
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Strongly Polynomial Algorithm for
Line Search in Submodular Polyhedra

Kiyohito NAGANO

(Communicated by Satoru IWATA)

METR 2004-33 June 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

A Strongly Polynomial Algorithm for

Line Search in Submodular Polyhedra

Kiyohito NAGANO

Department of Mathematical Informatics,
Graduate School of Information Science and Technology,

The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
nagano@simplex.t.u-tokyo.ac.jp

June 8th, 2004

Abstract

A submodular polyhedron is a polyhedron associated with a submodular function. This
paper presents a strongly polynomial time algorithm for line search in submodular polyhedra
with the aid of a fully combinatorial algorithm for submodular function minimization as a
subroutine. The algorithm is based on the parametric search method proposed by Megiddo.

1 Introduction

Let V be a finite nonempty set with |V | = n. Let f be a submodular function on the subsets of
V , that is,

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y), ∀X, Y ⊆ V. (1)

Iwata, Fleischer and Fujishige [12] and Schrijver [19] independently presented combinatorial,
strongly polynomial time algorithms for submodular function minimization. Iwata [10] pre-
sented a fully combinatorial strongly polynomial time algorithm, which uses only additions,
subtractions, comparisons, and the oracle calls for function values.

For a vector x ∈ RV and u ∈ V , we denote by x(u) the component of x on u. For a
submodular function f : 2V → R with f(∅) = 0, the submodular polyhedron P(f) and the base
polyhedron B(f) are defined by

P(f) = {x ∈ RV |x(X) ≤ f(X) (∀X ⊆ V) } , (2)
B(f) = {x ∈ RV |x ∈ P(f), x(V) = f(V)} ,

where x(X) =
∑

u∈X x(u). In this paper we consider the following problem and give it a strongly
polynomial time algorithm:

Problem Line Search in Submodular Polyhedra (LSSP)
Instance: A submodular function f : 2V → R with f(∅) = 0, a vector x0 ∈ P(f) and a

vector a ∈ RV .
Task: Find t∗ = max{ t ∈ R |x0 + ta ∈ P(f)}.

An example of Problem LSSP is illustrated in Fig. 1.

1

P(f)

O

t∗a

x(1)

x(2)

a

Figure 1: Problem LSSP (n = 2)

We denote by R− the set of nonpositive real numbers, and denote by R+ the set of non-
negative real numbers. If a ∈ RV−, Problem LSSP does not have an optimal solution. Hence
throughout we assume that a /∈ RV−. We may assume f(X) ≥ 0, ∀X ⊆ V , and x0 = 0, by
resetting f(X) := f(X)−x0(X) for all X ⊆ V . So throughout we assume that f is nonnegative,
f(∅) = 0 and x0 = 0.

From the definition of a submodular polyhedron (2), it is easy to see that the optimal value
t∗ of Problem LSSP is equal to min{f(X)/a(X) |X ⊆ V, a(X) > 0}. So Problem LSSP can be
regarded as a minimum-ratio problem.

The Newton method (Section 3) is a simple approach to Problem LSSP. If a is nonnegative,
it is shown that the number of iterations of the Newton method is at most n + 1 and Problem
LSSP can be solved in strongly polynomial time. (See Fujishige [5, §7.2], Fleischer and Iwata
[4] for details.) If a ∈ RV and a /∈ RV

+, however, only a weakly polynomial running time bound
is given, and it is left open to verify if the Newton method for Problem LSSP runs in strongly
polynomial time.

In this paper, we propose an algorithm for Problem LSSP, which is quite different from the
Newton method. The algorithm uses a fully combinatorial algorithm for submodular function
minimization [10, 11] as a subroutine, within the framework of the parametric search method
proposed by Megiddo [13, 14]. It solves Problem LSSP in strongly polynomial time.

Let us consider the following problem, which is a special case of Problem LSSP:

Problem Line Search in Base Polyhedra (LSBP)
Instance: A submodular function f : 2V → R with f(∅) = 0, a vector x0 ∈ B(f) and a

vector a ∈ RV with a(V) = 0.
Task: Find t∗ = max{ t ∈ R |x0 + ta ∈ B(f)} (= max{ t ∈ R |x0 + ta ∈ P(f)}).

As is the case with Problem LSSP, it is previously unknown if Problem LSBP can be solved
in strongly polynomial time. This problem generalizes, for example, the problem of finding a
maximum flow value in a network. We will see some problems associated with Problem LSBP
in the following paragraphs.

