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Probabilistic design of a robust controller using

a parameter-dependent Lyapunov function∗

Yasuaki Oishi†

An extension of a randomized algorithm is considered for the use of a parameter-dependent
Lyapunov function. The proposed algorithm is considered to be useful for a less conservative
design of a robust state-feedback controller against nonlinear parametric uncertainty. Indeed,
one can avoid two sources of conservatism with the proposed algorithm: covering the uncer-
tainty by a polytope and using a common Lyapunov function for all parameter values. After
a bounded number of iterations, the proposed algorithm either gives a probabilistic solution to
the provided control problem with high confidence or detects infeasibility of the problem in an
approximated sense. Convergence to a non-strict deterministic solution is discussed. Usefulness
of the proposed algorithm is illustrated by a numerical example.

Keywords. randomized algorithm, parameter-dependent Lyapunov function, conservatism,
parameter-dependent linear matrix inequality, computational complexity, semidefinite program-
ming.

1. Introduction

Although a robust-controller design is a classical control problem, it still remains difficult against

nonlinear parametric uncertainty. One existing approach to this problem consists of two simpli-

fications: (i) to cover the uncertainty by a polytope and consider the plants corresponding to the

vertices of the polytope, and (ii) to assume a common Lyapunov function for all of those plants.

These two simplifications enable us to formulate and solve the above problem in terms of a linear

matrix inequality (LMI). On the other hand, these simplifications produce conservatism, that is,

even if the original problem is solvable, the simplified one may not.

In order to reduce conservatism, we propose in this paper a randomized algorithm that allows

the use of a parameter-dependent Lyapunov function. This is based on a randomized algorithm,

which was proposed in [13] as an extension of [17, 4, 16, 8], and also on a technique to use

a parameter-dependent Lyapunov function, which was developed by de Oliveira et al. [5] with

further extensions by [1, 2, 18, 20, 6, 7]. In particular, the proposed algorithm does not need to

cover the uncertainty and allows a Lyapunov function having any parameter dependence.
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A problem to be considered is formulated in terms of a parameter-dependent LMI having two

types of variables: parameter-independent variables, which describe a controller, and parameter-

dependent variables, which correspond to a Lyapunov function. The proposed algorithm iterates

the following three steps: (i) random selection of uncertain parameter values; (ii) optimization of

the parameter-dependent variables; (iii) update of the parameter-independent variables based on

the sensitivity of the preceding optimization problem. This algorithm terminates after a bounded

number of iterations; At its termination, it gives a probabilistic solution of the provided problem

with high confidence or detects that the problem has no deterministic solution in an approximated

sense. The above sensitivity is efficiently evaluated based on a theory of semidefinite programming.

In [17, 4, 16, 8], it is shown that their algorithms finds a non-strict deterministic solution instead

of a probabilistic one after a finite number of iterations with probability one. We can prove

a corresponding result on our algorithm. However, this result is not emphasized in this paper

because it has some practical difficulties as is discussed in [13] for a special case.

The contents of this paper have been presented in earlier forms at the conferences [11, 12].

In Section 2, the problem to be considered is presented with an example. An algorithm is

proposed in Section 3 with a theoretical guarantee on its performance. Section 4 describes how

one can compute an infimum and a subgradient, which are required in the algorithm. In Section 5,

convergence to a non-strict deterministic solution is discussed. Section 6 provides a numerical

example and Section 7 concludes this paper.

Throughout this paper, ln stands for the natural logarithm. For a real number a, the symbol

�a� denotes the minimum integer that is larger than or equal to a. The symbol R
n designates

the n-dimensional Euclidean space and vol the volume in R
n. The symbol ‖ · ‖ denotes the

Euclidean norm. The transpose of a matrix or a vector is expressed by T. The maximum (most

positive) eigenvalue of a symmetric matrix A is written as λ[A]. Negative definiteness and negative

semidefiniteness of a symmetric matrix A are denoted by A ≺ O and A � O, respectively.

2. Problem

The problem to be considered is stated in a general form. Let V (x, y, θ) be a symmetric-matrix-

valued function in x ∈ R
n, y ∈ R

m, and θ ∈ Θ ⊆ R
p. At this moment, the parameter set Θ can

be any set. The function V (x, y, θ) is affine in x and y and is written as

V (x, y, θ) = V0(θ) +
n∑

i=1

xiVi(θ) +
m∑

i=1

yiVn+i(θ),

where xi and yi are the ith elements of x and y, respectively.

