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Abstract

The paper presents a class of decision network models with a risk-sensitive pa-
rameter. The risk-sensitive parameter represents the decision maker’s degree of
optimism or pessimism. We propose a decision algorithm for exponential quadratic
mixed discrete-Gaussian networks and an LEQG optimal control for mixed discrete-
Gaussian networks. The proposed class of mixed discrete-Gaussian networks in-
cludes various models for decision problems. Risk-sensitive versions of various de-
cision making problems can be analyzed using the introduced algorithm.

Next, the H∆∞ optimal decision is proposed as a generalization of H∞ optimal
control. The H∆∞ optimal decision has robustness similar to that of the H∞ optimal
control. It is proved that the H∆∞ optimal decision is a limit of the optimal decision
for the corresponding exponential quadratic mixed discrete-Gaussian networks. A
direct calculation method for the H∆∞ optimal decision is proposed.

Key words: graphical model, linear exponential quadratic Gaussian model, optimal con-
trol, risk-sensitivity, mixed discrete-Gaussian networks, H∞ optimal control.

1 Introduction

1.1 The classical model

The state-space linear exponential quadratic Gaussian (LEQG) model has a controlled
stochastic dynamics represented by state and observation equations as

xt = Axt−1 + But−1 + εt, (1)

yt = Cxt−1 + ηt (t = 1, . . . , h), (2)

∗kkoba@stat.t.u-tokyo.ac.jp
†komaki@mist.i.u-tokyo.ac.jp
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where xt, ut, and yt are the process, control, and observation variables, respectively, at
discrete time t, and A,B and C are appropriately chosen matrices. Here, xt and yt are
finite dimensional real-valued vectors and[

ε
η

]
t

∼ N

(
0,

[
N L
L′ M

]
t

)
, (3)

where N , L, and M are appropriately chosen matrices. Let Wt be (W0, u0:t−1, y1:t),
where W0 indicates the initial information, and u0:t−1 = (u0, u1, . . . , ut−1) and y1:t =
(y1, y2, . . . , yt) indicate the control and observation histories. A policy, π, is a specifica-
tion of the control variable, ut, as a function of Wt (t = 1, . . . , h).

Let Q be a quadratic utility function of the process path {xt, ut} as

Q = −1

2

h−1∑
t=0

[[
x
u

]′ [
R S ′

S W

] [
x
u

]]
t

− 1

2
[x′Πhx]h, (4)

with appropriately chosen matrices R,S,W , and Πh. In the classical linear quadratic
Gaussian (LQG) optimal control, the optimal control policy π is the one maximizing the
criterion Eπ[Q].

The classical LEQG optimal control has the criterion

γπ(θ) = θ−1 log Eπ[exp(θQ)], (5)

where θ is a scalar variable. We term such a criterion as an exponential quadratic criterion
or a risk sensitive criterion. When θ = 0, γπ(0) is defined by lim

θ→0
γπ(θ). The variable θ is

the risk-sensitivity parameter. The decision becomes more optimistic as θ increases and
more pessimistic as θ decreases. The terms “optimistic” and “pessimistic” are explained
as follows. When θ is close to zero, γπ(θ) is expanded as

γπ(θ) = Eπ[Q] +
θ

2
V arπ[Q] + o(θ).

If θ is positive, the optimizer wants to increase the variance V arπ[Q] as well as Eπ[Q]. This
means he is optimistic and risk-seeking because the variance seems to be a good option
for him. If θ is negative, the optimizer wants to decrease the variance; he is pessimistic.

In particular, when θ = 0, γπ(0) is equal to Eπ[Q]. Thus, we call such a case “risk-
neutral.” We can easily check lim

θ→∞
γπ(θ) = sup

x
Q and lim

θ→−∞
γπ(θ) = inf

x
Q. These cases

can be recognized as the most optimistic and pessimistic cases, respectively.

1.2 The general linear exponential quadratic Gaussian model

We say that the optimization problem over [0, h], where h is the horizon, has the LQG
structure if the following five conditions [12] hold:

• (LQG1) For each t, the control variable, ut, takes values in some finite-dimensional
real-valued vector space, and may take any value in this space.
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• (LQG2) The horizon h is fixed, and the utility function U , whose expectation Eπ[U ]
is to be maximized, can be expressed in the reduced form as U = Q(u0:h−1, ξ), where
ξ is a vector-valued noise vector.

• (LQG3) The function Q is quadratic in all arguments, and negative definite in u0:h−1.

• (LQG4) Conditional on the state of information, W0, at time t = 0 and whatever
the control policy, the noise vector, ξ, is normally distributed with zero mean and
covariance matrix, V , independent of the policy.

• (LQG5) The observations, yt, are reducible to a policy-independent linear function
of ξ, without loss of information.

The original notation by [12] uses the cost function C = −U instead of the utility function
U .

The LEQG optimal control model satisfies all the LQG assumptions (LQG1-5), except
for the replacement of the maximization of the criterion Eπ(Q) by the maximization of
the criterion γπ(θ).

1.3 The risk-sensitive certainty-equivalence principle (RSCEP)

We define the total negative stress by

S(u0:h−1, ξ) := Q− θ−1ξ′V −1ξ/2.

We use the term θ-extremization to denote an operation that one maximizes when θ ≥ 0
and minimizes when θ < 0. This operation is simply denoted by “ext” (analogously to
“max” or “sup”).

The optimization in LEQG model can be effectively evaluated by using the following
theorem:

Theorem 1.1 (The risk-sensitive certainty-equivalence principle (RSCEP) [12])
Assume conditions LQG1-5, and assume that the policy, π, is to be chosen to max-
imize the criterion γπ(θ) defined by (5). Also, suppose that θ has a value such that
−∞ < maxu0:h−1 extξ S(u0:h−1, ξ) <∞ when θ < 0. Then,

1. The optimal value of ut is determined by simultaneously maximizing S with respect
to ut:h−1 and θ-extremizing it with respect to yt+1:h. In other words, one obtains an
optimal current decision by maximizing negative stress with respect to all currently
unmade decisions and θ-extremizing it with respect to all currently unobservable
quantities.

2. Define the value function as G(Wt) = extπ[f(y1:t|u0:t−1)Eπ exp(θQ)]. The value
function G(Wt) of the problem is calculated as

G(Wt) = exp[θ(kt + St(Wt))].
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Here St(Wt) obeys the recursion

St(Wt) = max
ut

ext
yt+1

St+1(Wt+1), (0 ≤ t < h)

with the terminal condition
Sh(Wh) = S(Wh),

and kt is a constant, independent of Wt.

If we use the RSCEP (Theorem 1.1), the optimal control for the LEQG model is
directly calculable by the Kalman filter. On the other hand, the RSCEP is not directly
applicable to graphical models including both of discrete and continuous variables. In the
present paper, we introduce a decision theory based on the risk-sensitive criterion (5) for
such network models.

In section 2, exponential quadratic mixed discrete-Gaussian network (EQM) models
are proposed. This model is a risk-sensitive decision network model with both discrete and
continuous nodes. The calculation can be carried out effectively under certain conditions
by using the strong decomposition technique introduced in section 2.

In section 3, the H∆
∞ optimal decision theory for EQM models is introduced. The H∆

∞
optimal decision has some robustness as the H∞ optimal control does. It is proved that
the H∆

∞ optimal decision is a limit of the optimal decision for the corresponding EQM
models. An efficient algorithm to obtain the H∆

∞ optimal decision is also proposed.
In section 4, some experimental results are presented.