Hartvigsen [8, 9] addressed a constrained submodular optimization problem:

max
{∑

u∈V w(u)x(u) |x ∈ B(f),
∑

u∈V bi(u)x(u) = di (i = 1, . . . , p)
}

,

where p is a nonnegative integer, w ∈ RV , and bi ∈ RV , di ∈ R for each i = 1, . . . , p. If
p = 0, the constrained submodular optimization problem can be solved in strongly polynomial
time using a greedy algorithm by Edmonds [3]. Hartvigsen [9] showed that the constrained

2

submodular optimization problem can be solved in strongly polynomial time for fixed values of
p. Problem LSBP is a special case of the constrained submodular optimization problem such
that the feasible set {x ∈ B(f) |

∑
u∈V bi(u)x(u) = di (i = 1, . . . , p) } has dimension 1 (or 0),

that is, p = O(n). Thus Hartvigsen’s result applied to Problem LSBP does not lead to a strongly
polynomial time algorithm.

For each u ∈ V , let χu be the characteristic vector that has value 1 on u and 0 elsewhere.
As an input instance of Problem LSBP, if a = χu − χv for u, v ∈ V, u
= v, the optimal value
t∗ = max{ t ∈ R |x0 + t(χu − χv) ∈ B(f)} is said to be an exchange capacity (see, for example,
Fujishige [5]) and can be computed directly by a submodular function minimization algorithm
in strongly polynomial time. So Problem LSBP can be interpreted as a problem of computing
a generalized exchange capacity.

Now we explain here that the problem of finding a maximum flow value in a network can be
reduced to Problem LSBP. Consider a network N with a directed graph G = (V, E), where V is
a vertex set and E is an arc set, and with a nonnegative capacity vector c ∈ RE

+. For X ⊆ V , we
denote by δ(X) the set {e = (u, v) ∈ E |u ∈ X, v ∈ V \X }. We define a function κc : 2V → R
as κc(X) = c(δ(X)) (X ⊆ V). This function κc is called a cut function and it is known that κc

is a nonnegative submodular function with κc(∅) = κc(V) = 0. A vector x ∈ RV is said to be
feasible for N if there exists a vector y ∈ RE such that∑

{y(e) | e ∈ δ({v})} −
∑

{y(e) | e ∈ δ(V \{v})} = x(v), ∀v ∈ V ,

0 ≤ y ≤ c ,

that is, there exists a flow y in network N which satisfies capacity constraints w.r.t. c and supply
constraints w.r.t. x . Let r, s ∈ V , r
= s and we consider finding a maximum flow value from
r to s. The maximum flow value from r to s is t∗ = max{t ∈ R | t(χr − χs) is feasible for N}.
Gale [6] showed that the set {x ∈ RV |x is feasible for N } is equal to the base polyhedron
B(κc) = {x ∈ RV |x(X) ≤ c(δ(X)) (∀X ⊆ V), x(V) = 0 }. Therefore we can find the maximum
flow value by solving LSBP(κc, 0, χr − χs).

The paper is organized as follows. In Section 2, we provide preliminaries for the following
sections. In Section 3, we describe the Newton method using an algorithm for submodular
function minimization as a subroutine. In Section 4, we present a strongly polynomial time
algorithm for Problem LSSP using a fully combinatorial algorithm for submodular function
minimization as a subroutine within the framework of the parametric search method proposed
by Megiddo.

2 Preliminaries

Let V be a finite nonempty set and |V | = n. A family D ⊆ 2V is said to be a ring family if it
satisfies

X, Y ∈ D ⇒ X ∪ Y, X ∩ Y ∈ D.

Let f : 2V → R be a submodular function and let arg min f denote a family of all the
minimizers of f . It is not difficult to see that arg min f forms a ring family. Suppose that
X, Y ∈ arg min f and f(X) = f(Y) = α. Then, using submodularity (1), we have

f(X ∪ Y) + f(X ∩ Y) ≤ 2α.

3

Since f(X ∪ Y) ≥ α and f(X ∩ Y) ≥ α, this implies f(X ∪ Y) = f(X ∩ Y) = α, that is,
X ∪ Y, X ∩ Y ∈ arg min f . As arg min f is closed under union and intersection, there exists a
minimal minimizer Xmin =

⋂
{X |X ∈ arg min f} ∈ arg min f and exists a maximal minimizer

Xmax =
⋃
{X |X ∈ arg min f} ∈ arg min f .

Let f : 2V → R be a submodular function with f(∅) = 0 and let x ∈ P(f). A subset X ⊆ V
is said to be a tight set at x if x(X) = f(X). We denote the family of tight sets at x by D(x).
Namely,

D(x) = {X ⊆ V |x(X) = f(X)}.

For any y ∈ RV , a function fy : 2V → R defined by

fy(X) = f(X) − y(X) (X ⊆ V)

is obviously a submodular function. As x ∈ P(f), fx(X) ≥ 0 , ∀X ⊆ V , and fx(∅) = 0. Thus
the minimum value of fx is 0, which implies for any X ⊆ V ,

X ∈ D(x) ⇐⇒ X ∈ arg min fx .