Problem 1. Find x ∈ R
n such that for any θ ∈ Θ there exists y ∈ R

m satisfying V (x, y, θ) ≺ O.

�
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The choice of y can depend on the parameter θ. The inequality V (x, y, θ) ≺ O is called a

parameter-dependent LMI. When Θ consists of infinitely many components, our problem is equiv-

alent to solving infinitely many LMIs with infinitely many variables. Note also that our problem

reduces to the one considered in the existing papers [17, 4, 16, 8, 13] in the special case that V

does not depend on y.

Here is an example that can be formulated in the above general form.

Example 1. Consider a discrete-time plant ξ[k + 1] = A(θ)ξ[k] + B(θ)u[k], which depends

nonlinearly on a time-invariant but uncertain parameter θ ∈ Θ ⊆ R
p. Suppose that we want

a state-feedback controller u[k] = Kξ[k] that robustly stabilizes this plant for all θ ∈ Θ. This

problem can be stated in terms of a parameter-dependent LMI based on the result of de Oliveira

et al. [5]. Namely, consider to find two matrices G and L such that for any θ ∈ Θ there exists a

symmetric matrix Y satisfying

−
[

Y A(θ)G + B(θ)L

GTA(θ)T + LTB(θ)T G + GT − Y

]
≺ O. (1)

Then K := LG−1 gives a desired controller. Here, η[k]TY η[k] works as a Lyapunov function for

the transposed version of the closed-loop system η[k + 1] = [A(θ) + B(θ)K]Tη[k]. Since Y can

be chosen depending on θ, the Lyapunov function is allowed to be parameter-dependent. This

means that a less conservative result can be expected than in the case that a common Lyapunov

function is used for all θ. In order to express this problem in our general form, construct x by

the components of G and L, construct y by the independent components of Y , and write the

left-hand side of (1) as V . �

The idea in this example has been extended to robust performance problems [1, 6] and to

problems on continuous-time systems [2, 18, 20, 7]. These can be stated in our general form, too.

The x desired in Problem 1 is called a deterministic solution. The set of all deterministic

solutions is referred to as the solution set S ⊆ R
n. Rather than a deterministic solution itself, we

consider to obtain an approximate solution in this paper. For a given probability measure P on

Θ and a given 0 < ε < 1, we mean by a probabilistic solution an x ∈ R
n that satisfies

P
{
θ ∈ Θ : ∃y ∈ R

m s.t. V (x, y, θ) ≺ O
}

> 1 − ε.

By a non-strict deterministic solution, we mean an x ∈ R
n such that for any θ ∈ Θ there exists

y ∈ R
m satisfying V (x, y, θ) � O. Note that the strict inequality in Problem 1 is replaced by

the non-strict one.
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3. Algorithm

This is the main section of this paper and proposes a randomized algorithm for finding a prob-

abilistic solution of Problem 1. The basic idea is as follows. Note that V (x, y, θ) ≺ O is

equivalent to λ[V (x, y, θ)] < 0. Hence, for provided x and θ, there exists y ∈ R
m satisfying

V (x, y, θ) ≺ O if and only if inf�∈�m λ[V (x, y, θ)] < 0. This inf�∈�m λ[V (x, y, θ)] is convex in x

because λ[V (x, y, θ)] is convex in x and y. By these facts, we can extend the randomized algo-

rithms in [13], which are for the special case that V does not depend on y. Although the extended

algorithm requires computation of the infimum value, inf�∈�m λ[V (x, y, θ)], and its subgradient

with respect to x, their computation is efficiently carried out as we will see in the next section.

In [13], two randomized algorithms are presented: the gradient-based algorithm, which was

originally proposed by Polyak and Tempo [17] and Calafiore and Polyak [4], and the ellipsoid-based

algorithm, which was by Kanev et al. [8]. We present only an extension of the ellipsoid-based

algorithm because an extension of the gradient-based one is similar.

The algorithm to be proposed iteratively updates an ellipsoid, which is expected to contain a

deterministic solution. The ellipsoid at the kth iteration, E(k), is specified by its center x(k) and

a positive definite matrix Q(k) in the form of {x ∈ R
n : (x − x(k))T(Q(k))−1(x − x(k)) < 1}.