2 Risk-sensitive decision networks

2.1 Mixed discrete-Gaussian networks

In this section, we deal with a graphical model that includes both quantitative (contin-
uous) and qualitative (discrete) variables. For simplicity, the distinction between a node
and the associated variable is ignored in this paper.

The following notations are used: V = {v1, . . . , vn} is the set of all nodes, and Γ and
∆ are the sets of all continuous and discrete nodes, respectively. Throughout this paper,
we assume that discrete variables take a finite number of values. The set of all random
variables is denoted by x = (xα)α∈V = (i, ζ) = ((iδ)δ∈∆, (ζγ)γ∈Γ), where iδ is a discrete
variable and ζγ is a continuous variable.

We say that x follows a conditional Gaussian distribution (CG-distribution) if the
simultaneous distribution has a density

f(x) = f(i, ζ) = exp{g(i) + h(i)′ζ − ζ ′K(i)ζ/2} (6)

where g(i), h(i), and K(i) are scalar, vector, and positive-definite matrices, respectively
[6]. We term network models with a CG-distribution as mixed discrete-Gaussian networks.
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If an operation on function f(x) does not change the form of (6) but only changes the
values of g(i), h(i), and K(i), we say that the operation is CG-calculable. If an algorithm
consists of a sequence of CG-calculable operations, we say the algorithm is CG-calculable.
The CG-calculablitiy is an important property because every CG-calculable operation can
be represented as a transformation of g(i), h(i), and K(i). For example, integration and
maximization of f(x) with respect to continuous variables are CG-calculable, see lemmas
A.1 and A.2 in the appendix.

Example 2.1 (The CG-decomposable distribution model)
Here, we consider decomposable graphical models.1 Let C and S denote the set of all

cliques and the set of all separators in the triangulated graph, respectively. We call the
model has a decomposable distribution if the density of the simultaneous distribution is
decomposed as

f(x) ∝
∏

C∈C φC∏
S∈S φS

. (7)

Here, each φC is represented as

φC = φC(i, ζ) = exp{gC(i) + hC(i)′ζ − ζ ′KC(i)ζ/2} for C = (i, ζ), (8)

where gC(i), hC(i), and KC(i) are scalar, vector, and symmetric matrices, respectively. We
term such a φC as a CG-potential. We note that KC(i) is symmetric but not necessarily
positive-definite. The CG-potential φS for a separator S is defined in the same manner.
The right-hand side of (7) is interpreted as 0 whenever any term in the denominator is 0.

It is evident that the joint density function (7) can be represented in the form of (6).

Example 2.2 (The DAG model)
The directed acyclic graphs (DAG) is an important and useful class of CG-distributed

graphical models. Here, we assume that continuous nodes do not have discrete child
nodes.

Let pa(xn) be the set of all the parent nodes of xn. Let Γ
(p)
n := pa(xn) ∩ Γ and

∆
(p)
n := pa(xn) ∩ ∆. In DAG models with a CG-distribution, the distribution of each

continuous node xn ∈ Γ is given by

xn|pa(xn) =
∑

k:xk∈Γ
(p)
n

Bnkxk + mn(∆(p)
n ) + v1/2

n (∆(p)
n )εn, (9)

εn ∼ N(0, Ip), (10)

where, xn and xk are the p and q dimensional real-valued vectors respectively, Bnk is a
q×p real-valued matrix, ans mn(∆

(p)
n ) and vn(∆

(p)
n ) are a p-dimensional real-vector valued

function and a p× p positive-definite matrix-valued function, respectively.

1See [2] about CG-decomposable graphs and other terminologies of ordinary graphical models (for
example, parent, child, ancestor, descendent, neighbor, moralization, and triangulation).
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All the parents of each discrete node are discrete by the assumption. The conditional
distribution of a discrete variable xn is given by

p(xn|∆(p)
n ) = M(xn; q(∆(p)

n )), (11)

where M(xn; q) is a multinomial density with parameter q. When the model distribution
is given by (9) and (11), it is easy to prove that the joint distribution of all variables is a
CG-distribution and can be decomposed as (7) and (8).

2.2 Exponential quadratic mixed discrete-Gaussian networks

In this subsection, we consider mixed discrete-Gaussian networks with the exponential
quadratic criterion (5). We assume that graphs for decision networks have observation
variables Y = {y1, . . . , yh}, decision variables D = {d0, d1, . . . , dh−1} and the other vari-
ables N . We call N “nuisance variables.”

The conditional distribution p(Y,N |D) is assumed to be decomposed as

p(Y,N |D) = p(y1|d0)p(y2|d0:1, y1) . . . p(yt+1|d0:t, y1:t) . . .

p(yh|d0:h−1, y1:h−1)p(N |d0:h−1, y1:h). (12)

The decomposition (12) corresponds to the decisions and observations whose chronological
order is

d0, y1, d1, y2, . . . , dh−1, yh. (13)

If we consider some of elements in Y and D as empty, all the chronological orders of
decisions and observations are represented as (13).

Let {Ni}h+1
i=1 be a partition of N and N0:i :=

⋃i
j=0 Nj. If p(Y,N |D) is decomposed as

p(Y,N |D) = p(N0)p(y1, N1|d0, N0)p(y2, N2|d0:1, y1, N0:1) . . . p(yt+1, Nt+1|d0:t, y1:t, N0:t) . . .

p(yh, Nh|d0:h−1, y1:h−1, N0:h−1)p(Nh+1|d0:h−1, y1:h, N0:h),
(14)

then

p(Y,N |D) = p(y1|d0)p(y2|d0:1, y1) . . . p(yh|d0:h−1, y1:h−1)

p(N0)p(N1|d0, y1, N0) . . . p(Nh|d0:h−1, y1:h, N0:h−1)p(Nh+1|d0:h−1, y1:h, N0:h)

= p(y1|d0)p(y2|d0:1, y1) . . . p(yh|d0:h−1, y1:h−1)p(N |d0:h−1, y1:h). (15)

Therefore, the conditional distribution (14) satisfies the assumption (12).
The decision policy D, corresponding to the control π of an LEQG model, is repre-

sented by a constant d0 and a set of functions {dt(·) | t = 1, . . . , h − 1}, where dt(·) is a
function of y1:t and d0:t−1.

Similar to LEQG models, we assume that the criterion function is exponential quadratic
function

γD(θ) = θ−1 log ED[exp(θQ(x))], (16)
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where

Q(x) = Q(ζ, i) = g(v)(i) + h(v)(i)′ζ − ζ ′K(v)(i)ζ/2. (17)

Here, ζ is a vector that consists of the all elements of Γ, and K(v)(i) is a positive semi-
definite matrix.

Definition 2.3 (The exponential quadratic mixed discrete-Gaussian network model)

Assume that the conditional distribution (12) is a CG-distribution (6). Here, K(i) in
(6) is positive-semidefinite and the submatrix of K(i) corresponding to all the nondecision
variables (ζγ)γ∈Γ∩(Y ∪N) is strictly positive-definite. The risk-sensitive function (16) is
adopted as a criterion function.

We term the decision model as an EQM model. If we emphasize that an EQM model
has a risk-sensitivity parameter θ, we denote it as an EQM(θ) model.

An EQM model including only continuous variables is an LEQG model. In this case,
the criterion function can be optimized by the RSCEP. However, in general, EQM models
include both continuous and discrete variables. We introduce the following generalized
RSCEP.