So arg min fx = D(x), therefore D(x) forms a ring family. Note that ∅ ∈ D(x).
Let U be a finite set. A function g : D → R is said to be a modular function on a ring family

D ⊆ 2U if it satisfies

g(X) + g(Y) = g(X ∪ Y) + g(X ∩ Y), ∀X, Y ∈ D.

For a vector b ∈ RU we denote b(X) =
∑

u∈X b(u) for all X ⊆ U , so b can be regarded as a
modular function on 2U . For a ring family D, a function bD : D → R defined by

bD(X) =
∑
u∈X

b(u) (X ∈ D) (3)

is a modular function on D.

As an instance of Problem LSSP, without loss of generality, we assume that f is nonnegative,
f(∅) = 0, x0 = 0, and a /∈ RV−. We explain that the optimal value t∗ of LSSP(f, 0, a) is
nonnegative and finite. The optimal value of LSSP(f, 0, a) is

t∗ = max{t | ta ∈ P(f)}. (4)

Since 0 ∈ P(f), t∗ is nonnegative. Let A ⊆ V be a subset which satisfies a(A) > 0. If
t > f(A)/a(A), then ta(A) > f(A) and hence ta /∈ P(f). So t∗ ≤ f(A)/a(A), therefore t∗ is
finite.

For any t ∈ R we consider deciding whether ta ∈ P(f) or ta /∈ P(f). Since, for any x ∈ RV ,
f(∅)− x(∅) = 0, we have

x ∈ P(f) ⇐⇒ fx(X) = f(X) − x(X) ≥ 0, ∀X ⊆ V ,

⇐⇒ min{fx(X) |X ⊆ V } = 0,

and if x can be represented as ta, using ta(∅) = 0,

ta ∈ P(f) ⇐⇒ min{fta(X) |X ⊆ V } = 0,

ta /∈ P(f) ⇐⇒ min{fta(X) |X ⊆ V } < 0.
(5)

4

Case 1 0 ≤ t < t∗

a0
ta

Ex. 1. 3Ex. 1. 2Ex. 1. 1

0 taa

Ex. 2. 2Ex. 2. 1

Case 3

Ex. 3. 1

t∗ < tCase 2 t = t∗

0 taa

ta = 0
a

a0 ta
a0 ta

Figure 2: Relation between t and t∗

So we can decide whether ta ∈ P(f) or ta /∈ P(f) by minimizing fta.
Now, for any t ≥ 0, let us consider the conditions of “t < t∗”, “t = t∗” and “t > t∗”. See

Figure 2 to understand each condition intuitively.
It follows from (4), (5), and the convexity of P(f) that

0 ≤ t ≤ t∗ ⇐⇒
{

t ≥ 0,

min{fta(X) |X ⊆ V } = 0,

t∗ < t ⇐⇒
{

t ≥ 0,

min{fta(X) |X ⊆ V } < 0.

(6)

The condition (6) is not sufficient to compare t with t∗, because we cannot decide whether t < t∗

or t = t∗. We consider the condition of t = t∗. Remark that t = t∗ and ta ∈ ∂P(f) are not
equivalent (see Ex. 1. 2 and Ex. 1. 3 in Figure 2), where ∂P(f) is a “boundary” of P(f), that is,

∂P(f) = {x ∈ P(f) | ∃X ∈ 2V \{ ∅ } s. t. x(X) = f(X)}.

Equation (4) directly implies that

t = t∗ ⇐⇒ ta ∈ P(f), ∀ε > 0 (t + ε)a /∈ P(f),
⇐⇒ ta ∈ P(f), ∃X ⊆ V s. t. ∀ε > 0 εa(X) > fta(X)(≥ 0),
⇐⇒ ta ∈ P(f), ∃X ∈ D(ta) s. t. a(X) > 0,

⇐⇒ ta ∈ P(f), max{a(X) |X ∈ D(ta)} > 0. (7)

For ta ∈ P(f), D(ta) always includes ∅, so max{a(X) |X ∈ D(ta)} ≥ 0. Thus using (6) and (7),

5

we obtain

0 ≤ t < t∗ ⇐⇒

⎧⎪⎨
⎪⎩

t ≥ 0,

min{fta(X) |X ⊆ V } = 0,

max{a(X) |X ∈ D(ta)} = 0,

t = t∗ ⇐⇒

⎧⎪⎨
⎪⎩

t ≥ 0,

min{fta(X) |X ⊆ V } = 0,

max{a(X) |X ∈ D(ta)} > 0,

t∗ < t ⇐⇒
{

t ≥ 0,

min{fta(X) |X ⊆ V } < 0.

(8)

3 The Newton method for Problem LSSP

In this section we describe the Newton method for Problem LSSP. The Newton method is a
simple approach to Problem LSSP with weakly polynomial running time bound. It is left open
to verify if the Newton method for Problem LSSP runs in strongly polynomial time.

