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Abstract

In this paper, we consider stability analysis of planar and multi-
modal piecewise linear systems. Necessary and sufficient stability con-
ditions for the systems are derived. The conditions are given in terms of
poles and zeros of subsystems, and they are computationally tractable.
We then show three numerical examples which provide typical trajec-
tories of piecewise linear systems in order to clarify differences between
a class of linear time-invariant systems and a class of piecewise linear
systems from the view point of stability.

1 Introduction

A great variety of engineering systems contain both continuous-time dy-
namical systems and logical or switching elements. Such systems are called
hybrid dynamical systems. In the last decade, a lot of techniques have been
developed for analysis and controller synthesis for hybrid dynamical systems.
Each result depends on the mathematical model which represents behavior
of hybrid dynamical systems. One of the typical models is the piecewise lin-
ear system (PLS). The system consists of some pairs of linear time-invariant
dynamics and a switching rule given by a linear function of the continuous
state. Study on PLSs is important as a first step to establish hybrid control
theory, because the hybrid dynamics is the simplest in all classes of hybrid
dynamical systems.

Unlike linear time-invariant systems, checking stability of a given PLS
is a very hard problem due to its hybrid nature. In fact, there exist no
systematic ways to exactly check stability of the class of PLSs, although
many results have been obtained on stability for several classes of hybrid
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dynamical systems which include the class of PLSs (see [3, 11] and the refer-
ences therein). Most of the results on stability are extensions of Lyapunov’s
theorem, where we need to show the existence of a Lyapunov function to
guarantee the stability. The Lyapunov methods provide not only sufficient
conditions but also necessary conditions for stability under hybrid natures.
Actually, the converse theorems ensure the existence of a Lyapunov func-
tion when the system is asymptotically stable [12, 19]. On the other hand,
we must restrict available classes of Lyapunov functions within a class of
piecewise quadratic functions [5, 13, 15] or a class of sums of squares [14, 16]
to give systematic ways of finding the Lyapunov functions. This causes the
conservativeness of the stability conditions. Therefore, we need a new ap-
proach to get an explicit necessary and sufficient stability condition for the
class of PLSs.

In recent years, direct analysis of behavior of hybrid states has led to
exact stability tests for several classes of hybrid dynamical systems. Xu and
Antsaklis [18] derived necessary and sufficient conditions for stabilizability
of a class of planar and linear switched systems through an investigation
of behavior of the systems. In addition, they proposed stabilizing control
laws for the switched systems. Çamlıbel et al. [2] provided a necessary and
sufficient stability condition for a class of planar and linear complementarity
systems. Recently, two necessary and sufficient stability conditions were
obtained for a class of planar and bimodal PLSs [10] which includes the
class of planar and linear complementarity systems as a special case. The two
conditions are given in terms of eigenvalue loci of subsystems and coefficients
of characteristic polynomials, respectively. All the three papers do not treat
any extensions of Lyapunov’s theorem.

In this paper, we consider stability analysis of planar and multi-modal
PLSs through an investigation of behavior of the hybrid state in order to
derive necessary and sufficient conditions for stability. To this end, we de-
fine two concepts, namely transitive mode and weak transitive mode, which
characterize behavior of the hybrid state. The two concepts also characterize
a necessary and sufficient stability condition for the systems. The stability
condition may be given in terms of poles and zeros of subsystems, and it
is computationally tractable. Note that this paper does not treat any Lya-
punov approaches. Finally, three numerical examples are addressed. They
illustrate typical trajectories of PLSs and clarify differences between a class
of linear time-invariant systems and a class of PLSs from a view point of
stability.

This paper is organized as follows. Section 2 describes a basic setup
for representing a class of planar and multi-modal PLSs. In Section 3, two
concepts of transitive mode and weak transitive mode are defined, and a
necessary and sufficient stability condition is given in terms of the two con-
cepts. Section 4 is devoted to definitions on poles and zeros of subsystems.
Section 5 provides two necessary and sufficient conditions for stability in

2



terms of poles and zeros of subsystems. Finally, three numerical examples
are illustrated in Section 6.

In this paper, we will use the following notation. The symbols R and R+

represent the set of real numbers and the set of positive real numbers, re-
spectively. The symbols Rn and Rn×m stand for the set of all n-dimensional
real column vectors and the set of all n × m real matrices, respectively.
For a set A, int(A) and ∂A mean the interior of A and the boundary of A,
respectively. For two sets A and B, A\B denotes difference of the two sets.

2 Planar multi-modal piecewise linear systems

We consider a class of planar and multi-modal piecewise linear systems rep-
resented by

ẋ =





A1x, if x ∈ S1

A2x, if x ∈ S2
...

...
Amx, if x ∈ Sm.