Remark 2.4 (The RSCEP for EQM models) Consider an EQM model. We define
value functions Vt for t = 0, . . . , h− 1 recursively as

Vh−1(d0:h−1, y1:h−1; θ) =

∫
exp(θQ(x))p(N, yh|d0:h−1, y1:h−1)dµ(yh)dµ(N),

and

Vt(d0:t, y1:t; θ) =

∫
p(yt+1|d0:t, y1:t) max

dt+1(d0:t,y1:t+1)
Vt+1(d0:t+1, y1:t+1; θ)dµ(yt+1) (18)

for t = 0, . . . , h − 2. Suppose that the decision results d0:t−1 and observations y1:t are
given. The optimal decision d∗

t for t = 0, . . . , h− 1 is given by

d∗
t (d0:t−1, y1:t) = arg max

dt

Vt(d0:t, y1:t; θ).

Proof. Each optimal decision policy function dt(d0:t−1, y1:t) for t = 0, . . . , h satisfies the
following maximization:

max
d0

∫
y1

p(y1|d0) max
d1

∫
y2

p(y2|d0:1, y1) . . . max
dt

∫
yt+1

p(yt+1|d0:t, y1:t) . . .

max
dh−1

∫
yh

p(yh|d0:h−1, y1:h−1)

∫
N

p(N |d0:h−1, y1:h) exp(θQ(x))dµ(N)dµ(y1:h).

The remark is proved by induction. �
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We cannot simplify the recursion formula (18) as in the regular RSCEP. This is because
i) maximization with respect to discrete variables and integration are not permutable
and ii) results of expectation with respect to discrete variables take the mixed Gaussian
form, whose analytical maximization is difficult. We propose an efficient algorithm for
calculating Vt for EQM models in the next subsection.

Although the optimal control for LEQG models is unique, there may be more than one
optimal decision for CG-distributed models. If dt is a discrete decision, maxdt Vt(d0:t, y1:t; θ)
may be attained for more than one value of dt. We recognize dt(·) as a function of
d0:t−1, y1:t, and let dt(·) be a set of all such functions. We choose an arbitrary function d∗

t (·)
from dt(·), and continue the calculation for the rest of the decisions d0:t−1. Then, the direct
product of dt(·) for t = 0, . . . , h−1 corresponds to the set of all optimal decisions, i.e., for
every d̂0 ∈ d0, d̂1(·) ∈ d1(·), . . . , d̂h−1(·) ∈ dh−1(·), (d̂0, d̂1(d̂0, y1), . . . , d̂h−1(d̂0, d̂1(d̂0, y1), . . . ))
is an optimal decision. The algorithmic description is as follows:

For t = h− 1, . . . , 0

For each value of d0:t−1, y1:t,

1. dt(d0:t−1, y1:t)← arg maxdt Vt(d0:t, y1:t; θ).

2. If t ≥ 1, choose an arbitrary value dt ∈ dt(d0:t−1, y1:t) and d∗
t ← dt.

3. Vt−1(d0:t−1, y1:t−1; θ)←
∫

p(yt|d0:t−1, y1:t−1)Vt(d0:t−1, d
∗
t , y1:t; θ)dµ(yt).

Example 2.5 (The CG-decomposable decision model)
Let C and S be the sets of cliques and separators of the triangulated graph, respectively.

Assume that the conditional density function p(Y,N |D) is CG-decomposed as f(x) in (7)
and that the exponential utility function is decomposed as

exp(θQ(x)) ∝
∏

C∈C φ
(v)
C∏

S∈S φ
(v)
S

. (19)

Here each φ
(v)
C is described as

φ
(v)
C = φ

(v)
C (i, ζ) = exp{θ(g(v)

C (i) + h
(v)
C (i)′ζ − ζ ′K(v)

C (i)ζ/2)} for C = (i, ζ),

where g
(v)
C (i), h

(v)
C (i), and K

(v)
C (i) are scalar, vector and symmetric matrices, respectively.

φ
(v)
S of separator S ∈ S are defined in the same manner. The right-hand side term of (19)

is interpreted as 0 whenever any term in the denominator is 0.
We call such a model a CG-decomposable decision model. In this model,

exp(θQ(x))p(Y,N |D) ∝
∏

C∈C φCφ
(v)
C∏

S∈S φSφ
(v)
S

, (20)

and the calculation of the optimal decision can be decomposed into local calculations as
we will see in the next subsection.

If the utility function is not decomposed as in (19), we can make the decision model
CG-decomposable by adding some dummy edges to the original graph.
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2.3 CG-calculable algorithm for EQM models

When we use the RSCEP for EQM models, the integrations (18) with respect to discrete
variables are not necessarily CG-calculable. In this subsection, we assume that the EQM
model is CG-decomposable. The existence of a CG-calculable algorithm for EQM mod-
els is proven under the assumptions “strong root for decision” and “adequate sequence”
defined below. These assumptions are satisfied when all the nodes are continuous. There-
fore, the CG-calculable algorithm can be applied to some mixed discrete-Gaussian network
models including the Gaussian networks.

First, we explain junction trees. By moralization, any directed graphs can be undi-
rected. Therefore, we consider only undirected graphs. Let G be an undirected graph and
Ci (i = 1, . . . , n) be sets of nodes in G such that

⋃n
i=1 Ci = G. Consider a tree whose nodes

are Ci (i = 1, . . . , n). We term the tree as a junction tree of G if every node Ck on the
path between every pair of nodes Ci and Cj satisfies

(Ci ∩ Cj) ⊂ Ck.

It has been proven that for every triangulated graph G, there is a junction tree T of G
such that all the nodes of T are the cliques of G. See [2] for details.

In Lauritzen (1992) [5], the notion of junction tree with strong roots is introduced.

Definition 2.6 (Strong root [5])
A node R of a junction tree is a strong root if any pair A,B of neighbors on the

junction tree with A closer to R than B satisfies

(B\A) ⊂ Γ or (B ∩ A) ⊂ ∆.

For each clique C, φ∗
C represents the CG-potential with an observation Y ∗ = y∗ defined

by
φ∗

C := φCIC(Y ∗ = y∗),

where

IC(Y ∗ = y∗) :=

{
1 if the value of Y ∗ ∩ C is consistent with y∗,

0 otherwise.

For each separator S, φ∗
S is defined in the same manner.

Lemma 2.7 (i) Assume that a mixed discrete-Gaussian network has a CG-decomposable
distribution. Then for each clique C̃ ∈ C,

p(C̃|y∗) =

∫
p(x|y∗)dµ(x\(C̃ ∪ Y ∗))

∝
∫ ∏

C∈C φ∗
C∏

S∈S φ∗
S

dµ(x\(C̃ ∪ Y ∗)). (21)

(ii) Assume that after a triangulation, the junction tree has at least one strong root.
Then, there is a CG-calculable algorithm for evaluating the right-hand side of (21) for
each clique C̃.
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Proof. The first part of the lemma is obvious. From theorem 7.17 of [5], the right-hand
side of (21) is calculated by the Collect Evidence and Distribute Evidence algorithm in
[5]. The algorithm is CG-calculable. �

Definition 2.8 (Strong root for decision)
Let T1 be the smallest t such that dt or yt is continuous. A node R of a junction tree

is a strong root for decision if any pair A,B of neighbors on the tree with A closer to R
than B satisfies

(B\A) ⊂ (Γ ∪ d0:T1−1 ∪ y1:T1−1) or (B ∩ A) ⊂ ∆.