The Newton method for Problem LSSP uses an algorithm for submodular function mini-
mization as a subroutine. Let f : 2V → R be a submodular function and |V | = n. We assume
that for any given X ⊆ V a function value f(X) can be acquired by an oracle call. Let γ denote
the upper bound on the time to compute the function value of f . An algorithm for submodular
function minimization is said to be a strongly polynomial time algorithm if the total number of
oracle calls for function evaluation and arithmetic operations, that is, additions, subtractions,
multiplications, divisions and comparisons, is bounded by some polynomial in n. Combinatorial
strongly polynomial time algorithms for submodular function minimization are given indepen-
dently by Iwata, Fleischer and Fujishige (IFF) [12] and Schrijver [19]. Fleishcer and Iwata [4]
described an improved variant of Schrijver’s algorithm. Iwata [11] described an improved variant
of the IFF algorithm and this algorithm achieves the best known bound on the running time,
O(γ(n6 log n) + n7 log n).

Let Algorithm SFM be some algorithm which finds a minimizer of a submodular function f :
2V → R with O(T O(n)) oracle calls for function evaluation and O(T A(n)) arithmetic operations
where T O(n) and T A(n) are some polynomials in n, for example, T O(n) = n6 log n and T A(n) =
n7 log n. For simplicity, we assume n T O(n) = O(T A(n)). Let T (n) = γ T O(n) + T A(n). The
running time of Algorithm SFM is O(T (n)).

Algorithm SFM (Submodular Function Minimization)
Input: A submodular function f : 2V → R.
Output: A minimizer of f .
Operation: Oracle calls for function evaluation, arithmetic operations.
Running Time: O(T (n)) (T (n) = γ T O(n) + T A(n)).

We define a function h : R → R as

h(t) = min
X⊆V

{fta(X)} = min
X⊆V

{f(X) − ta(X)} . (9)

It is obvious that h is a concave function. As 0 ∈ P(f), h(0) = 0. Since fta(∅) = 0 for any
t ∈ R, h(t) ≤ 0 for any t ∈ R. Using (4), (5) and (9), we have

t∗ = max{ t ∈ R |h(t) = 0} .

6

The graph of h is illustraited in Figure 3 by a thick curve.

t

h(t)

0

t∗ = t4

f(X1) − ta(X1)

t1t2t3

f(X2) − ta(X2)

f(X3) − ta(X3)

Figure 3: h(t)

For any t ∈ R we can obtain the value h(t) by running SFM(f − ta). For each v ∈ V we
compute ta(v) in advance. A function evaluation of f − ta needs at most n + 1 steps, that is, a
function evaluation of f and at most n subtractions. Thus the time complexity of one iteration
in the Newton method is O((γ + n) T O(n) + T A(n)). Since n T O(n) = O(T A(n)), f − ta can be
minimized in O(T (n)) time.

The Newton method is described below. The process of Newton method is illustrated in
Figure 3.

The Newton method for Problem LSSP
Step 0: Find a set X0 ⊆ V such that a(X0) > 0. Set t1 := f(X0)/a(X0) (≥ t∗). Set

i := 1.
Step 1: Obtain Xi ⊆ V such that h(ti) = f(Xi) − ta(Xi) by running SFM(f − tia).
Step 2: If h(ti) = 0, return t∗ := ti and stop. If h(ti) < 0 then set ti+1 := f(Xi)/a(Xi)

and i := i + 1. Go to Step 1.

As h(t) has at most 2n linear segments, the Newton method terminates in a finite number
of iterations. Let k be the number of iterations. Then

h(ti) = f(Xi) − tia(Xi) (i = 1, . . . , k) , (10)
ti = f(Xi−1)/a(Xi−1) (i = 1, . . . , k) . (11)

The following lemma is intuitively obvious. See Radzik [17, 18] for its proof.

Lemma 3.1 The Newton method for Problem LSSP terminates in a finite number of iterations.
Let k be the number of eterations. Then

(a) h(t1) < h(t2) < · · · < h(tk) = 0,
(b) t1 > t2 > · · · > tk = t∗,
(c) a(X0) > a(X1) > · · · > a(Xk−1) > 0.

7

In general the sign of a(Xk) is undeterminable. But we can assume Xk := V , because
setting Xk := V does not contradict (10), (11) and lemma 3.1. So throughout we can assume
that Xk = V . Thus lemma 3.1 (c) can be replaced with

a(X0) > a(X1) > · · · > a(Xk−1) > a(Xk) = 0 .

If a ∈ RV
+, it is known that the number of iterations of the Newton method for Problem

LSSP is at most n. (See Fujishige [5, §7.2], Fleischer and Iwata [4] for details.) It is left open
to verify if the Newton method for Problem LSSP runs in a strongly polynomial number of
iterations. An analysis based on Radzik [17, 18] gives a bound on the number of iterations of
the Newton method for a special class of the LSSP problem with an integer-valued submodular
function f and a integer vector a.