Before executing the algorithm, we choose an initial ellipsoid E(0) = (x(0), Q(0)) and three

numbers 0 < µ, 0 < ε < 1, and 0 < δ < 1. We usually choose these three numbers close to zero.

We use two counters in the algorithm: k counts the number of iterations and � the number of

updates. We define an integer

� :=
⌈
2(n + 1) ln

vol E(0)

µ

⌉
and a function

κ(�) :=

⌈(
ln

π2(� + 1)2

6δ

)/
ln

1

1 − ε

⌉
.

Algorithm 1.

0. Set k := 0 and � := 0.

1. If � reaches �, stop with no output.

2. If λ(k−1), λ(k−2), . . . , λ(k−κ(�)) are all well-defined and negative, stop and give x(k) as an output.

3. Randomly sample θ(k) ∈ Θ according to the given probability measure P .

4. Check λ(k) := inf�∈�m λ[V (x(k), y, θ(k))] for negativity.
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Case 1 The value λ(k) is nonnegative.

Compute a subgradient, say d(k), of inf�∈�m λ[V (x(k), y, θ(k))] as a convex function in x. Up-

date the current ellipsoid by setting

x(k+1) := x(k) − Q(k)d(k)

(n + 1)
√

(d(k))TQ(k)d(k)
,

Q(k+1) :=
n2

n2 − 1

[
Q(k) − 2Q(k)d(k)(d(k))TQ(k)

(n + 1)(d(k))TQ(k)d(k)

]
.

Case 2 The value λ(k) is negative.

Keep the current ellipsoid by setting x(k+1) := x(k) and Q(k+1) := Q(k).

5. If λ(k) ≥ 0, set � := � + 1.

6. Set k := k + 1. Go back to Step 1. �

The performance of this algorithm is guaranteed by the following theorem, which is a direct

generalization of Theorem 21 in [13], a result on the special case that V does not depend on y. In

particular, the statement (a) evaluates the computational complexity and the statements (b) and

(c) give properties of the output. Although the proof is almost the same as in the special case, it

is presented in Appendix A for convenience of the readers. Notice that the probabilistic behavior

of the algorithm is determined by the sequence θ(0), θ(1), . . . . We hence analyze the behavior of

the algorithm according to the probability measure on such sequences, which can be derived from

P and is denoted by P∞. See for example [21, Section II.3.4].

Theorem 1. The following statements hold on Algorithm 1.

(a) The number of iterations k is bounded as

k ≤ �κ(� − 1) = �

⌈(
ln

π2�
2

6δ

)/
ln

1

1 − ε

⌉
=: k.

(b) If the algorithm terminates at Step 1, the volume of the set E(0) ∩ S is less than µ.

(c) The probability that the algorithm stops at Step 2 but still the corresponding output x(k) fails

to satisfy P{θ ∈ Θ : ∃y ∈ R
m s.t. V (x(k), y, θ) ≺ O} > 1− ε is less than or equal to δ, where

the probability is measured with respect to P∞.

The statement (a) of Theorem 1 means that our algorithm stops in k iterations. The number

k is of order O((�/ε) ln(�
2
/δ)), which is a polynomial in n, ln(volE(0)/µ), 1/ε, and ln(1/δ). Note

that this number does not depend on the dimension of the parameter p. This forms a sharp

contrast with deterministic algorithms whose complexity is usually of exponential order of p.
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When the algorithm stops at Step 1, we see vol (E(0) ∩ S) < µ by the statement (b). This

means that our choice of an initial ellipsoid E(0) is not good or the solution set S itself is too small.

On the other hand, termination at Step 2 implies that the associated output is a probabilistic

solution with high confidence. Note that the algorithm always stops at Step 2 if vol (E(0)∩S) ≥ µ.

As is considered in Section 6 of [13] for the special case, we can adapt the algorithm for

an optimization problem. Indeed, since the algorithm gives a negative or a positive result, its

bisectional use leads us to finding a solution that approximately optimizes a given objective

function. For the explicit algorithm and its properties, see Section 6 of [13].