(1)

Here Ai ∈ R2×2, and each Si is a convex cone of the form

Si := {x ∈ R2 | Cix ≥ 0}, (2)

where Ci = [c>i1, c
>
i2]
> ∈ R2×2 (i = 1, . . . ,m). A constituent matrix Ai may

be equal to another constituent matrix Aj as seen in Figure 1.
We here introduce two notions, called the proper state space and well-

posedness in order to clarify the class of systems treated in this paper.
Actually, the two notions exclude the cases which are out of our interests.

First, the state space of the system (1) is said to be proper, if all the

Figure 1: Planar multi-modal piecewise linear model.
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following statements hold:

Si 6= R2, ∀i, (3)
intSi 6= ∅, ∀i, (4)
∪m

i=1Si = R2, (5)
int(Si ∩ Sj) = ∅, ∀(i, j), (i 6= j). (6)

It is clear that (3)–(6) are quite natural and hence they are not restrictive
under memoryless nonlinearities. Note that both (3) and (4) hold, if detCi 6=
0 for all i.

Second, the system (1) is said to be well-posed, if the system has a
unique solution for each initial state. Definition of solutions can be chosen
from the concepts of well-posedness in the sense of Carathéodory [8], C-well-
posedness, H-well-posedness [6] and well-posedness under the switch-driven
rule [7]. The choice does not influence our results shown below. On the other
hand, we do not treat systems with sliding modes in the sense of Filippov
[4, 17]. In fact, Lemma 22 provided in Appendix A does not hold under
existence of sliding modes.

The solution from a given initial state x0 is denoted by x(t, x0) where
the initial time is always set 0.

Finally, we make a mild assumption. We suppose detCi 6= 0 for all i
in Sections 4 and 5.1 to avoid the notational complexity. Note that the
assumption does not make the resulting stability condition conservative,
because each system whose state space is proper satisfies the assumption
after additional partition with the x1-axis and the x2-axis as illustrated in
Example 1 below. Also, the assumption shall be removed in Section 5.2,
though the notational complexity grows.

Example 1 Define S1, S2 and S̄3 by (2) with

C1 =
[

1, 0
0, 1

]
, C2 =

[ −1, 0
0, 1

]
, C̄3 =

[
0, 0
0, −1

]
.

Clearly, det C̄3 = 0. Let us partition S̄3 into S3 and S4 with

C3 =
[ −1, 0

0, −1

]
, C4 =

[
1, 0
0, −1

]
,

respectively (see Figure 2). Then det Ci 6= 0 for all i.

3 Stability analysis

In this section, we summarize the basic concepts of stability analysis for
the system (1). We first discuss behavior of trajectories of the system (1)
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Figure 2: Additional partition of the state space.

by introducing two notions, namely transitive mode and weak transitive
mode. We then give a necessary and sufficient stability condition in terms
of transitive modes and weak transitive modes. The stability condition will
be characterized by poles and zeros of the system (1) in Section 5.

We first investigate trajectories of the system (1). Suppose that the
system is well-posed and the state space is proper. Then the system has one
of the following two properties: (T-i) Infinitely many events occur on each
trajectory as illustrated in Figure 3-(i). (T-ii) The number of events which
take place on each trajectory is finite as depicted in Figure 3-(ii). The two
properties are closely connected with transitive modes and weak transitive
modes defined as follows.

Definition 2 (i) A mode i is said to be transitive, if
∀x0 ∈ Si\{0}, ∃t > 0, x(t, x0) 6∈ Si.

(ii) A mode i is said to be weakly transitive, if one of the following two
statements holds for all x0 ∈ Si\{0}:
(a) ∃t > 0, x(t, x0) 6∈ Si.
(b) (∀ t ≥ 0, x(t, x0) ∈ Si) and limt→∞ x(t, x0) = 0.

Figure 3: Trajectories of the system (1)
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Figure 4: Trajectories in a transitive mode.

Figure 5: Trajectories in weak transitive modes.

Trajectories in a transitive mode and three possible weak transitive
modes can be seen in Figures 4 and 5, respectively, in which thick curves
represent the trajectories.

We first focus on the weak transitive modes. Each weak transitive mode
has the following three features which are immediate from Definition 2: (i)
A mode i is weakly transitive, if i is transitive. (ii) The origin is not stable,
if there exists a mode i which is not weakly transitive. (iii) There exists
at least one weak transitive mode, if the origin is asymptotically stable and
(T-ii) holds.

We then investigate the relationship between transitive modes and the
property (T-i). To this end, we define a set of vectors on the boundary ∂Si

as follows.

Definition 3 The set of vectors defined by

Bi := {x0 ∈ ∂Si\{0} | ∃ε > 0, ∀t ∈ [0, ε), x(t, x0) ∈ Si},

is called the inward boundary of Si. (See Figure 6-(i).)

