique C of the graph G?,
we define the vector (x, y) = (χC , χE?(C)). When |C ∩ S1| ≤ 1, we have y(S1) = 0.
When |C∩S1| = 2, we have x(S) = y(S : T ). When |C∩S1| = 3, we have C∩T = ∅ and
thus y(S : T ) = 0. Hence, for each case, the vector (x, y) satisfies the inequality (28).

Next, suppose that there is an inequality a>x + b>y ≤ c valid for QSAP?
m,n? such

that

F :={(x, y) ∈ QSAP?
m,n? | −x(S)− y(S) + y(S1)− y(T ) + y(S : T ) = 0}

⊆{(x, y) ∈ QSAP?
m,n? | a>x + b>y = c}.

Then, by the following observation, we have the desired result.

(a) Since (0, 0) ∈ F , we have c = 0.

(b) For any v /∈ S, we have av = 0.

(c) For any e ∈ E?(S ∪ T ), we have be = 0.

(d) For any e ∈ E?(S ∪ T : T ), we have be = 0.

(e) For any {u,w} ∈ E?(S : T ) such that u ∈ S and w ∈ T , we have au + buw = 0.

(f) For any {u1, u2} ∈ E?(S1), there exists w ∈ T such that {u1, u2, w} is a 3-clique
because |M(T )| = 3. Since {u1, w}, {u2, w} ∈ E?(S : T ), we have bu1u2 = 0.

(g) For any {u, v} ∈ E?(S : S ∪ T ) such that u ∈ S and v ∈ S ∪ T , there exists
w ∈ T such that {u,w} ∈ E?(S : T ). Thus, we have buv = 0.

(h) For any u ∈ S2 and any {w1, w2} ∈ E?(T ), {u,w1, w2} is a 3-clique. Thus there
exists a number µ such that be = au = µ for any u ∈ S2 and any e ∈ E?(T ).

(i) For any u ∈ S1, there exists {w1, w2} ∈ E?(T ) {u,w1, w2} is a 3-clique because
|M(T )| = 3. Thus, we have au = µ for any u ∈ S1.

(j) For any {u1, u2} ∈ E?(S) \ E?(S1), there exists {w1, w2} ∈ E?(T ) such that
{u1, u2, w1, w2} is a 4-clique because |M(T )| = 3. Thus, we have bu1u2 = µ.

Hence, the inequality (28) is a product of a number µ and a>x + b>y ≤ c. Since
(χu, 0) ∈ QSAP?

m,n? for any u ∈ S, we have µ ≥ 0.

B Computational Results

In this appendix, we apply our results on QSAP to the hub location problem (HLP)
and present some computational results.

The hub location problem arose in the airline industry, telecommunications, and
postal delivery systems (see a survey paper [4]). We consider a variant of HLP, which
we call hub network design problem [16, 19]. The hub-and-spoke structure consists of
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two sets of nodes called hubs and non-hubs. We denote the set of hubs by H and non-
hubs by NH, respectively. We assume that hubs are completely interconnected and any
pair of non-hubs can interact only via hubs. For any ordered pair of nodes (i, j), fij ≥ 0
denotes the amount of flow from i to j. Suppose further that the transportation cost
dij ≥ 0 per unit flow is defined for any pair of nodes except that of non-hubs because
direct interactions between non-hubs are not allowed. The hub network design problem
finds a connection of each non-hub to exactly one of the hubs which minimizes the total
transportation cost. Here, each flow is assigned to a minimum cost route among the
routes allowed by the connection. The problem is formulated as follows, where we drop
the transportation cost associated with pairs of hubs because it is a constant.

HLP min.
∑

i∈NH

∑

j∈NH

fij

(∑

k∈H

dikxik +
∑

k∈H

∑

l∈H

dklxikxjl +
∑

l∈H

dljxjl

)

+
∑

i∈NH

∑

l∈H

fil

∑

k∈H

(dik + dkl)xik +
∑

k∈H

∑

j∈NH

fkj

∑

l∈H

(dkl + dlj)xjl

s. t.
∑

k∈H

xik = 1 (∀i ∈ NH),

xik ∈ {0, 1} (∀i ∈ NH,∀k ∈ H).