4. Computation of the infima and the subgradients

In order to carry out Algorithm 1 in the previous section, we need to compute the infimum value,

λ(k) = inf�∈�m λ[V (x(k), y, θ(k))], and its subgradient d(k). This section provides a method for

this task.

Let us notice that the infimum value λ(k) is the optimal value of the following semidefinite

programming problem:

minimize λ

subject to V (x(k), y, θ(k)) − λI � O, (2)

where the optimization variables are y and λ. By following a general theory on semidefinite

programming (see, e.g., [19]), its dual problem is

maximize tr [UV (x(k), 0, θ(k))]

subject to U  O, trU = 1,

tr [UVn+i(θ
(k))] = 0 for i = 1, . . . , m, (3)

with the optimization variable being U , where tr designates the trace of a matrix. The following

properties hold on this dual problem.

Theorem 2. If the optimal value of the primal problem (2) is finite, the dual problem (3) has an

optimal solution and the optimal value is equal to the infimum value λ(k). In this case, the set of all

subgradients of the infimum value is equal to the set of vectors
[
tr [UV1(θ

(k))] · · · tr [UVn(θ(k))]
]T

,

where U is an optimal solution of (3).

Proof. The first statement follows from the duality theorem on semidefinite programming [19,

Theorem 4.1.3]. Notice that the Slater condition is satisfied in our primal problem (2), that is,

there exist y and λ that satisfy V (x(k), y, θ(k)) − λI ≺ O. The second statement is derived from

sensitivity analysis on semidefinite programming [19, Theorem 4.1.2]. �
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Theorem 2 reduces computation of the infimum value λ(k) and the subgradient d(k) to solving

the dual semidefinite programming problem (3). Since one can efficiently solve a semidefinite

programming problem, computation of λ(k) and d(k) is now possible.

Remark 1. In some situations, one can check λ(k) for negativity without computing its value

explicitly. In the case of Example 1, for example, λ(k) is negative if and only if the controller

corresponding to x(k) stabilizes the plant at θ = θ(k). Stability of the system can be checked by

location of its poles. Using such an alternative is preferable when it is faster and/or numerically

more robust than semidefinite programming. �

Remark 2. In the algorithms of [17, 4, 16, 8], the norm ‖V (x, y, θ)+‖F is used in place of our

λ[V (x, y, θ)], where ‖ · ‖F is the Frobenius norm and V (x, y, θ)+ is the projection of V (x, y, θ)

onto the cone of positive semidefinite matrices. There are two reasons why we adopt the maximum

eigenvalue. First, the infimum value and its subgradient can be efficiently computed as we have

seen. Second, V (x, y, θ) ≺ O can be differentiated from V (x, y, θ) � O with λ[V (x, y, θ)], while

this is not possible with ‖V (x, y, θ)+‖F. The latter point is important because a strict inequality

is often required in control applications. The use of λ[V (x, y, θ)] is due to [10]. �

5. Convergence to a non-strict deterministic solution

In the papers [17, 4, 16, 8], they considered a non-strict deterministic solution in our terminol-

ogy and showed that their randomized algorithms obtain this solution after a finite number of

iterations with probability one. We prove in this section a corresponding result for our algorithm

and investigate the expected number of necessary iterations. For this purpose, we slightly modify

Algorithm 1 in Section 3 by removing Steps 1 and 2. Similarly to [17, 4, 16, 8], the following

assumptions are made.

Assumption 1. For x∗ ∈ R
n, the probability P{θ ∈ Θ : inf�∈�m λ[V (x∗, y, θ)] > 0} is positive

whenever inf�∈�m λ[V (x∗, y, θ)] > 0 holds for some θ ∈ Θ. �

Assumption 2. The intersection between the initial ellipsoid E(0) and the solution set S has a

positive volume. �

Theorem 3. Under Assumptions 1 and 2, there exists with probability one a finite k such that

x(k) produced by the modified algorithm is a non-strict deterministic solution, where the probability

is measured with P∞.

Proof. The proof is basically the same as that of Lemma 2 in [8]. Since E(k) ⊇ E(0) ∩ S as in

the proof of Theorem 1 (b), the volume of the ellipsoid E(k) has to be greater than or equal to
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that of E(0) ∩ S, which is positive due to Assumption 2. This means that the number of updates

is finite by the same reasoning as in the proof of Theorem 1 (b). In the modified algorithm, it

is allowed that no update is made for an infinite number of consecutive iterations. However, the

probability that this occurs is zero by Assumption 1. �

For each sequence {θ(k)}, there may exist multiple k’s having the property of the theorem.