Definition 2.9 (Adequate sequence of decisions and observations)
We say that a sequence of the decisions and observations (13) is adequate if it satisfies

the following two conditions:

(i) there is no continuous observation between two discrete decisions, i.e.

t1 < t ≤ t2 and dt1 , dt2 ∈ ∆⇒ yt /∈ Γ,

(ii) there is no continuous decision before any discrete decisions, i.e.

t1 < t2 and dt2 ∈ ∆⇒ dt1 /∈ Γ.

Lemma 2.10 Assume that the sequence of decisions and observations (13) is adequate.
Assume that there is at least one discrete decision node. Let T0 be the smallest t such that
dt is discrete. Let T1 be the smallest t such that t ≥ T0 + 1, and dt or yt is continuous, if
such a t exists. If such a t does not exist, set T1 = h.

Then, the sequence is divided into the following three parts:

(A) d0, y1, . . . , yT0 whose decisions are all empty.

(B) dT0 , yT0+1, . . . , dT1−1 that includes no continuous variable.

(C) yT1 , dT1 , . . . , yh that includes no discrete decision.

Proof. From the definition of T0 and T1, T0 ≤ T1:
T0 is the smallest t such that dt is a discrete decision. Thus, from definition (ii) of the

adequate sequence, part (A) of the sequence includes no nonempty decision.
From the definition of T1, part (B) includes no continuous observation or decision.
Assume that there is a discrete decision dt in part (C). From the definition of T1, yT1

or dT1 is continuous. If yT1 is continuous, yT1 is a continuous observation between discrete
decisions dT0 and dt. This contradicts definition (i) in Definition 2.9 of an adequate
sequence. If dT1 is continuous, dT1 is a continuous decision before the discrete decision dt.
This contradicts definition (ii) in Definition 2.9 of an adequate sequence. Thus there is
no discrete decision in part (C). �

We propose a CG-calculable algorithm for EQM models under the following five con-
ditions.
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• (Condition 1): The risk-sensitive parameter θ satisfies sup
D

γD(θ) <∞.

• (Condition 2): The sequence of decisions and observations (13) is adequate.

After a triangulation of the graph,

• (Condition 3): The junction tree has at least one strong root for decision.

• (Condition 4): The decision model is CG-decomposable.

• (Condition 5): For each continuous decision dt, there is a clique C that contains dt

and contains neither discrete nuisance nodes nor discrete observation nodes after t.
In other words,

∀dt ∈ (D ∩ Γ),∃C, dt ∈ C, and (C ∩∆) ⊂ (D ∪ y1:t).

Algorithm 2.11

Step 1: If there is at least one discrete decision,

T0 ← min{t | dt ∈ ∆}
T1 ← min{t, h | dt ∈ Γ or yt ∈ Γ}

else

T0 ← 0, T1 ← 0

go to step 6.

Step 2: y1:T0 ← observation value y∗
1:T0

Step 3: For dT0:T1−1, yT0+1:T1−1 ← each discrete value d̃T0:T1−1, ỹT0+1:T1−1,

3.1: φ∗
C , φ

(v)∗
C , φ∗

S and φ
(v)∗
S

← φC , φ
(v)
C , φS and φ

(v)
S with d̃T0:T1−1, y

∗
1:T0

and ỹT0+1:T1−1.

3.2:

ṼT1−1(d̃T0:T1−1, y
∗
1:T0

, ỹT0+1:T1−1)←
∫ ∏

C∈C φ∗
Cφ

(v)∗
C∏

S∈S φ∗
Sφ

(v)∗
S

dµ(N ∪ dT1:h−1 ∪ yT1:h) (22)

by Collect Evidence and Distribute Evidence [5].

Step 4: For t← T1 − 1, T1 − 2, . . . , T0 + 1,

Ṽt−1(d̃T0:t−1, y
∗
1:T0

, ỹT0+1:t−1)←
∑
ỹt

max
d̃t

Ṽt(d̃T0:t, y
∗
1:T0

, ỹT0+1:t).

Step5: Optimization of dt (T0 ≤ t < T1):
2

for t← T0, T0 + 1, . . . , T1 − 1

(an observation value y∗
1:t is given)

d̂t ← arg max
dt

Ṽt(d̂T0:t−1, dt, y
∗
1:t).

2As stated in section 2.2, the optimal decision d̂t for each t = 0, . . . , h − 1 may not be unique. If we
select an arbitrary optimal decision for each t, (d̂0, . . . , d̂h−1) becomes an optimal decision sequence.
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Step 6: Optimization of dt (t ≥ T1):
for t← T1, . . . , h− 1,

(an observation value y∗
1:t and the optimal decision d̂T0:t−1 are given)

6.1: φ∗
C , φ

(v)∗
C , φ∗

S, and φ
(v)∗
S

← φC , φ
(v)
C , φS, and φ

(v)
S with d̂T0:t−1 and y∗

1:t.

6.2: Select a clique C̃ � dt such that (C̃ ∪∆) ⊂ (D ∪ y1:t),

Ṽ ∗
t (C̃)←

∫ ∏
C∈C φ∗

Cφ
(v)∗
C∏

S∈S φ∗
Sφ

(v)∗
S

dµ((N ∪ dt+1:h−1 ∪ yt+1:h)\C̃)

by Collect Evidence and Distribute Evidence [5].

6.3:

Ṽt(d
∗
0:t−1, dt, y

∗
1:t)←

∫
Ṽ ∗

t (C̃)dµ((N ∪ dt+1:h−1 ∪ yt+1:h) ∩ C̃). (23)

6.4:
d̂t ← arg max

dt

Ṽt(d
∗
0:t−1, dt, y

∗
1:t).

Theorem 2.12 Assume (condition 1-5), then d̂t (t = 0, . . . , h − 1) by algorithm 2.11 is
the optimal decision. Algorithm 2.11 is CG-calculable.

Proof. The proof consists of the following four parts:

(a) optimality of d̂t.

(b) CG-calculability of Step 3.2 and 6.2.

(c) CG-calculability of Step 4.

(d) CG-calculability of Step 6.3 and 6.4.

(a) Proof of optimality of d̂t

We first prove that Ṽt(d
∗
0:t, y

∗
1:t) calculated by (22) is proportional to the value function

Vt(d
∗
0:t, y

∗
1:t) defined by (18) for t ≥ T1 − 1. We abbreviate the conditional density

function p(·|d∗
0:t, y

∗
1:t) to p∗(·).

For t ≥ T1 − 1, all dt+1:h−1 are not discrete (continuous or empty). If we represent

12



the summation with respect to discrete observation y ∈ Y ∪∆ as
∫

y
instead of

∑
y,

Vt(d
∗
0:t, y

∗
1:t)

=

∫
yt+1

p∗(yt+1) max
dt+1

∫
yt+2

p∗(yt+2|dt+1, yt+1) . . .

max
dh−1

∫
yh

p∗(N |dt+1:h−1, yt+1:h)p
∗(yh|dt+1:h−1, yt+1:h−1)dµ(N ∪ yt+1:h)

∝
∫

yt+1

p∗(yt+1)

∫
dt+1

∫
yt+2

p∗(yt+2|dt+1, yt+1) . . .∫
dh−1

∫
yh

∫
N

p∗(N |dt+1:h−1, yt+1:h)p
∗(yh|dt+1:h−1, yt+1:h−1)dµ(N ∪ dt+1:h−1 ∪ yt+1:h)

=

∫
yt+1:h

∫
dt+1:h−1

∫
N

p∗(yt+1:h, N |dt+1:h)dµ(N ∪ dt+1:h−1 ∪ yt+1:h)

= Ṽt(d
∗
0:t, y

∗
1:t). (24)

Therefore, for t ≥ T1, d̂t in Step 6.4 is the optimal decision.