Each transitive mode possesses the following property which will be
proved in Section 5 as a part of the proof of Lemma 8.

Lemma 4 The following two statements are equivalent for each i.
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Figure 6: (i) The thick line represents the inward boundary Bi. (ii) An
illustration of (7).

(i) The mode i is transitive.

(ii) Bi 6= ∅ and there exists a unique τi > 0 such that

∀x0 ∈ Bi, {x(τi, x0) ∈ ∂Si and ∀t ∈ (0, τi), x(t, x0) ∈ intSi}. (7)

An illustration of (7) can be seen in Figure 6-(ii).
By Lemma 4, (T-i) holds if and only if all modes are transitive. Suppose

that all modes are transitive. Then

∀x0 ∈ R2, ∃a ∈ R, ax0 = x

(
m∑

i=1

τi, x0

)
,

where each τi is defined according to (ii) in Lemma 4. Clearly, the origin is
globally asymptotically stable if and only if a < 1 for all x0.

Using the terminologies of transitive modes and weak transitive modes,
we can show the following theorem which provides a necessary and sufficient
condition for the system (1) to be stable.

Theorem 5 Consider the system (1). Suppose that the system is well-posed
and the state space is proper. Then the following statements hold.

(i) Suppose that all modes are transitive. Then the origin is globally asymp-
totically stable, if and only if x(

∑m
i=1 τi, x0) < x0 holds for all x0 ∈

R2\{0}.
(ii) Suppose that there exists a mode which is not transitive. Then the origin

is globally asymptotically stable, if and only if all modes are weakly
transitive.

We will rewrite Theorem 5 in terms of poles and zeros of subsystems
in Section 5 where the complete proof is provided. Note that the stability
conditions in Theorems 11 and 16 shown there are computationally tractable
as seen in algorithms attached below the theorems.

7



4 Transfer function representation

This section introduces a 2×2 matrix transfer function for each mode. Each
function is the Laplace transform of initial value responses for two initial
states on ∂Si. The poles and zeros of the functions characterize necessary
and sufficient stability conditions in the next section. Throughout in this
section, we assume detCi 6= 0.

We first partition C−1
i as

[zi1, zi2] := C−1
i . (8)

Each vector zij is on ∂Si (see Figure 7).
We then consider a transfer function of the form

Ti(s) = Ci(sI −Ai)−1C−1
i

=
1

s2 + αis + βi

[
s + γi11, γi12

γi21, s + γi22

]
. (9)

Clearly, Ti(s) represents the Laplace transform of initial value responses
whose initial values are on ∂Si.

We can easily check if zij is on the inward boundary Bi as follows.

Proposition 6 Consider the system (1). Assume detCi 6= 0. Then zij ∈ Bi

holds, if and only if γij̄j ≥ 0 where j̄ ∈ {k ∈ {1, 2} | k 6= j}.

PROOF. 1 Simple calculations show cij̄ ẋ(0, zij) = γij̄j, which leads to the
result. ¤

It is important to analyze behavior of trajectories whose initial values
are on inward boundaries Bi as shown in Lemma 4. The following definition
chooses two special zeros associated with an initial state on Bi from γijk

(j = 1, 2, k = 1, 2) in Ti(s), if it exists.

Figure 7: An illustration of zi1 and zi2.
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Definition 7 Define

pi :=
{

1, if γi21 ≥ 0,
2, otherwise.

(10)

In addition,

qi ∈ {j ∈ {1, 2} | j 6= pi} . (11)

Furthermore, define

γi := γipipi , δi := γiqipi (12)

to simplify the notation.

Note that zipi is on the inward boundary Bi, if Bi 6= ∅. Conversely,
Bi = ∅, if δi < 0.

5 Necessary and sufficient stability conditions

In this section, we rewrite Theorem 5 and provide necessary and sufficient
stability conditions for the system (1) in terms of poles and zeros of Ti(s).
In Section 5.1, we give a stability condition under the assumption such that
detCi = 0 for all i. Section 5.2 is devoted to the elimination of the non-
singular assumption from the stability condition.

In this section, we often omit the index i which expresses a mode from
symbols to simplify the notation. All the proofs of lemmas and theorems in
this section are found in Appendices B and C.

5.1 Non-singular case

The following lemma provides a necessary and sufficient condition for a mode
i to be transitive.

Lemma 8 Consider the system (1). Assume det Ci 6= 0. Then the following
three statements are equivalent.

(i) The mode i is transitive.

(ii) There exists a unique τ > 0 such that
cpx(τ, zp) = 0 and ∀t ∈ [0, τ ], x(t, zp) ∈ Si.

(iii) It holds that

βi >

{
α2

4 , if α ≤ 2γ,
γα− γ2, if α ≥ 2γ.

(13)
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Figure 8: Each shaded portion represents the region satisfying (13).