We write the minimum such k as kN, which stands for the number of iterations necessary to find

a non-strict deterministic solution. Note that kN is a random number.

Though the above result is theoretically attractive, it is less practical than we seek for a

probabilistic solution as in the preceding sections. The reason is as follows. First, it is difficult to

choose an initial ellipsoid E(0) so that Assumption 2 holds because we do not know the location

of the solution set S in many cases. If Assumption 2 fails to hold, the finite-time convergence

is not guaranteed. Second, it is difficult to detect when x(k) becomes a non-strict deterministic

solution. Indeed, in order to detect it, we need to check inf�∈�m V (x(k), y, θ) � O for all θ ∈ Θ,

which is impossible in a typical case that Θ consists of infinitely many parameter values. Finally,

the number of necessary iterations kN is distributed with a heavy tail. In fact, the expectation of

this number is infinite as in the following theorem. The corresponding result has been reported

in the special case that V does not depend on y [15, 13].

Theorem 4. Suppose that an initial ellipsoid E(0) is provided. Under Assumptions 3–6 below,

the number of necessary iterations kN in the modified algorithm has infinite expectation, where

the expectation is taken according to P∞.

The proof is similar to that in the special case. See Appendix B.

Due to the dependence on y, the required assumptions are stronger than in the special case.

Assumption 3. The parameter set Θ is a bounded closed set having a nonempty interior and a

finite-measure boundary. There exists an open set that includes Θ and has V0(θ), . . . , Vn+m(θ)

continuously differentiable there. The probability measure P has a density function possessing a

finite upper bound and a positive lower bound. �

Assumption 4. There exists a finite sequence of parameter values {θ̂(k)}k∗
k=0 having the following

properties, where θ̂
(0)

, . . . , θ̂
(k∗−1)

are in the interior of Θ and θ̂
(k∗)

is in Θ. If we choose θ(0) = θ̂
(0)

,

. . . , θ(k∗) = θ̂
(k∗)

in the modified algorithm, we obtain x(0) = x̂(0), . . . , x(k∗) = x̂(k∗), with which

the following statements hold:

(a) For each of k = 0, . . . , k∗ − 1, there holds inf�∈�m λ[V (x̂(k), y, θ̂
(k)

)] > 0;

(b) inf�∈�m λ[V (x̂(k∗), y, θ̂
(k∗)

)] = max�∈Θ inf�∈�m λ[V (x̂(k∗), y, θ)] = 0;
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(c) For each of k = 0, . . . , k∗, there exists ŷ(k) ∈ R
m that attains the infimum value inf�∈�m

λ[V (x̂(k), y, θ̂
(k)

)];

(d) For each of k = 0, . . . , k∗, the maximum eigenvalue λ[V (x̂(k), ŷ(k), θ̂
(k)

)] is simple;

(e) For each of k = 0, . . . , k∗, the Hessian of λ[V (x, y, θ)] with respect to y is positive definite

at (x̂(k), ŷ(k), θ̂
(k)

);

(f) The gradient of λ[V (x, y, θ)] with respect to θ is nonzero at (x̂(k∗), ŷ(k∗), θ̂
(k∗)

). �

The assumption (d) guarantees the existence of the Hessian and the gradient considered in the as-

sumptions (e) and (f). By the assumptions (c), (d), and (e), the infimum value, inf�∈�m λ[V (x, y, θ)],

is continuously differentiable in neighborhoods of (x̂(k), θ̂
(k)

), k = 0, . . . , k∗. In particular, the gra-

dient of inf�∈�m λ[V (x, y, θ)] with respect to θ is nonzero at (x̂(k∗), θ̂
(k∗)

) by the assumption (f).

Due to this fact and the assumption (b), the point θ̂
(k∗)

has to lie on the boundary of Θ.

Since x(k∗) depends on the choice of θ(0), . . . , θ(k∗−1), it is possible to regard inf�∈�m λ[V (x(k∗),

y, θ(k∗))] as a function of θ(0), . . . , θ(k∗). This function is continuously differentiable in a neigh-

borhood of (θ̂
(0)

, . . . , θ̂
(k∗)

) by the above discussion and the update rule of the algorithm. It is

also possible to regard max�(k∗)∈Θ inf�∈�m λ[V (x(k∗), y, θ(k∗))] as a function of θ(0), . . . , θ(k∗−1).