The above formulation appears in the paper [16], for example. It is not hard to see
that HLP is a special case of QSAP, where M = NH and N = H. The problem HLP
is known to be NP-hard even if |H| = 3 (see [19]). Some polyhedral results of hub
network design problems and hub location problems appear in [7, 10, 11].

Next, we describe our computational experiments for HLP. Experiments were per-
formed on PC with Celeron 1.2 GHz CPU, using glpk 3.2.31 to solve linear relaxations.
We first solved a linear relaxation of MIP. If a non-integer optimal solution is found,
we added facet defining inequalities as cutting planes. We have the following simple
facet defining inequalities (29) and (30) as corollaries of the theorems in Section 4.
The inequalities (29) and (30) are called triangle inequalities of BQPn in [14].

Corollary 21. For any T = {u, v, w} ⊆ V ? with |M(T )| = 3, the clique-inequality

xu + xv + xw − yuv − yuw − yvw ≤ 1 (29)

defines a facet of QSAP?
m,n?.

Corollary 22. For any S = {u} and T = {v, w} ⊆ V ? with |M(S) ∪M(T )| = 3, the
cut-inequality

−xu + yuv + yuw − yvw ≤ 0 (30)

defines a facet of QSAP?
m,n?.

1http://www.gnu.org/software/glpk/glpk.html
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The computation was done with two kinds of data sets called CAB data [12] and
AP data [5]. Both data sets are available at the web site [2]. CAB data is based on
the actual airline data between 25 major US cities. The instances were generated as
follows. We dealt with the case where the number of hubs is four, i.e., h = 4. We chose
10, 15, 20, and 25 cities out of the total 25 cities. For each case, since hubs were not
specified in the data set, we generated instances according to the every combination
of hubs. In addition, we introduced a parameter 0 ≤ α ≤ 1 called discount factor by
O’Kelly [12]. The parameter shows the discount of costs among hubs and replaces dkl

by αdkl. We dealt with the case where α=1.0, 0.8, 0.6, and 0.4, respectively. Tables 1
and 2 show that integer optimal solutions are obtained for almost all instances only by
solving linear relaxation of MIP. For the remaining instances, we successfully obtained
integer optimal solutions by adding our cuts. Computational times took at most only
a few seconds for each instance. AP data is derived from the mail flows in Australia [5].
Since hubs were not specified in the data set, we chose an optimal location of hubs,
which is already known [5]. Table 3 shows that integer optimal solutions are obtained
for all instances without adding any cuts. Computational times took at most only a
few minutes for each instance.

Table 1: Computational results for CAB data with n = 4 (1)

n m + n number of α non-integer non-integer time [s]
instances instances instances with cuts max and average

4 10 210 1.0 0 0 max 0.010
average 0.003

210 0.8 0 0 max 0.010
average 0.003

210 0.6 0 0 max 0.010
average 0.003

210 0.4 0 0 max 0.010
average 0.003

15 1365 1.0 3 0 max 0.100
average 0.014

1365 0.8 3 0 max 0.080
average 0.014

1365 0.6 0 0 max 0.070
average 0.011

1365 0.4 0 0 max 0.070
average 0.011
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Table 2: Computational results for CAB data with n = 4 (2)

n m + n number of α non-integer non-integer time [s]
instances instances instances with cuts max and average

4 20 4845 1.0 3 0 max 0.560
average 0.099

4845 0.8 1 0 max 0.460
average 0.081

4845 0.6 0 0 max 0.570
average 0.079

4845 0.4 0 0 max 0.460
average 0.071

25 12650 1.0 5 0 max 2.820
average 0.404

12650 0.8 9 0 max 2.970
average 0.394

12650 0.6 1 0 max 2.580
average 0.342

12650 0.4 1 0 max 2.560
average 0.294

Table 3: Computational results for AP data

n = 2 m + n 10 20 25 40 50
time [s] 0.000 0.120 0.380 5.220 17.500

3 10 20 25 40 50
0.010 0.270 1.030 18.010 53.090

4 10 20 25 40 50
0.010 0.490 2.250 37.290 110.980

5 10 20 25 40 50
0.010 0.810 3.860 72.080 208.230
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http://smg.ulb.ac.be/.
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