The statement (ii) in Lemma 8 is equivalent to (ii) in Lemma 4.
The regions satisfying (13) are illustrated in Figure 8. In general, the

region with an unstable zero (γi < 0) is larger than the region with a stable
zero (γi > 0).

The following lemma describes the relationship between zp and zq under
(13).

Lemma 9 Consider the system (1). Assume det Ci 6= 0. In addition, (13)
holds for i. Define τ according to (ii) in Lemma 8. Then, it holds that

x(τ, zp) = ηzq, (14)

where1

η :=





δ√
β−αγ+γ2

exp
(

−αθ√
4β−α2

)
, if α2 < 4β,

2δ
α−2γ exp

(
−α

α−2γ

)
, if α2 = 4β,

δ exp
(

λ2 log |λ2+γ|−λ1 log |λ1+γ|
λ1−λ2

)
, if α2 > 4β,

(15)

θ = Arccos

(
α− 2γ

2
√

β − αγ + γ2

)
, (16)

λ1 =
−α +

√
α2 − 4β

2
, (17)

λ2 =
−α−

√
α2 − 4β

2
. (18)

Note that η is well-defined under (13).

1For x ∈ [−1, 1], Arccos(x) expresses the principal value of the inverse cosine of x, i.e.
Arccos(x) ∈ [0, π].
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Figure 9: Each shaded portion implies the region satisfying (19).

The following lemma provides a necessary and sufficient condition for a
mode i to be weakly transitive.

Lemma 10 Consider the system (1). Assume det Ci 6= 0. The following
two statements are equivalent.

(i) The mode i is weakly transitive.

(ii) It holds that




β > α2

4 , if δ ≥ 0 and α ≤ 2γ,

β > γα− γ2, if δ ≥ 0 and α ≥ 2γ,

β < γα− γ2, if δ < 0,

(19)

where γ := max(0, γ) and γ := min(0, γ).

The regions satisfying (19) are depicted in Figure 9. Let us concentrate
on the case δi ≥ 0. The region defined by (19) is larger than the region
defined by (13), when γi > 0 and δi ≥ 0. On the other hand, the two regions
defined by (13) and (19) are equivalent, when γi ≤ 0 and δi ≥ 0.
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We are now ready to give a necessary and sufficient stability condition
in terms of poles and zeros of Ti(s).

Theorem 11 Consider the system (1). Suppose that the system is well-
posed, the state space is proper and det Ci 6= 0 for all i. Then the following
two statements hold true.

(i) Suppose (13) holds for all i. Then the origin is globally asymptotically
stable, if and only if it holds that

m∏

i=1

(ηi‖ziqi‖) <
m∏

i=1

‖zipi‖. (20)

(ii) Suppose that there exists a mode i such that (13) does not hold. Then
the origin is globally asymptotically stable, if and only if (19) holds for
all i.

We can determine the stability of the system (1) by using the following
algorithm based on Theorem 11.

Algorithm 1

Step 1)

(i) Check if the state space of a given system is proper. If yes, then
go to (ii). If not, the algorithm ends.

(ii) Check if the system is well-posed (see [6, 7, 8] for details). If yes,
then go to Step 2. If not, the algorithm ends.

Step 2)

(i) Check if detCi 6= 0 for all i. If not, partition the state space with
the x1-axis and the x2-axis.

(ii) Compute zi1, zi2, αi, βi, γi, δi, pi and qi (i = 1, . . . ,m) according
to (8)–(12).

Step 3) Check if (13) holds for all i. If yes, then go to Step 4-i. If not,
then go to Step 4-ii.

Step 4)

(i) (a) Compute ηi (i = 1, . . . , m) according to (15).
(b) Check if (20) is satisfied. If yes, the origin is globally asymp-
totically stable. If not, the origin is not globally asymptotically
stable.

(ii) Check if (19) holds for all i. If yes, the origin is globally asymp-
totically stable. If not, the origin is not globally asymptotically
stable.
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5.2 General case

In this section, we consider the planar and multi-modal piecewise linear sys-
tem (1) with some cells Si satisfying detCi = 0 and provide yet another
algorithm to check the stability of the system (1). The new algorithm re-
quires no further partition of the state space as seen in Step 2-i of Algorithm
1. To this end, we investigate properties on transition modes and weak tran-
sition modes whose cells Si satisfy detCi = 0.

We first define α and β in the same way as the non-singular case, i.e.

det(sI −Ai) = s2 + αis + βi. (21)

We then present versions of Lemmas 8, 9 and 10 with singular Ci.

Lemma 12 Consider the system (1). Assume the state space is proper and
detCi = 0. Then the following three statements are equivalent.

(i) The mode i is transitive.

(ii) The statement (ii) in Lemma 4 holds.

(iii) 4β > α2.