The next assumption is made on this function.

Assumption 5. The maximum value, max�(k∗)∈Θ inf�∈�m λ[V (x(k∗), y, θ(k∗))], is attained at a

unique θ(k∗) for each (θ(0), . . . , θ(k∗−1)) in a neighborhood of (θ̂
(0)

, . . . , θ̂
(k∗−1)

). �

It follows from this assumption that the maximum value, max�(k∗)∈Θ inf�∈�m λ[V (x(k∗), y, θ(k∗))],

is continuously differentiable in a neighborhood of (θ̂
(0)

, . . . , θ̂
(k∗−1)

) and that the unique maxi-

mizing θ(k∗) is continuous there. The final assumption is now made.

Assumption 6. There exists at least one k = 0, . . . , k∗− 1 such that the gradient of max�(k∗)∈Θ

inf�∈�m λ[V (x(k∗), y, θ(k∗))] with respect to this θ(k) is nonzero at (θ̂
(0)

, . . . , θ̂
(k∗−1)

). �

6. Example

In order to illustrate our approach, we consider robust stabilization of a tower crane model,

which is taken from [22] with some simplification. Application of Algorithm 1 successfully gave a

probabilistic solution as we will see below. On the other hand, we were not able to find a solution

due to the conservatism with the existing approach based on a polytopic cover and a common

Lyapunov function. These results show practical usefulness of our approach.
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Figure 1. Histograms for 200 executions of the algorithm

By discretizing the model with the sampling period 0.01 s, we obtain the plant ξ[k + 1] =

Aξ[k] + Bu[k], where the dimension of ξ[k] is four. The coefficients A and B nonlinearly depend

on the three-dimensional parameter θ, which expresses the rope length, the boom angle at the

equilibrium point, and the load weight. More details of the plant is found in [14]. It is supposed

that each component of θ can take any value in some interval, which means that our parameter

set Θ is a hyper rectangle. We consider to design a robustly stabilizing controller by using the

formulation of Example 1 and applying Algorithm 1, which results in n = 20 and m = 10. We

use the uniform distribution as P and choose the initial ellipsoid E(0) by letting x(0) be the zero

vector and Q(0) be the identity. The parameters are set as µ = 10−9vol E(0), ε = 0.001, and

δ = 0.0001.

We executed the algorithm 200 times with Pentium 4 of 2.4 GHz and memory of 2.0 GByte.

We used SDPA-M1 of the version 2.00 to solve the semidefinite programming problem (3). In

every execution, the algorithm stopped at Step 2 and gave an output. Figure 1 (a) shows the

histogram of the number of iterations and (b) shows that of the running time. We can see from

Figure 1 (b) that the running time is less than 20 seconds in many cases, which is practical enough.

By Theorem 1 (c), on the other hand, the probability that the algorithm stops at Step 2 but the

obtained output is not a probabilistic solution of ε = 0.001 is less than or equal to δ = 0.0001.

This means that the obtained output is a probabilistic solution with high confidence.

7. Conclusion

A randomized algorithm that allows the use of a parameter-dependent Lyapunov function is

proposed. It is considered to be useful for less conservative robust-controller design against

nonlinear parametric uncertainty. This algorithm provides a probabilistic solution after a bounded

number of iterations, which is of polynomial order in the problem size. Convergence to a non-

1http://grid.r.dendai.ac.jp/sdpa/index.html
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strict deterministic solution is considered and its practical difficulties are pointed out. Since our

problem is described in a general form, the application of the proposed algorithm is not limited

to robust-controller design.
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A. Proof of Theorem 1

(a) By the construction of the algorithm, at most κ(�0) iterations are made during the period

that the counter � has the value �0. Since the algorithm stops when � reaches �, the number of

iterations k has to be less than or equal to κ(0) + · · ·+ κ(� − 1) ≤ �κ(� − 1).