Theorem 3.2 Let f be a integer-valued nonnegative submodular function, and let a be a integer
vector which satisfies a /∈ RV−. If maxX⊆V |f(X)| ≤ U1, maxX⊆V |a(X)| ≤ U2, the Newton
method for LSSP(f, 0, a) runs in O(log U1 + log U2) iterations.

4 A strongly polynomial algorithm

In this section we present a combinatorial strongly polynomial time algorithm for Problem
LSSP. We use a fully combinatorial strongly polynomial algorithm for submodular function
minimization [10, 11] as a subroutine and the parametric search method proposed by Megiddo
[13, 14].

Framework

Later we will describe two procedures for Comparison with the Optimal Value; Procedure COV
and Procedure L-COV. For any given nonnegative value t ≥ 0, we can tell whether “t < t∗”,
“t = t∗” or “t > t∗” by running COV(t) in O(γ T O

COV(n) + T A
COV(n)) time, where T O

COV(n) and
T A

COV(n) are some polynomials in n. Procedure L-COV is a similar procedure. For any given
t ≥ 0, once ta(v) is computed for each v ∈ V , it compares t to t∗ with O(T O

L-COV(n)) oracle
calls for function evaluation of f , and O(T FC

L-COV(n)) fully combinatorial operations, that is,
additions, subtractions and comparisons, where T O

L-COV(n) and T FC
L-COV(n) are some polynomials

in n. Moreover, if t = t∗, Procedure L-COV returns a subset X ⊆ V such that f(X) = t∗a(X)
and a(X) > 0.

By running COV(0) we can tell whether t∗ = 0 or t∗ > 0. So we can assume that t∗ > 0. If
we knew the value of t∗ and run L-COV(t∗), then it would return “t∗ = t∗” and a subset X ⊆ V
s. t. f(X) = t∗a(X) and a(X) > 0, that is, t∗ = f(X)/a(X). We try to run L-COV(t∗) without
knowing the value of t∗. If we can run L-COV(t∗) successfully without knowing the value of t∗,
we can obtain t∗ by f(X)/a(X) using X ⊆ V s. t. f(X) = t∗a(X) and a(X) > 0. The point is
how to run L-COV(t∗) successfully without knowing the value of t∗. To achieve this goal, we use
Megiddo’s parametric search method [13, 14].

Megiddo’s parametric search

We give a strongly polynomial time algorithm for Problem LSSP using the parametric search
technique of Megiddo [13, 14]. We explain this technique in the following paragraphs.

Operations used in running L-COV(t∗) are additions, subtractions, comparisons, oracle calls
for function evaluation of f , and only n multiplications to obtain t∗a(v) for each v ∈ V . So each

8

value which appears in running L-COV(t∗) can be represented as the form p − qt∗ where values
p, q are known values and not functions of t∗. We consider trying to run L-COV(t∗) without
knowing the value of t∗ with all the values represented as linear functions of t∗. When values
are represented as linear functions of t∗, each operation is done as follows:

Operation

An addition :
(p1 − t∗q1) + (p2 − t∗q2) := (p1 + p2) − t∗(q1 + q2)
A subtraction :
(p1 − t∗q1) − (p2 − t∗q2) := (p1 − p2) − t∗(q1 − q2)
A comparison :

(p1 − t∗q1) ? (p2 − t∗q2) :=

(p1 − t∗q1) > (p2 − t∗q2)
or

(p1 − t∗q1) = (p2 − t∗q2)
or

(p1 − t∗q1) < (p2 − t∗q2)

An addition of two linear functions of t∗ needs 2 scalar additions. A subtraction of two linear
functions of t∗ needs 2 scalar subtractions. So, even though t∗ is not known additions and
subtractions do not change the assymptotic running time of the procedure. A comparison of
two linear functions of t∗, however, is not so easy as the other operations.

We now consider comparing two linear functions of t∗. Let p1, p2, q1, q2 be known values.
Let us consider the comparison of p1 − t∗q1 and p2 − t∗q2. Setting p = p1 − p2, q = q1 − q2, we
want to decide whether p − t∗q > 0, p − t∗q = 0 or p − t∗q < 0. Note that t∗ > 0. If p q ≤ 0, it
is easy to decide the sign of p − t∗q using t∗ ≥ 0 (see Fig. 4):

p = 0, q = 0 =⇒ p − t∗q = 0,

p ≥ 0, q ≤ 0, (p, q)
= 0 =⇒ p − t∗q > 0,

p ≤ 0, q ≥ 0, (p, q)
= 0 =⇒ p − t∗q < 0.