Lemma 13 Consider the system (1). Assume the state space is proper and
detCi = 0. In addition, suppose 4β > α2. Define τ according to (ii) in
Lemma 4. Then

x(τ, x0) = − exp

(
−απ√
4β − α2

)
x0 (22)

holds for all x0 ∈ Bi.

Lemma 14 Consider the system (1). Assume the state space is proper and
detCi = 0. Then, the following statements are equivalent.

(i) The mode i is weakly transitive.

(ii) β >

{
α2

4 , if α ≤ 0,
0, if α ≥ 0.

Let us now define γ, δ, p, q, zp and zq in the singular case as shown below.
The definition unifies Lemmas 8 and 12, and Lemmas 10 and 14. Moreover,
the definition enables us to give a stability condition for the system (1) with
singular Ci using a similar statement to Theorem 11.
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Definition 15 Define

γi = ∞, δi = pi = qi = 1, zi1 =
[

1
0

]
, (23)

ηi := exp


 −αiπ√

4βi − α2
i


 . (24)

We are now ready to remove the non-singular assumption from Theorem
11. We can prove the following theorem in a similar way to the proof of
Theorem 11.

Theorem 16 Consider the system (1). Suppose that the system is well-
posed and the state space is proper. Define

Ir := {i ∈ {1, 2, . . . , } | det Ci 6= 0}, (25)
Is := {i ∈ {1, 2, . . . , } | det Ci = 0}. (26)

Moreover, define zi1, zi2, αi, βi, γi, δi pi, qi and ηi according to (8)–(12)
and (15) for all i ∈ Ir. Also, define them according to (21), (23) and (24)
for all i ∈ Is. Then, the statements (i) and (ii) in Theorem 11 hold true.

We establish a new algorithm for a stability test based on Theorem 16
as follows.

Algorithm 2 Algorithm 2 has the same procedures as Algorithm 1 except
Steps 2 and 4-i-a. Steps 2 and 4-i-a are replaced by the following 2’ and
4-i-a’, respectively.

Step 2’)

(i) Classify all indices 1, 2, . . . , m into the two sets Ir and Is defined
by (25) and (26), respectively.

(ii) Compute zi1, zi2, αi, βi, γi, δi, pi and qi according to (8)–(12)
for all i ∈ Ir.

(iii) Compute zi1, αi, βi, γi, δi, pi and qi according to (21) and (23)
for all i ∈ Is.

Step 4-i-a’) Compute ηi according to (15) for all i ∈ Ir. Also, compute ηi

according to (24) for all i ∈ Is.

6 Numerical examples

This section illustrates three typical numerical examples in order to clarify
differences between trajectories of linear time invariant systems and piece-
wise linear systems from a view point of stability.

14



Example 17 Consider a four-modal piecewise linear system represented by

ẋ = Aix, if x ∈ Si, (27)

where

A1 = A3 =
[

σ, 1
−ω2, σ

]
, A2 = A4 =

[
1, π

−π, 1

]
, (28)

Si := {x ∈ R2 | Cix ≥ 0}, i = 1, 2, 3, 4, (29)

C1 =
[

1, 0
0, 1

]
, C2 =

[ −1, 0
0, 1

]
, (30)

C3 =
[ −1, 0

0, −1

]
, C4 =

[
1, 0
0, −1

]
. (31)

Each set Si expresses the i-th quadrant.
The aim here is to derive a necessary and sufficient condition for asymp-

totic stability of the system in terms of σ (∈ R) and ω (∈ R+). To this end,
we investigate the stability condition via Algorithm 1.

Step 1)

(i) (3)–(6) hold.

(ii) It is seen that the system (27) is well-posed in the sense of Carathéodory
from the condition in [8].

Step 2)

(i) Clearly, detCi 6= 0 for all i.

(ii) We have

α1 = −2σ, β1 = σ2 + ω2, γ1 = −σ, δ1 = 1,
α2 = −2, β2 = 1 + π2, γ2 = −1, δ2 = π,
α3 = −2σ, β3 = σ2 + ω2, γ3 = −σ, δ3 = 1,
α4 = −2, β4 = 1 + π2, γ4 = −1, δ4 = π.

Step 3) The inequality (13) holds for all i.

Step 4) We obtain

η1 = η3 =
e(

σπ
2ω )

ω
, η2 = η4 = e

1
2 . (32)

Substituting (32) into (20) yields

e1+σπ
ω < ω2. (33)

15



This is the necessary and sufficient stability condition. Bellow we illus-
trate typical trajectories of the system for three pairs of ω and σ.

(i) ω = 5 and σ = 2: The condition (33) is satisfied. Therefore, the
origin is asymptotically stable, while all constituent matrices Ai are
unstable: This phenomenon has been pointed out in [1]. A trajectory
of the system with ω = 5 and σ = 2 can be seen in Figure 10–(i).