(b) Suppose that the ellipsoid E(k) is updated. Then, the ellipsoid E(k+1) is in fact the

minimum-volume ellipsoid that contains the intersection between the original ellipsoid E(k) and

the half space {x ∈ R
n : (d(k))T(x − x(k)) < 0} [3]. As we will see below, this half space

includes the solution set S. Therefore E(k+1) includes the set E(k) ∩ S. It can also be shown

that vol E(k+1) < (vol E(k))e−1/2(n+1) [3]. Hence, if the ellipsoid E(k) has experienced � updates,

it satisfies E(k) ⊇ E(0) ∩ S and vol E(k) < (vol E(0))e−�/2(n+1) ≤ µ, which shows the claim.

We show that the half space {x ∈ R
n : (d(k))T(x − x(k)) < 0} includes the solution set

S. To this end, note that inf�∈�m λ[V (x, y, θ(k))] ≥ inf�∈�m λ[V (x(k), y, θ(k))] + (d(k))T(x −
x(k)) ≥ (d(k))T(x − x(k)) because d(k) is the subgradient of inf�∈�m λ[V (x(k), y, θ(k))] and the

value inf�∈�m λ[V (x(k), y, θ(k))] is nonnegative. By this inequality, if x belongs to S, it satisfies

inf�∈�m λ[V (x, y, θ(k))] < 0 and thus (d(k))T(x − x(k)) < 0.

(c) This is an extension of a result of [9] and [23]. Write the solution candidate after � updates

as x[�] noting that the candidate remains unchanged until the next update. We define two events

for each of � = 0, 1, . . . :

M� : The number of updates reaches � and the candidate x[�] is not updated for

consecutive κ(�) iterations;

B� : The number of updates reaches � and x[�] satisfies P{θ ∈ Θ : ∃y ∈ R
m s.t.

V (x[�], y, θ) ≺ O} ≤ 1 − ε.

11



α

β

(α̂, β̂)

(α, β�(α))

(α, β)

β = β�(α)
max
�

f < 0

max
�

f > 0

Figure 2. The function β�(α)

In the following, we will show

P∞[
(M0 ∩ B0) ∪ (M1 ∩ B1) ∪ · · · ] ≤ δ, (4)

which establishes the claim.

We have, for any �,

P∞(M� ∩ B�) = P∞(M�|B�)P
∞(B�) ≤ P∞(M�|B�) ≤ (1 − ε)κ(�),

where P∞(M�|B�) expresses the conditional probability of M� with B� being assumed. Therefore,

we have

P∞[
(M0 ∩ B0) ∪ (M1 ∩ B1) ∪ · · · ] ≤ (1 − ε)κ(0) + (1 − ε)κ(1) + · · ·

≤ 6δ

π2

(
1 +

1

22
+ · · ·

)
= δ,

which shows (4).

B. Proof of Theorem 4

We prepare some notation. As was noticed after Assumption 4, the infimum value, inf�∈�m λ[V (x(k∗),

y, θ(k∗))], is regarded as a function of (θ(0), . . . , θ(k∗)), which is continuously differentiable in

a neighborhood of (θ̂
(0)

, . . . , θ̂
(k∗)

). Let us write this function as f(α, β, ω), where [αT β]T

stands for [(θ(0))T . . . (θ(k∗−1))T]T with β being the last element of the vector and ω stands

for θ(k∗). We also use the notation [α̂T β̂]T = [(θ̂
(0)

)T . . . (θ̂
(k∗−1)

)T]T and ω̂ = θ̂
(k∗)

. By

rearranging the order of the elements if necessary, we can assume due to Assumption 6 that

(∂/∂β) max�∈Θ f(α, β, ω) �= 0 at (α̂, β̂). Using the implicit function theorem, we can define a

continuously differentiable function β�(α) so that β�(α̂) is equal to β̂ and max�∈Θ f(α, β, ω) = 0

is equivalent to β = β�(α) in a neighborhood of (α̂, β̂). The situation is illustrated in Figure 2.

For each pair of (α, β), a point x(k∗) is determined. A pair (α, β) satisfies max�∈Θ f(α, β, ω) >

0 if and only if the corresponding x(k∗) is not a non-strict deterministic solution, in which case

12



this x(k∗) needs to be further updated. We will evaluate the probability of this update, which is

equal to P∞{ω ∈ Θ : f(α, β, ω) ≥ 0}. Indeed, the two lemmas below show that this probability

is bounded by a linear function of |β − β�(α)|. Once such evaluation is obtained, the theorem is

easily proved.