Now let us assume that p q > 0. If p > 0 and q > 0, then p/q > 0, and hence

p − t∗q = 0 ⇐⇒ p/q = t∗,
p − t∗q > 0 ⇐⇒ p/q > t∗,
p − t∗q < 0 ⇐⇒ p/q < t∗.

If p < 0 and q < 0, then p/q > 0 and hence

p − t∗q = 0 ⇐⇒ p/q = t∗,
p − t∗q > 0 ⇐⇒ p/q < t∗,
p − t∗q < 0 ⇐⇒ p/q > t∗.

This analysis implies that we can obtain the sign of p − t∗q if we can decide p/q > t∗, p/q = t∗

or p/q < t∗. So a comparison of two linear functions of t∗ can be done by running Procedure
COV if p q > 0.

Thus we can run L-COV(t∗) successfully without knowing the value of t∗.

We describe below Algorithm LSSP, which solves Problem LSSP within Megiddo’s parametric
search method.

9

p q ≤ 0

0

q

p

+

−

p q > 0

0q

p

+

−

−

+

p

q
= t∗

(easy to decide the sign) (tough to decide the sign)

Figure 4: Signs of p − t∗q

Algorithm LSSP
Step 1: Decide whether “t∗ = 0” or “t∗ > 0” by running COV(0). If t∗ = 0, then stop.
Step 2: Run L-COV(t∗) without knowing the value of t∗ with all the values represented

as linear functions of t∗. Each comparison of two linear functions of t∗ en-
counterd during the computation can be evaluated (if necessary) by running
Procedure COV. We can obtain X ⊆ V s. t. f(X) = t∗a(X) and a(X) > 0.

Step 3: Return t∗ := f(X)/a(X).

We will show that Algorithm LSSP solves Problem LSSP in strongly polynomial time after
describing two procedures; Procedure COV and Procedure L-COV.

Comparison of t with t∗

Now let us consider describing Procedure COV and Procedure L-COV using (8). As a prepara-
tion for describing them, we introduce four algorithms; Algorithm FC-SFM, Algorithm SFMmin,
Algorithm FC-SFMmin, and Algorithm MFM.

An algorithm for submodular function minimization is said to be a fully combinatorial
strongly polynomial time algorithm if the total number of oracle calls for function evaluation
and fully combinatorial operations, that is, additions, subtractions and comparisons, is bounded
by some polynomial in n. Iwata [10] presented a fully combinatorial strongly polynomial time
algorithm for submodular function minimization as a variant of the IFF algorithm [12], and
later, Iwata [11] described an improved algorithm, which runs in O(γ(n8 log2 n) + n9 log2 n)
time.

Let Algorithm FC-SFM be some algorithm which finds a minimizer of a submodular function
f : 2V → R with O(T O

FC(n)) oracle calls for function evaluation of f and O(T FC
FC (n)) fully

combinatorial operations, where T O
FC(n) and T FC

FC (n) are some polynomials in n. For example,
T O

FC(n) = n8 log2 n and T FC
FC (n) = n9 log2 n . For simplicity, we assume n T O

FC(n) = O(T FC
FC (n)).

Let TFC(n) = γ T O
FC(n) + T FC

FC (n). The running time of Algorithm FC-SFM is O(TFC(n)).

10

Algorithm FC-SFM (Fully Combinatorial algorithm for SFM)
Input: A submodular function f : 2V → R.
Output: A minimizer of f .
Operation: Oracle calls for function evaluation, fully combinatorial operations.
Running Time: O(TFC(n)) (TFC(n) = γ T O

FC(n) + T FC
FC (n)).

Now we consider finding a minimal minimizer of f . It is known that the IFF algorithm
[12] finds a maximal minimizer. (Refer to Prop. 10.28. of Murota [15].) And similarly, Iwata’s
combinatorial strongly polynomial time algorithm [11] and Iwata’s fully combinatorial strongly
polynomial time algorithm [10, 11], which are improved variants of the IFF algorithm, find
maximal minimizers. If f : 2V → R is a submodular function, then a function f ′ defined
as f ′(X) = f(V \X) (X ⊆ V) is also a submodular function. So we can construct a (fully)
combinatorial strongly polynomial algorithm which finds a minimal minimizer of a submodular
function using the IFF algorithm or its variant. Note that an oracle call for function evaluation
of f ′ can be done in O(γ +n) time. A minimal minimizer can also be computed easily using any
algorithm for submodular function minimization O(n) times. (Refer to Note. 10.12. of Murota
[15].)

Let Algorithm SFMmin be some combinatorial strongly polynomial time algorithm which
finds a minimal minimizer of a submodular function and let Algorithm FC-SFMmin be some
fully combinatorial strongly polynomial time algorithm which finds a minimal minimizer of a
submodular function. For simplicity we assume the running time of SFMmin is O(T (n)) and that
of FC-SFMmin is O(TFC(n)).