(ii) ω = 5 and σ = 5: The origin is unstable because the condition (33) is
not satisfied. See Figure 10-(ii).

(iii) ω = 5 and σ = ω
π (−1 + 2 log ω): Then

e1+σπ
ω = ω2

holds. Each trajectory is a closed orbit as depicted in Figure 10–(iii)
in this case. This confirms the proposed stability test is exact.
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Figure 10: Trajectories of Example 17.
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Figure 11: Trajectories of Example 18.

Example 18 Consider a four-modal system with

A1 = A3 =
1
2

[
λ + 1, λ− 1
λ− 1, λ + 1

]
,

A2 = A4 =
[ −2, −1
−1, −2

]
,

Si := the i−th quadrant,

i.e., Ci (i=1,2,3,4) are given by (30) and (31).
We here assume λ < 1, which guarantees well-posedness of the system

in the sense of Carathéodory. We then see that (13) does not hold for any
i. Thus, let us investigate (19). Consequently, we see that the origin is
asymptotically stable, if and only if λ < 0. Typical trajectories can be seen
in Figure 11.

We have a remark for the unstable case, i.e. 0 ≤ λ < 1. Lemma 22
shown in Appendix A ensures that every trajectory converges to the origin,
if the initial state is not on the line through [1, 1]> and −[1, 1]>. In other
words,

lim
t→∞x(t, x0) = 0, a.e. x0 ∈ R2

holds, even if the origin is unstable as illustrated in Figure 11–(ii).

Example 19 Consider a three-modal system with

A1 =
1
2

[
λ + 1, λ− 1
λ− 1, λ + 1

]
, A2 = A3 =

[ −1, π
−π, −1

]
,

C1 =
[

1, 0
−√3, 1

]
, C2 =

[
1, 0√
3, −1

]
, C3 =

[ −1, 0
0, 0

]
.

17
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Figure 12: Trajectories of Example 19.

Clearly, detC3 = 0. Assume λ > 1 to guarantee well-posedness of the
system. Let us investigate the stability of the system via Algorithm 2. As a
result, we see that the origin is asymptotically stable, if and only if it holds
that

λ >
11
6 + log

√
3+1
2

11
6 + log

√
3−1
2

' 2.59. (34)

Note that λ is one of the eigenvalues of A1. Therefore, (34) implies that
an eigenvalue of A1 must be greater than the value defined by the right
hand side of (34). Moreover, the greater the value of λ is, the faster the
state converges to the origin as illustrated in Figure 12. Roughly speaking,
the more unstable the subsystem is, the more stable the hybrid system is,
in this case.

18



7 Conclusion

In this paper, we have derived necessary and sufficient conditions for planar
and multi-modal piecewise linear systems to be stable. The conditions are
given in terms of poles and zeros of subsystems, and they are computation-
ally tractable. Also, we have shown three numerical examples which provide
typical trajectories of piecewise linear systems. They clarify differences be-
tween a class of linear time invariant systems and a class of piecewise linear
systems from a view point of stability.

There still remain several open problems on stability of piecewise linear
systems to be addressed in the future, although we have established some
basic tools for stability analysis in this paper. In particular, we need to
discuss stability analysis for the higher-order case. A necessary condition
and a sufficient condition for stability of higher-order and bimodal systems
are addressed in [9, 10]. The conditions are given in terms of eigenvalue loci
of subsystems and observability.
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A Preliminaries for the proof of Theorem 11

In this section, we analyze behavior of trajectories for each subsystem of the
system (1), which will play important roles to show the proof of Theorem
11. We here often omit the index i which expresses a mode from symbols to
simplify the notation.

We first classify the indices 1, 2, . . . , m into three groups according to the
values of γ11 and γ22.

Definition 20 Consider the system (1). Assume detCi 6= 0 for all i. Then
define

I1 := {i ∈ I | γi12 ≥ 0 and γi21 ≥ 0},
I2 := {i ∈ I | γi12 < 0 and γi21 < 0},
I3 := {i ∈ I | i 6∈ I1 and i 6∈ I2},

where I := {1, 2, . . .m}.
Each of the index sets I1, I2 and I3 has the following features.

Proposition 21 Consider the system (1). Assume detCi 6= 0. Then the
following statements hold true.

(i) β ≤ γα− γ2, if i ∈ I1.
(ii) β < γα− γ2, if i ∈ I2.
(iii) β ≥ γα− γ2, if i ∈ I3.

PROOF. 2 It is straightforward to verify that

β − (γα− γ2) = −γ11γ22,

which leads to the desired statements. ¤

We then summarize properties on the index set I2.

Lemma 22 Consider the system (1). Assume the system is well-posed, the
state space is proper and detCi 6= 0 for all i. Then the following statements
hold true.