For T0 ≤ t < T1, the optimal decision is

d̂t = arg max
d∗t

∑
y∗

t+1

max
d∗t+1

· · ·
∑

y∗
T1−1

max
d∗T1−1

ṼT1−1(d
∗
0:T1−1, y

∗
1:T1−1).

Step 4 and Step 5 calculate this d̂t.

(b) Proof of CG-calculability of Step 3.2 and 6.2.
Here d∗

0:t−1 and y∗
1:t are fixed. Thus, the strong root for decision (Condition 3)

corresponds to the normal strong root (Definition 2.6). Set φ̃∗
C := φ∗

Cφ
(v)∗
C and

φ̃∗
S := φ∗

Sφ
(v)∗
S , then φ̃C and φ̃S take the CG-potential form (8).

Then, the same algorithm in lemma 2.7 is applied to the calculation of

Ṽt(C̃) =

∫ ∏
C∈C φ̃∗

C∏
S∈S φ̃∗

S

dµ(x\(C̃ ∪ Y ∗))

for t ≥ T1 − 1. Therefore, Step 6.2 is CG-calculable.

In the same way, calculate ṼT1−1(R) for the strong root R ∈ C. Then,

ṼT1−1(d
∗
0:T1−1, y

∗
1:T1−1) ∝

∫
ṼT1−1(R)dµ(R),

and the integration is CG-calculable if the integration with respect to R ∩ Γ is first,
and R ∩∆ is second. Therefore, Step 3.2 is CG-calculable.

(c) Proof of CG-calculability of Step 4
All of nonempty dT0:T1−1 and yT0:T1−1 are discrete. Thus, ṼT1(d

∗
0:T1−1, y

∗
1:T1−1) is a

scalar function of discrete variables. Maximization and summation of such a function
are just comparisons and summations of a finite number of scalar values, respectively.
Therefore, Step 4 is CG-calculable.

13



(d) Proof of CG-calculability of Step 6.3 and 6.4.
From (Condition 5), there is no discrete nuisance variable or discrete observation
after t in clique C̃. From the definition of T1, for t ≥ T1, dt+1:h−1 are continuous or
empty. Thus,

((N ∪ dt+1:h−1 ∪ yt+1:h) ∩ C̃) ⊂ Γ.

Therefore, integration in (23) is CG-calculable by lemma A.1. Then, Step 6.3 is
CG-calculable.

Maximization with respect to the continuous variable dt is CG-calculable by lemma
A.2. Then, Step 6.4 is CG-calculable. �

If the model is described as a DAG with CG-distribution, there is a simpler sufficient
condition for CG-calculability.

Corollary 2.13 Consider the EQM(θ) model represented as a DAG. Assume the follow-
ing four conditions, then algorithm 2.11 is CG-calculable.

• (Condition 1 for the DAG): The risk sensitive parameter θ satisfies sup
D

γD(θ) <∞.

• (Condition 2 for the DAG): The sequence of decisions and observations is adequate.

• (Condition 3 for the DAG): The total utility is decomposed as Q(x) =
∑

v∈V qv(v, pa(v)),
where qv is a function defined for each node v.

• (Condition 4 for the DAG): Every discrete node with some continuous children is a
decision or an observation node until the first continuous observation time T1, i.e.,

(∆ ∩ pa(Γ)) ⊂ (D ∪ y1:T1).

3 H∆
∞ optimal decision networks

In this section, we propose H∆
∞ optimal decision networks. The H∆

∞ optimal decision
networks are a generalization of H∞ optimal controls. H∆

∞ optimal decision networks
have robustness similar to that of H∞ optimal controls. Details of the H∞ optimal
control theory are given in Francis (1987) [3]. The main result of this section is that
the optimal decision for each H∆

∞ optimal decision network is calculated as a limit of the
optimal decision for the corresponding EQM models.

We first define a linear decision. We describe all the continuous and discrete variables
in an EQM model as ζ = (ζγ)γ∈Γ and i = (iδ)δ∈∆, respectively. The decision values
(ζγ)γ∈D∩Γ and (iδ)δ∈D∩∆ are the optimal decision determined by a decision policy, D, and
an observation, Y .

Definition 3.1 (Linear decision)

14



If a decision policy, D, is fixed, the conditional distribution of all continuous variables,
ζ, given all discrete variables, i, is uniquely determined. Denote the conditional distribu-
tion by p(ζ|i,D). For some D, there exists p× q (p ≥ q)-dimensional matrix, H(i), and a
q-dimensional vector, µ(i), such that p(ζ|i,D) corresponds to

ζ = H(i)(ξ + µ(i)), (25)

where ξ is a random vector distributed according to N(0, Iq). We say that such a decision
policy, D, is a linear decision.

We note that every optimal decision policy for EQM(θ) is a linear decision. This is
because when all discrete variables are given, the optimal decision for each continuous
decision variable is a linear function of the continuous observation and nuisance variables.

In (condition 1) of theorem 2.12, we assumed that the risk-sensitive parameter θ
satisfies sup

D
γD(θ) < ∞. The following lemmas give a more explicit representation of

(condition 1).

Lemma 3.2 Assume that a linear decision policy, D, is represented as (25). The risk
sensitive criterion γD(θ) is finite if and only if Iq + θH(i)′K(v)(i)H(i) is positive definite
for any discrete value i.

This condition is described as θ > θ0(D) for a negative constant θ0(D).

Lemma 3.3 In an EQM(θ) model, (Condition 1) in theorem 2.12 is satisfied if and only
if Iq+θH(i)′K(v)(i)H(i) is positive-definite for any discrete value i and any linear decision
policy D.

This condition is described as θ > θ0 for a negative constant θ0.

The proof is omitted. In this sense, if θ approaches θ0, EQM(θ) nearly becomes the most
pessimistic model.

We define the H∆
∞ norm and the H∆

∞ optimal decision.

Definition 3.4 (H∆
∞ norm)

Let G(i) be an arbitrary matrix-valued function of finite discrete variable i. H∆
∞ norm

|| · ||∆∞ is defined as

||G||∆∞ := max
i

√
The maximum eigen value of G(i)′G(i).

In the following, we consider G(i) defined as

G(i) := K(v)(i)1/2H(i).

The H∆
∞ optimal decision is defined as follows:

Definition 3.5 (H∆
∞ optimal decision)

If a linear decision minimizes ||G||∆∞, we say it is an H∆
∞ optimal decision.
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If a decision network is a state-space model described as (1) and (2), the H∆
∞ optimal

decision corresponds to the H∞ optimal control. Thus, the H∆
∞ optimal decision is an

extension of the H∞ optimal control.
The next theorem shows an important relation between the H∆

∞ optimal decision and
EQM(θ) models.

Theorem 3.6 Consider a decision network model with CG-distribution and the corre-
sponding EQM(θ) model. The H∆

∞ optimal decisions for a CG-distributed model is equiv-
alent to the optimal decisions {D} for the EQM(θ0) model.