We need more preparation to present the first lemma. By Assumption 5, the maximum value,

max�∈Θ f(α, β�(α), ω), is attained at a unique ω, which is written as ω�(α). This ω�(α) is

continuous in α as was noted after Assumption 5. Distinguishing the first element of ω from

the others, we write ω = [ω1 ωT
2 ]T, ω̂ = [ω̂1 ω̂T

2 ]T, and so on. We can assume without loss

of generality that (∂/∂ω1)f(α, β, ω) is nonzero at (α̂, β̂, ω̂) since the gradient is nonzero as was

discussed after Assumption 4.

Lemma 1. There exist a neighborhood of (α̂, β̂) and a positive number c such that, if (α, β)

belongs to that neighborhood and ω ∈ Θ satisfies f(α, β, ω) = 0, there exists a real number t such

that [ω1 + t ωT
2 ]T is on the boundary of Θ and |t| ≤ c|β − β�(α)|.

Proof. Since (∂/∂ω1)f(α, β, ω) is nonzero at (α̂, β̂, ω̂), we can apply the implicit function theorem

and define a continuously differentiable function ω1(α, β, ω2) so that ω1(α̂, β̂, ω̂2) is equal to ω̂1

and f(α, β, [ω1, ω
T
2 ]T) = 0 is equivalent to ω1 = ω1(α, β, ω2) in a neighborhood of (α̂, β̂, ω̂).

Moreover, it is possible to assume the existence of a positive number c such that∣∣∣∂ω1(α, β, ω2)

∂β

∣∣∣ =
∣∣∣ (∂/∂β)f(α, β, ω)

(∂/∂ω1)f(α, β, ω)

∣∣∣ ≤ c. (5)

At (α̂, β̂), the relationship f(α, β, ω) = 0 holds only at ω̂; Hence, it is possible to choose a

neighborhood of (α̂, β̂), in which f(α, β, ω) = 0 holds only at ω obtained as [ω1(α, β, ω2) ωT
2 ]T.

Now, suppose that f(α, β, ω) = 0 holds with (α, β) in this neighborhood. By integrating (5)

from β to β�(α), we have the lemma because no ω ∈ Θ satisfies f(α, β�(α), ω) = 0 except for

ω�(α). �

Lemma 2. There exist a neighborhood of (α̂, β̂) and a positive number c′ such that all (α, β) in

that neighborhood satisfy P{ω ∈ Θ : f(α, β, ω) ≥ 0} ≤ c′|β − β�(α)|.

Proof. In Lemma 1, a neighborhood of (α̂, β̂) can be chosen to be convex without loss of generality.

Suppose that f(α, β, ω) ≥ 0 holds for some (α, β) in that neighborhood and ω ∈ Θ. Since

f(α, β�(α), ω) ≤ 0, continuity of f(α, β, ω) implies that there exists β̃ satisfying f(α, β̃, ω) = 0

on the line segment connecting β and β�(α). Lemma 1 guarantees the existence of t such that

[ω1 +t ωT
2 ]T is on the boundary of Θ and |t| ≤ c|β̃−β�(α)| ≤ c|β−β�(α)|. Due to Assumption 3,

the probability of ω ∈ Θ having this property is bounded by c′|β − β�(α)| for some c′ > 0. Note

that we can choose the same c′ for all α in a neighborhood of α̂. �

13



We now prove the theorem. We can assume without loss of generality that (∂/∂β) max�∈Θ f(α̂,

β̂, ω) is not only nonzero but also positive. We choose positive numbers a and b small enough that

the set A = {(α, β) : ‖α−α̂‖ ≤ a and β�(α) < β ≤ β�(α)+b} is contained in the neighborhood of

Lemma 2. For a pair (α, β) ∈ A, the corresponding x(k∗) is not a non-strict deterministic solution

and thus needs to be updated. Because the probability of update is bounded by c′|β−β�(α)| due

to Lemma 2, the expected number of iterations required to make one update is larger than or

equal to 1/c′|β −β�(α)|. If we integrate this number in A with P∞, it gives a lower bound of the

expected number of iterations necessary to find a non-strict deterministic solution. The result is

infinity, which completes the proof.
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