(i) i ∈ I2 ⇔ δi < 0.
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(ii) If I2 6= ∅, then I1 6= ∅.
(iii) If i ∈ I2, then Ai has distinct and real eigenvalues.

(iv) Suppose i ∈ I2. Let λmin denote the minimal eigenvalue of Ai.
Then there exists an eigenvector vmin associating with λmin such that
x(t, vmin) ∈ Si holds for all t ≥ 0.

(v) Suppose i ∈ I2. Define vmin according to (iv). In addition, define

Vi := {x ∈ R2 | x = avmin, a ∈ R}.
Then

∀x0 ∈ Si\Vi, ∃t > 0, x(t, x0) 6∈ Si.

PROOF. 3 Proof of (i): The result follows from the definitions of δi and
I2.

Proof of (ii): Suppose that I2 6= ∅ and I1 = ∅. Then there exists a sliding
mode, which contradicts the well-posedness assumption.

Proof of (iii): The result follows from Proposition 21.
Proof of (iv): Define Āi := CiAiC

−1
i . Let λ1 and λ2 denote the eigen-

values of Āi. Assume λ1 > λ2 without loss of generality. Let vj = [vj1, vj2]>

be an eigenvector of Āi associating with λj for each j (= 1, 2). Note that
γ12 < 0 implies v21 6= 0. Thus, we assume v21 = 1 and

det[v1, v2] = v11v22 − v12 = 1, (35)

without loss of generality. Then,

c2ẋ(0, z1) = v12v22(λ1 − λ2) < 0, (36)
c1ẋ(0, z2) = −v11(λ1 − λ2) < 0. (37)

Thanks to (35), (36) and (37), it holds that

v11 > 0,

v22(v11v22 − 1) < 0.

Then, we obtain v22 > 0. Hence we see x(t, C−1
i v2) ∈ Si holds for all t ≥ 0,

because C−1
i v2 is an eigenvector of Ai.

Proof of (v): Define λ1, λ2, v1 and v2 according to the definitions in
the proof of (iv). We consider any initial state C−1

i x0 (∈ Si) satisfying
x2 < v22x1. It is straightforward to verify that

c2x(t, C−1
i x0) = v12(v22x1 − x2)eλ1t

+v22(v11x2 − v12x1)eλ2t.

It is seen from (36) that v12 < 0, which leads to the desired statement. The
case such that x2 > v22x1 can be shown similarly. ¤
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We finally show the following corollary which is immediate from Defini-
tions 2 and 20, and Lemma 8.

Corollary 23 Consider the system (1). Assume det Ci 6= 0. The following
statements hold true.

(i) Suppose i ∈ I1 and (19) holds for i. Then, (b) in Definition 2 holds true
for two initial states x0 = zi1 and x0 = zi2.

(ii) Suppose i ∈ I3. In addition, suppose that (13) does not hold for i and
(19) holds for i. Then, (b) in Definition 2 holds true for x0 = zipi.

B Proofs of Lemmas 8, 9 and 10, and Theorem 11

Proof of Lemma 8: Proof of (ii) ⇔ (iii): Suppose that (ii) holds. Then
Proposition 6 yields i ∈ I3.

We then suppose that β = γα−γ2. In this case, one of the poles of Ti(s)
is −γ, and we have

cpx(t, zp) = e(−α+γ)t.

Hence (ii) does not hold.
Therefore, it suffices to show (ii) ⇔ (iii) under β > γα− γ2. We divide

our proof into the following three parts: (I) α2 < 4β, (II) α2 = 4β, and (III)
α2 > 4β.

Case α2 < 4β: We obtain

cpx(t, zp) = e−
α
2

t

{
cosωt +

1
ω

(
γ − α

2

)
sinωt

}
, (38)

where ω =
√

β − α2

4 . Thus, we see that (ii) ⇔ (iii) always holds true in this
case.

Case α2 = 4β: We have

cpx(t, zp) = e−
α
2

t
{

t(γ − α

2
) + 1

}
. (39)

It is seen that there exists τi > 0 satisfying (ii), if and only if α > 2γ holds.
Case α2 > 4β: We get

cpx(t, zp) =
λ1 + γ

(λ1 − λ2)
eλ1t − λ2 + γ

(λ1 − λ2)
eλ2t, (40)

where λ1 and λ2 are defined by (17) and (18), respectively. There exists
τi > 0 satisfying (ii), if and only if α− 2γ >

√
α2 − 4β holds.

Proof of (i) ⇔ (iii): It also suffices to prove (i) ⇔ (iii) under β > γα−γ2

for the same reason in the proof of (ii) ⇔ (iii).
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Define

Ai := {x ∈ R2 | [x̄1, x̄2]> = C−1
i x, x̄1 ≥ 0, x̄2 ≥ 0, and x̄1 + x̄2 > 0}.