Proof. Let D be a linear decision,

γD(θ) <∞⇔ max
i

∫
N(ξ; µ(i), Iq) exp(θ(g(v)(i)

+ h(v)(i)′H(i)ξ − ξ′H(i)′K(v)(i)H(i)ξ/2))dµ(ξ) <∞
⇔ θ > max

i
sup{θ||Iq + θH(i)′K(v)(i)H(i)| = 0}. (26)

From the definition of θ0(D),

θ0(D) = max
i

sup{θ||Iq + θH(i)′K(v)(i)H(i)| = 0}

= max
i

sup{θ||Iq + θG(i)′G(i)| = 0}

= −(||G||∆∞)−1. (27)

From (26) and (27),

D ∈ optimal decision for EQM(θ0)

⇔ γD(θ0) =∞
⇔ θ0(D) ≥ θ0 = inf

D
θ0(D)

⇔ D = arg min θ0(D)

⇔ D = arg min ||G||∆∞
⇔ D ∈ H∆

∞ optimal decision.

�

From theorem 3.7 given below, we can construct a calculation algorithm for exact
H∆

∞ optimal decisions. Using theorem 3.6, we can calculate an approximation of an H∆
∞

optimal decision by calculating the optimal decision for EQM(θ0 + ε), where ε is a small
positive value. However, this method can not be applied directly to the exact evaluation
because algorithm 2.11 is valid only when γD(θ) <∞ (condition 1). Moreover, in certain

cases of integration or maximization as in lemmas A.1 or A.2, K11(i) + θK
(v)
11 (i) becomes

almost singular when θ approaches θ0. Thus, numerical computation becomes unreliable.
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Figure 1: The influence diagram of Oil Wildcatter problem.

Theorem 3.7 If we use (46), (48), and (49) in lemmas A.4 and A.5 instead of (40),
(42), and (43) in lemmas A.1 and A.2, the optimal decision for EQM(θ0) model is H∆

∞
optimal.

Proof. Let the optimal decision for the EQM(θ0) model be D̂. Because γD̂(θ0) =∞, it

is proved that D̂ is H∆
∞ optimal in the same manner of the proof of theorem 3.6. �

4 Experimental result

4.1 Oil Wildcatter (discrete case)

The oil wildcatter problem is a widely known example in decision analysis, posed by Raiffa
(1968) [9]. We deal with the variation given by Shenoy (1992) [11] as follows:

An oil wildcatter must decide either to drill (yes) or not drill (no). He is
uncertain whether the hole is dry (Dry), wet (Wet) or soaking (Soak).... At a
cost of 10,000, the wildcatter could take seismic soundings which help determine
the geological structure at the site. The soundings will disclose whether the
terrain below has no structure (NoS) – that’s bad, or open structure (OpS) –
that’s so-so, or closed structure (ClS) – that’s really hopeful.

The influence diagram of the oil wildcatter problem is shown in Fig. 1. In the in-
fluence diagram, white oval nodes, shaded oval nodes, and rectangular nodes represent
the nuisance, observation, and decision variables, respectively. In order to represent the
relation between each node and the utility value, we additionally set the diamond utility
nodes. The influence diagram for the oil wildcatter problem has seven nodes in total: two
utility nodes UT (Utility of testing) and UD (Utility of drilling), and the total utility node
represented as the sum of two components of utility; two decision nodes, T (Test?) and
D (Drill?); a nuisance node, O (Amount of oil); and an observation node, R (Result of
test).
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Table 1: Four decision policies of different degree of optimism (Oil Wildcatter example).
Drill?

Region of θ Test? NoS OpS ClS
A −1000 ∼ −800 no no
B −750 yes no no yes
C −700 ∼ 150 yes no yes yes
D 200 ∼ 1000 no yes

We use the same conditional probabilities and utility functions as [2]:

P (O = Dry, Wet, Soak) = 0.5, 0.3, 0.2. (28)

P (R|O) =




O NoS OpS ClS
Dry 0.6 0.3 0.1
Wet 0.3 0.4 0.3
Soak 0.1 0.4 0.5


 , (29)

U(T = yes, no) = −10, 0, and (30)

U(O,D) =


 D Dry Wet Soak

yes −70 50 200
no 0 0 0


 . (31)

We maximize the criterion

γD(θ) = θ−1 log ED exp(θ(U(T ) + U(O,D))) (32)

for each θ ∈ {−1000 + 50i | i = 0, . . . , 40}. The result is listed in Table 1: there are
four different optimal decision policies (A,B,C, and D) depending on the value of θ.
You can observe that the policies become more optimistic in the order of A,B,C, and
D. For example, policy A, with the minimum θ values, does not test or drill because
the testing and drilling seem like a loss of cost for the most pessimistic decision-maker.
On the contrary, policy D, with the maximum θ values, does not test but drills. This
is because the most optimistic decision-maker believes that the result of drilling must be
the best and the test is only a loss of cost.

In some competitive situations, as follows, risk-sensitivity plays an important role. We
assume that there are ten oil wildcatters including you. The nine wildcatters other than
you independently take one of the decision policies A,B,C, or D with probability 1/4.
We know the probability but do not know the decision policy or the observation result of
the other wildcatters. The objective is to find the best decision policy.

Distributions of the rank of the utility value in the case of each decision policy are
shown in Fig. 2. If the number of survivors is one in ten wildcatters, the most optimistic
policy, A, is much better than other policies. In contrast, if only the last one loses the
competition, the most pessimistic policy, D, presents the largest probability of winning.
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Figure 2: Distributions of the ranking by the four decision policies (A, B, C, D).

4.2 Waste Incinerator

The waste incinerator example is a fictious example of a conditional Gaussian model. The
original problem is illustrated as follows [2]:

The emission from a waste incinerator differs because of compositional differ-
ences in incoming waste. Another important factor is the waste burning regime
which can be monitored by measuring the concentration of CO2 in the emission.
The filter efficiency depends on the technical state of the electrofilter and the
amount and composition of waste. The emission of heavy metal depends both
on the concentration of metal in the incoming waste and the emission of dust
particulates in general. The emission of dust is monitored through measuring
the penetrability of light.

The variables in the model are Type of waste (W ), Filter state (F ), Burning regime
(B), Metal in waste (Min), Filter efficiency (E), CO2 emission (C), Emission of dust (D),
Emission of metal (Mout), and Light penetrability (L).

The conditional probability structure in the model is represented as a DAG in Fig.
3. As in Fig. 1, the oval, rectangular and diamond nodes represent nuisance, decision,
and utility nodes, respectively. The symbol “∗” near a node indicates that the node is
discrete.

The original problem is not a decision problem but an estimation problem. We assume
that three discrete nodes (Type of waste, Filter state, and Burning regime) are decision
nodes. We set utility values for these three discrete nodes and other two continuous nodes
(Filter efficiency and Emission of metal). The total utility value is the sum of the five
utility values. The optimal decision does not depend on the order of decisions because
there is no observation variable in the model.

The probability structure of the model is the same as [2]. Burning regime (B) takes
two values {stabe, unstable}. If B = stable, we denote B = 1, and if B = unstable,
we denote B = 2, as a short form. Similarly, F = intact or defective is represented as
F = 1 or 2, respectively, and W = industrial or household is represented as W = 1 or 2,
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Figure 3: Influence diagram of the waste incinerator example.

respectively. The conditional density of the Filter efficiency (E) is defined as

p(E|F = 1,W = 1) = N(−3.9, 0.00002),

p(E|F = 1,W = 2) = N(−3.2, 0.00002),

p(E|F = 2,W = 1) = N(−0.4, 0.0001), and

p(E|F = 2,W = 2) = N(−0.5, 0.0001).