Algorithm SFMmin

Input: A submodular function f : 2V → R.
Output: The minimal minimizer of f .
Operation: Oracle calls for function evaluation, arithmetic operations.
Running Time: O(T (n)) (T (n) = γ T O(n) + T A(n)).

Algorithm FC-SFMmin

Input: A submodular function f : 2V → R.
Output: The minimal minimizer of f .
Operation: Oracle calls for function evaluation, fully combinatorial operations.
Running Time: O(TFC(n)) (TFC(n) = γ T O

FC(n) + T FC
FC (n)).

Let U be a finite set and let D ⊆ 2U be a ring family. For a modular function g : D → R with
g(∅) = 0, g can be expressed as g(X) = b(X), ∀X ∈ D, using some vector b ∈ RU . Let b ∈ RU ,
and let us consider minimizing a modular function bD : D → R defined as (3). We can assume
w.l.o.g. {∅, U} ⊆ D. Even though ∅ /∈ D and/or U /∈ D, a modular function minimization
problem on a ring family D can be reduced to one in which {∅, U} ⊆ D by replacing each
X ∈ D by X\

⋂
{Y |Y ∈ D} and U by

⋃
{Y |Y ∈ D}. We need to have some infomation on D

in advance. We assume for each v ∈ U the minimal set Mv ∈ D containing v is known. (This
is enough information about D. See, for example, Fujishige [5, §3.2].) Using a result of Picard
[16] the modular function minimization problem can be reduced to the minimum cut problem
of a network with O(|U |) vertices in O(|U |2) time, and Cunningham [2] showed the equivalence
between the modular function minimization problem and the minimum cut problem. For the
minimum cut problem, many combinatorial strongly polynomial time algorithms are known [1],

11

and most of them are fully combinatorial. So we can construct a fully combinatorial strongly
polynomial time algorithm for modular function minimization over ring families. Using, for
example, the Goldberg-Tarjan algorithm [7] for solving the minimum cut problem, bD can be
minimized with O(|U |3) fully combinatorial operations. Let Algorithm MFM be some fully
combinatorial strongly polynomial time algorithm which finds a minimizer of a modular function
over a ring family D ⊆ 2U with TMFM(|U |) fully combinatorial operations, where TMFM(|U |) is
some polynomial in |U |. For example, TMFM(|U |) = |U |3. We can assume TMFM(n) = O(T (n))
and TMFM(n) = O(TFC(n)).

Algorithm MFM (Modular Function Minimization)
Input: A vector b ∈ RU , and ring family D ⊆ 2U with {∅, U} ⊆ D (∀v ∈ U ,

the minimal set Mv ∈ D containing v is known).
Output: A minimizer of bD.
Operation: Fully combinatorial operations.
Running time: O(TMFM(|U |)).

We describe below Procedure COV, which decide, for any given nonnegative value t ≥ 0,
whether “t < t∗”, “t = t∗” or “t > t∗” using conditions (8) directly. In Step 1, we examine
whether ta ∈ B(f) or not. In Step 2, we obtain information about D(ta). Note that D(ta)
always includes ∅ but not necessarily includes V . Hence, for some v ∈ V , there may not exist a
subset X such that v ∈ X and X ∈ D(ta). In Step 3, we maximize aD(ta) and examine whether
t = t∗ or not.

Procedure COV (Comparison with the Optimal Value)
Input: A nonnegative value t ≥ 0.
Output: A decision whether “t < t∗”, “t = t∗” or “t > t∗”.
Operation: Oracle calls for function evaluation, arithmetic operations.
Step 1: Minimize fta on 2V by running SFM(fta).

If min{fta(X) |X ⊆ V } < 0 then stop (t > t∗).
Step 2: For each v ∈ V , let fv : 2V \{v} → R be a submodular function defined by

fv(X) = fta(X ∪ {v}) (X ⊆ V \{v}). Find (if any) the minimal set Mv ∈
D(ta) = arg min fta containing v by running SFMmin(fv).

Step 3: Maximize aD(ta) : D(ta) → R by running MFM(−a, D(ta)).
If max{a(X) |X ∈ D(ta)} = 0 then stop (t < t∗).
If max{a(X) |X ∈ D(ta)} > 0 then return the maximizer of aD(ta) and stop
(t = t∗).

Let us consider the running time of Procedure COV. In Procedure COV we run Algorithm SFM
once, Algorithm SFMmin n times, and Algorithm MFM once. Note that for any given X ⊆ V a
function value fta(X) = f(X) −

∑
v∈X ta(v) can be acquired by a function evaluation of f(X)

and at most n subtractions. (For each v ∈ V we compute ta(v) in advance.) So the running time
of SFM(fta) is O((γ + n) T O(n) + T A(n)). Since n T O(n) = O(T A(n)), fta can be minimized
in O(T (n)) time. Thus, the total running time is O((n + 1)T (n) + TMFM(n)) = O(nT (n)). Let
T O

COV(n) = nT O(n), T A
COV(n) = nT A(n), and let TCOV(n) = nT (n) (= γT O

COV(n) + T A
COV(n)).