Note that the two sets Si\{0} and Ai are equivalent. Note also that γpq < 0
is satisfied from i ∈ I3. Using these two facts, we can prove (i) ⇔ (iii) in a
similar way to the proof of (ii) ⇔ (iii). ¤

Proof of Lemma 9: We can get the explicit form of τ from (38), (39)
and (40). Let y(s) denote the (q, p) element of Ti(s). In addition, let y(t)
stand for the inverse Laplace transform of y(s). Then we have

x(τ, zp) = y(τ)zq. (41)

Substituting τ into (41) yields (14). ¤
Proof of Lemma 10: We divide our proof into the following three

parts: (I) i ∈ I1, (II) i ∈ I2, and (III) i ∈ I3.
Case i ∈ I1: (i) ⇒ (ii); Note that x(t, zp) ∈ Si holds for all t ≥ 0,

because i ∈ I1. Therefore x(t, zp) must converge to the origin, which implies
that Ai is Hurwitz. Hence (ii) holds.

(ii) ⇒ (i); The condition (ii) means that Ai is Hurwitz in this case.
Therefore, every trajectory converges to the origin, if no events take place.
This leads to (i).

Case i ∈ I2: The condition (ii) implies that the minimal eigenvalue of
Ai is negative in this case. It follows from (iv) and (v) in Lemma 22 that
(i) ⇔ (ii).

Case i ∈ I3: The condition (ii) implies that Ai has complex eigenvalues
or that Ai is Hurwitz.

(i) ⇒ (ii); We will prove the contrapositive of the desired statements.
Suppose (ii) does not hold. Then, (iii) in Lemma 8 is not satisfied. Therefore,
(a) in Definition 2 does not hold for x0 = zp. Moreover, (b) in Definition 2
does not hold for x0 = zp, because Ai has a non-negative real eigenvalue.

(ii) ⇒ (i); If Ai has complex eigenvalues, then (a) in Definition 2 holds
for all initial states. Otherwise, or if Ai is Hurwitz, then we can prove that
(i) holds in the same way as the proof of (ii) ⇒ (i) in Case i ∈ I1. ¤

Proof of Theorem 11: Proof of (i): We see that x(
∑m

i=1 τi, x0) <
x0 holds for all x0 ∈ Si\{0}, if and only if (20) holds. In other words,
limt→∞ x(t, x0) = 0, ∀x0, if and only if (20) holds.

Stability of the origin in the sense of Lyapunov follows from linearity, if
(20) holds for all i.

Proof of (ii): (⇒); It is seen from Lemma 10 that there exists an initial
state x0 such that limt→∞ x(t, x0) 6= 0, if there exists an i such that (19)
does not hold. We have proved the contrapositive of the desired statement.

(⇐); It is seen from Lemma 22 (ii) and Corollary 23 that there exists a zij

such that (b) in Definition 2 holds for x0 = zij . Therefore, limt→∞ x(t, x0) =
0 holds for all x0.
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Stability of the origin in the sense of Lyapunov follows from linearity, if
(19) holds for all i. ¤

C Proofs of Lemmas 12, 13 and 14

Proof of Lemma 12: Define

r :=
{

1, if c1 6= 0,
2, otherwise.

(i) ⇒ (ii): Obvious.
(ii) ⇒ (iii): Suppose that (iii) does not hold. Then Ai has a real

eigenvalue. We get

crx(t, x0) =
{

ζte−
αt
2 , if 4β = α2,

ζ
(
eλ1t − eλ2t

)
, if 4β < α2,

(42)

where x0 ∈ Bi and ζ(6= 0) is a constant value depending on x0, and λ1 and
λ2 are defined by (17) and (18), respectively. In view of (42), we see that
(ii) does not hold.

(iii) ⇒ (i): We have

crx(t, x0) = ζe−
αt
2 sin(ωt + θ), (43)

where x0 ∈ Si, ω =
√

β − α2

4 , and ζ( 6= 0) and θ are constant values depend-
ing on x0. The equation (43) leads to (i). ¤

Proof of Lemma 13: Substituting x0 ∈ Bi into (43) yields θ = 0,
which leads to (22). ¤

Proof of Lemma 14: (i) ⇒ (ii): Suppose (ii) does not hold. Then,
there exists an eigenvector vi ∈ Si associating with a non-negative real
eigenvalue of Ai. Thus, x(t, vi) ∈ Si, ∀t ≥ 0 holds, which implies (i) does not
hold.

(ii) ⇒ (i): The statement (ii) means that Ai has complex eigenvalues or
that Ai is Hurwitz. If Ai has complex eigenvalues, then (a) in Definition 2
is immediate from Lemma 12. If Ai is Hurwitz, then we see that (i) holds
in the same way as the proof of Lemma 10. ¤
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