The conditional density of the Emission of dust (D) is defined as

p(D|B = 1,W = 1, E = e) = N(6.5 + e, 0.03),

p(D|B = 1,W = 2, E = e) = N(6.0 + e, 0.04),

p(D|B = 2,W = 1, E = e) = N(7.5 + e, 0.1), and

p(D|B = 2,W = 2, E = e) = N(7.0 + e, 0.1).

The conditional density of the concentration of CO2 is defined as

p(C|B = 1) = N(−2, 0.1), p(C|B = 2) = N(−1, 0.3).

The conditional density of the penetrability of dust is defined as

p(L|D = d) = N(3− d/2, 0.25).

The conditional density of the concentration of heavy metal in the waste (Min) is defined
as

p(Min|W = 1) = N(0.5, 0.01), p(Min|W = 2) = N(−0.5, 0.005).
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Table 2: Four decision policies with different degrees of optimism (the waste incinerator
example).

Region of θ Burning (B) Filter (F ) Waste (W )
- −9.9 ∼ −9.0 Too pessimistic
A −8.9 ∼ −7.3 stable (1) intact (1) household (2)
B −7.2 ∼ 0.4 stable (1) defective (2) household (2)
C 0.5 ∼ 9.5 instable (2) defective (2) household (2)
D 9.6 ∼ 15.0 instable (2) defective (2) industrial (1)

The conditional density of the concentration of emission of metal is defined as

p(Mout|D = d,Min = min) = N(d + min, 0.002).

Here, the utility value is set as

U(B = 1, 2) = 0.0, 5.0, (33)

U(F = 1, 2) = 0.0, 10.0, (34)

U(W = 1, 2) = 10.0, 5.0, and (35)

U(E = e) = −e2 and U(Mout = mout) = −m2
out.

We maximize the criterion

γD(θ) = θ−1 log ED exp[θ(U(B) + U(F ) + U(W ) + U(E) + U(Mout))] (36)

for each θ ∈ {−10+0.1i | i = 1, . . . , 250}. This example satisfies the condition in corollary
2.13. Therefore, Algorithm 2.11 is CG-calculable for the moralized and triangulated
model.

The result is given in Table 2: there are four different optimal decision policies
depending on the value of θ. From theorem 3.7, the most pessimistic value is θ0 =
−8.92059949615108 and the H∆

∞ optimal decision is B = 1 (stable), F = 1 (intact), and
W = 2 (household).

In this decision network, all decision variables are discrete. Next, we deal with a model
with a continuous decision node. We set the Filter efficiency node (E) as a decision node
and remove all the arrows into this node. Thus, the influence diagram is as shown in Fig.
4.

The result of the optimization is listed in Table 3 and the graph is as shown in Fig. 5.
Here, the most pessimistic value is θ0 = −8.92857142857142, and the H∆

∞ optimal decision
is B = 1 (stable), F = 2 (defective),W = 2 (household) and E = −3.48022598870056.
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Table 3: Decision policies with different degrees of optimism (the waste incinerator ex-
ample with a continuous decision node).

θ Burning (B) Filter (F ) Waste (W ) Efficiency (E)
−9.0000 Too pessimistic
−8.0000 stable (1) defective (2) household (2) −3.3867
−7.0000 stable (1) defective (2) household (2) −3.2914
−6.0000 stable (1) defective (2) household (2) −3.2014
−5.0000 stable (1) defective (2) household (2) −3.1161
−4.0000 stable (1) defective (2) household (2) −3.0353
−3.0000 stable (1) defective (2) household (2) −2.9586
−2.0000 stable (1) defective (2) household (2) −2.8856
−1.0000 stable (1) defective (2) household (2) −2.8162
0.0000 stable (1) defective (2) household (2) −2.7498
1.0000 instable (2) defective (2) household (2) −3.0850
2.0000 instable (2) defective (2) household (2) −2.9359
3.0000 instable (2) defective (2) household (2) −2.8005
4.0000 instable (2) defective (2) household (2) −2.6771
5.0000 instable (2) defective (2) household (2) −2.5641
6.0000 instable (2) defective (2) household (2) −2.4603
7.0000 instable (2) defective (2) household (2) −2.3645
8.0000 instable (2) defective (2) household (2) −2.2759
9.0000 instable (2) defective (2) household (2) −2.1937
10.0000 instable (2) defective (2) industrial (1) −2.5641
11.0000 instable (2) defective (2) industrial (1) −2.4752
12.0000 instable (2) defective (2) industrial (1) −2.3923
13.0000 instable (2) defective (2) industrial (1) −2.3148
14.0000 instable (2) defective (2) industrial (1) −2.2422
15.0000 instable (2) defective (2) industrial (1) −2.1739
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Figure 4: Influence diagram of the waste incinerator example with a continuous decision
node.

5 Some discussions

This paper presents the calculation method for the optimal decision with an optimistic
parameter that represents the decision maker’s degree of optimism or pessimism. The
exponential quadratic criterion function is used for modeling the degree of optimism.

The EQM model is introduced. This model includes both discrete and continuous
nodes and has the risk-sensitive criterion function. Under several assumptions (CG-
decomposability, strong root for decision, adequate sequence, etc.), we propose a CG-
calculable algorithm for the optimal decision for EQM models.

There are several studies on exponential quadratic decision networks. Although Shachter
and Kenley (1989) [10] present a method for decision making for Gaussian models with
exponential quadratic criterion, their algorithm cannot be applied to the mixed discrete-
Gaussian model.

Poland (1994) [8] deals with a type of mixed discrete-Gaussian case with the exponen-
tial quadratic criterion. In his paper, it is assumed that the mixed discrete-Gaussian node
has no children other than the utility nodes. His algorithm includes some calculations on
mixed normal distribution (for example, maximization by the EM algorithm), while our
algorithm avoids them in order to save on computational cost. Therefore, the motivation
of his research is different from ours. However, when the number of necessary calculations
on a mixed normal distribution is small, the incorporation of the two algorithms should
be efficient.

Our algorithm uses the graph decomposition technique while the ones in [10] and [8]
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Figure 5: The optimal decision policies with different degrees of optimism for the waste
incinerator example with a continuous decision node. W (Type of waste), F (Filter
state), and B (Burning regime) are the discrete decisions and E (Filter efficiency) is the
continuous decision. For discrete decisions, the gray part of bar graph represents decision
1 and the white part represents decision 2. The black part is the singular part because θ0

becomes too small. The circle in the graph of E represents the H∆
∞ decision.

use repeat “arc reversals” and “node reductions.” This is another difference between their
algorithms and ours.

Next, an H∆
∞ optimal decision is proposed in this paper. The H∆

∞ optimal decision
is a generalization of the H∞ optimal control. Glover and Doyle (1988) [4] proved that
the H∞ optimal control is equivalent to a limit of the optimal control for corresponding
the LEQG models. Whittle (1990) [12]; (1996) [13] explains further details of this fact.
The H∞ optimal control is a deterministic control. On the other hand, the LEQG model
is a stochastic control with the expectation of exponential quadratic utility. The close
relationship between these two apparently different controls is a breakthrough.