The time complexity of Procedure COV is O(TCOV(n)).

Let Procedure L-COV be a procedure which is obtained by replacing Algorithm SFM and
Algorithm SFMmin by Algorithm FC-SFM and Algorithm FC-SFMmin respectively in Procedure

12

COV. For any given t ≥ 0, once ta(v) is computed for each v ∈ V , Procedure L-COV compares
t to t∗ with O(T O

L-COV(n)) oracle calls for function evaluation of f , and O(T FC
L-COV(n)) fully com-

binatorial operations, where T O
L-COV(n) = n T O

FC(n) and T FC
L-COV(n) = n T FC

FC (n). And moreover
if t = t∗, Procedure L-COV returns a subset X ⊆ V s. t. f(X) = t∗a(X) and a(X) > 0. Let
TL-COV(n) = nTFC(n) (= γT O

L-COV(n) + T FC
L-COV(n)). The time complexity of Procedure L-COV is

O(TL-COV(n)).

Complexity

Finally, we conclude the paper with the following theorem.

Theorem 4.1 Algorithm LSSP solves LSSP(f, 0, a) in strongly polynomial time.

Proof The running time in Step 1 is O(TCOV(n)). In Step 2, O(T FC
L-COV(n)) comparisons of linear

functions of t∗ are evaluated and the running time of the other part is O(TL-COV(n)). So the total
running time is O(TCOV(n) + TL-COV(n) + T FC

L-COV(n)TCOV(n)) = O(nTFC(n) + n2 T FC
FC (n)T (n)),

that is, strongly polynomial time. �

Acknowledgments

I am grateful to Satoru Iwata for a number of useful comments.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin: Network Flows—Theory, Algorithms, and
Applications. Prentice-Hall, Englewood, NJ, 1993.

[2] W. H. Cunningham: Minimum cuts, modular functions, and matroid polyhedra. Networks,
15 (1985), pp. 205–215.

[3] J. Edmonds: Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanai,
N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their Applications,
Gordon and Breach, New York, 1970, pp. 69–87.

[4] L. Fleischer and S. Iwata: A push-relabel framework for submodular function minimization
and applications to parametric optimization. Discrete Applied Mathematics, 131 (2003),
pp. 311–322.

[5] S. Fujishige: Submodular Functions and Optimization. North-Holland, Amsterdam, 1991.

[6] D. Gale: A theorem on flows in networks. Pacific Journal of Mathematics, 7 (1957), pp.
1073–1082.

[7] A. V. Goldberg and R. E. Tarjan: A new approach to the maximum flow problem. Journal
of the ACM, 35 (1988), pp. 921–940.

[8] D. Hartvigsen: A submodular optimization problem with side constraints. Mathematics of
Operations Research, 23 (1998), pp. 661–679.

13

[9] D. Hartvigsen: A strongly polynomial time algorithm for a constrained submodular opti-
mization problem. Discrete Applied Mathematics, 113 (2001), pp. 183–194.

[10] S. Iwata: A fully combinatorial algorithm for submodular function minimization. Journal
of Combinatorial Theory (B), 84 (2002), pp. 203–212.

[11] S. Iwata: A faster scaling algorithm for minimizing submodular functions. SIAM Journal
on Computing, 32 (2003), pp. 833–840.

[12] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algorithm for
minimizing submodular functions. Journal of the ACM, 48 (2001), pp. 761–777.

[13] N. Megiddo: Combinatorial optimization with rational objective functions. Mathematics of
Operations Research, 4 (1979), pp. 414–424.

[14] N. Megiddo: Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30 (1983), pp. 852–865.

[15] K. Murota: Discrete Convex Analysis. Society for Industrial and Applied Mathematics,
Philadelphia, 2003.

[16] J. C. Picard: Maximal closure of a graph and applications to combinatorial problems.
Management Science, 22 (1976), pp. 1268–1272.

[17] T. Radzik: Parametric flows, weighted means of cuts, and fractional combinatorial opti-
mization. In P. M. Pardalos, editor, Complexity in Numerical Optimization, pp. 351–386,
World Scientific, Singapore, 1993.

[18] T. Radzik: Fractional combinatorial optimization. In D. Z. Du and P. M. Pardalos, edi-
tors, Handbook of Combinatorial Optimization, volume 1, pp. 429–478, Kluwer Academic
Publishers, Boston, 1998.

[19] A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time. Journal of Combinatorial Theory (B), 80 (2000), pp. 346–355.

14