Their argument is restricted to the control theory; this paper generalizes it to the
network decision theory with discrete variables. It is proved that the H∆

∞ optimal deci-
sion is a limit of the optimal decision for the corresponding exponential quadratic mixed
discrete-Gaussian decision models. In the limit model, the optimism parameter, θ, corre-
sponds to the most negative value, θ0. We introduced an algorithm for deriving the exact
H∆

∞ optimal decision with a matrix decomposition technique.
In this paper, we assume that DAGs represent the definition of conditional probabil-

ities. The theory of causality in Pearl (2000) [7] gives a different meaning to DAGs. In
his theory, DAGs represent the causal relationship between variables. If we combine our
work with the theory of causality, the range of applications of our research will become
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much wider.
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A Appendix

Lemma A.1 (Lemma 7.5 of Cowell etc. (1999) [2])
Let

φ(i, ζ1, ζ2) = exp(g(i) +

[
h1(i)
h2(i)

]′ [
ζ1

ζ2

]
− 1

2

[
ζ1

ζ2

]′ [
K11(i) K12(i)
K12(i)

′ K22(i)

] [
ζ1

ζ2

]
) (37)

and

φ
(v)
θ (i, ζ1, ζ2) = exp(θ(g(v)(i) +

[
h

(v)
1 (i)

h
(v)
2 (i)

]′ [
ζ1

ζ2

]
− 1

2

[
ζ1

ζ2

]′ [
K

(v)
11 (i) K

(v)
12 (i)

K
(v)
12 (i)′ K

(v)
22 (i)

] [
ζ1

ζ2

]
)). (38)

If K11(i) + θK
(v)
11 (i) is positive-definite,∫
φ(i, ζ1, ζ2)φ

(v)
θ (i, ζ1, ζ2)dζ1 = exp(g̃θ(i) + h̃θ(i)

′ζ2 − ζ2
′K̃θ(i)ζ2/2) (39)

holds, where

g̃θ(i) = g(i) + θg(v)(i) + {(dim ζ1) log 2π − log(K11(i) + θK
(v)
11 (i))

+(h1(i) + θh
(v)
1 (i))′(K11(i) + θK

(v)
11 (i))−1(h1(i) + θh

(v)
1 (i))}/2,

h̃θ(i) = h2(i) + θh
(v)
2 (i)− (K12(i) + θK

(v)
12 (i))′(K11(i) + θK

(v)
11 (i))−1(h1(i) + θh

(v)
1 (i)), and

K̃θ(i) = K22(i) + θK
(v)
22 (i)− (K12(i) + θK

(v)
12 (i))′(K11(i) + θK

(v)
11 (i))−1(K12(i) + θK

(v)
12 (i)).

(40)

If K11(i) + θK
(v)
11 (i) is positive-definite,

∫
φ(i, ζ1, ζ2)φ

(v)
θ (i, ζ1, ζ2)dζ1 is infinite.

Lemma A.2
We make the same assumption as lemma A.1. If K11(i)+ θK

(v)
11 (i) is positive-definite,

max
ζ1

φ(i, ζ1, ζ2)φ
(v)
θ (i, ζ1, ζ2) = exp(g̃θ(i) + h̃θ(i)

′ζ2 − ζ2
′K̃θ(i)ζ2/2) (41)

holds, where

g̃θ(i) = g(i) + θg(v)(i) + (h1(i) + θh
(v)
1 (i))′(K11(i) + θK

(v)
11 (i))−1(h1(i) + θh

(v)
1 (i))/2,

h̃θ(i) = h2(i) + θh
(v)
2 (i)− (K12(i) + θK

(v)
12 (i))′(K11(i) + θK

(v)
11 (i))−1(h1(i) + θh

(v)
1 (i)), and

K̃θ(i) = K22(i) + θK
(v)
22 (i)− (K12(i) + θK

(v)
12 (i))′(K11(i) + θK

(v)
11 (i))−1(K12(i) + θK

(v)
12 (i)).

(42)

The maximum is attained as

ζ̂θ = (K11(i) + θK
(v)
11 (i))−1[h1(i) + θh

(v)
1 (i)− (K12(i) + θK

(v)
12 (i))ζ2]. (43)

If K11(i) + θK
(v)
11 (i) is not positive-definite, max

ζ1
φ(i, ζ1, ζ2)φ

(v)
θ (i, ζ1, ζ2) is infinite.
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Lemma A.3 (Theorem 10.1 of Ansley and Kohn (1985) [1]) We assume that Ω(1)

and Ω(0) are d×d positive semidefinite-matrices. Thus, there are d×d matrices Λ(θ) and
L(θ) such that

Ω(1) + θΩ(0) = L(θ)Λ(θ)L(θ)′, (44)

where Λ(θ) is a diagonal matrix and L(θ) is a lower triangle matrix with 1s on the diagonal.

We omit the derivation of Λ(θ) and L(θ). You can see an efficient algorithm of computing
Λ and L in Corollary 10.2 of [1].

Lemma A.4 Let K11 and K
(v)
11 be positive-semidefinite matrices such that |K11+θ0K

(v)
11 | =

0. Let θ > θ0. There exist Λ and L such that

(i) K11 + θK
(v)
11 = LΛL′ + O(θ − θ0).

(ii) Λ is a diagonal matrix and L is a lower triangle matrix with 1s on the diagonal.

(iii) Λ and L are independent of θ.

Let the i-th diagonal element of Λ be λi and Λ̌ := diag(λ̌i), where λ̌i = λ−1
i if λi �= 0

and λ̌i = 0 if λi = 0. Let d′ the number of i such that λi �= 0.
Using such Λ̌,L, and d′, g̃θ, h̃θ, and K̃θ in (38) are described as follows:

g̃θ = g∗ + O(θ − θ0),

h̃θ = h∗ + O(θ − θ0), and

K̃θ = K∗ + O(θ − θ0), (45)

where

g∗ = g + θ0g
(v) + {d′ log 2π −

∑
i

log λ̌i + (h1 + θ0h
(v)
1 )′L−1′Λ̌L−1(h1 + θ0h

(v)
1 )}/2,

h∗ = h2 + θ0h
(v)
2 − (K12 + θ0K

(v)
12 )′L−1′Λ̌L−1(h1 + θ0h

(v)
1 ),

K∗ = K22 + θ0K
(v)
22 − (K12 + θ0K

(v)
12 )′L−1′Λ̌L−1(K12 + θ0K

(v)
12 ). (46)

Proof. The first part of the lemma is proved by K11 + θK
(v)
11 = (K11 + θ0K

(v)
11 ) + (θ −

θ0)K
(v)
11 and lemma A.3. The formulas of g∗, h∗, and K∗ are derived by the same manner

as the results of Section 6 of [1]. �

Lemma A.5 Let K11 and K
(v)
11 be positive-semidefinite matrices such that |K11+θ0K

(v)
11 | =

0. Let θ > θ0. Using the same definition of Λ̌, L, and d′ as in lemma A.4, g̃θ, h̃θ, and K̃θ

in (42) and ζ̂θ in (43) are described as follows:

g̃θ = g∗ + O(θ − θ0),

h̃θ = h∗ + O(θ − θ0),

K̃θ = K∗ + O(θ − θ0), and

ζ̂θ = ζ∗ + O(θ − θ0), (47)
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where

g∗ = g + θ0g
(v) + (h1 + θ0h

(v)
1 )′L−1′Λ̌L−1(h1 + θ0h

(v)
1 )/2,

h∗ = h2 + θ0h
(v)
2 − (K12 + θ0K

(v)
12 )′L−1′Λ̌L−1(h1 + θ0h

(v)
1 ),

K∗ = K22 + θ0K
(v)
22 − (K12 + θ0K

(v)
12 )′L−1′Λ̌L−1(K12 + θ0K

(v)
12 ), and (48)

ζ∗ = Λ̌L−1(h1 + θ0h
(v)
1 − (K12 + θ0K

(v)
12 )ζ2). (49)
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