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Abstract

Pattern formation in a one-dimensional neural field model is stud-
ied. We analyze conditions of existence and stability of local excitation
pattern solutions in the presence of arbitrary time-invariant input, and
establish a graphic analysis method to find steady local excitation so-
lutions and examine their stability by plotting characteristic curves.
This method realizes intuitive understanding of pattern dynamics by
visualizing a variety of solutions depending on parameters.



1 Introduction

The neural field is a neural network model that describes the large-
scale dynamics of the densely distributed cortical neurons in the con-
tinuum limit. While a number of studies have explored pattern forma-
tion in the neural field [1-13] (see [5] for a review), theoretical analysis
has been restricted to the cases of no external input or some limited
input conditions such as sufficiently small [2] or unimodal Gaussian
input [13]. Analysis of pattern dynamics under more general external
input conditions is important to understand dynamical changes in the
cortical cell assembly elicited by various external stimulations.

While there exist several types of dynamical patterns in the neural
field such as traveling fronts [4, 8] or traveling waves |2, 8], one of the
most important characteristics of the field dynamics is the existence
of local excitation pattern (or “bump”) solutions [2,3] where only the
neurons in a limited region are active. Since local excitation pattern
can encode information about an externally applied input stimulus
as a position of the excitation pattern, this simple pattern dynamics
plays a primary role in modeling studies such as working memory [14]
or decision making process [15]. For example, in the working memory
model [14], the information about a cue stimulus is stored during the
delay period as a local excitation pattern in neural activity.

In this study, we analyze local excitation patterns in a one-dimensional
neural field in the presence of arbitrary time-invariant external input.
We aim to give conditions of existence and stability of steady local
excitation solutions, and also to propose a graphic analysis method
to find steady local excitation solutions and examine their stability
by plotting characteristic curves. Since the proposed graphic analysis
method makes it possible to visualize solutions, it is useful for intu-
itive understanding of localized neural activity depending on various
input conditions. The result of the present study is an extension of
that of Amari [2] to arbitrary input conditions. Amari [2] has argued
that, if the external input is very strong compared with mutual ex-
citation and inhibition among neurons, the solution is dominated by
the external input. On the other hand, our results suggest that, if the
extenal input is strong to the extent that its effect matches that of
mutual excitation and inhibition, the solutions are not so simple and



determined by interaction of them, which leads to pattern dynamics
that cannot be obtained in case of small input conditions discussed
in [2].

In Sections 3 and 4, we analyze the conditions of existence (Section
3) and stability (Section 4) of local excitation pattern solutions. After
we introduce the a — S curve in Section 5 that plays a central role
in the graphic analysis method, we discuss the detail of the method
in Section 6. In Section 7, we show an example of application of the
graphic analysis method.

2 Neural field equation

We consider the following one-dimensional neural field equation:

TM = —u(r,t) + o w(z — ) f[u(a’,t)] dz’ + S(x) — h,

ot Tmin
(1)

where u(z,t) is the average membrane potential of neurons at position
x at time ¢, 7(> 0) is the time constant, w(x — z') is the connectivity
function that represents average intensity of connections from neurons
at position 2’ to ones at position z, f(u) is the output function that
determines the firing rate of neurons dependent on the membrane
potential, and S(x) is the time-invariant input stimulus externally
applied to the neurons at position x, and —h(h > 0) is the resting
potential. [Zmyin, Tmax] denotes domain of the field (the domain may
have infinite length, i.e., (Zmin, Tmax) = (—00, +00) ).

We consider the field with symmetric connections that are exci-
tatory for proximate neurons so that w(x) satisfies the following two
conditions:

w(z) =w(—x), (2)

w(0) > 0. (3)

For the sake of simplicity, f(u) is assumed to be the step-function
satisfying f(u) = 0 for u < 0 and f(u) = 1 for u > 0. Thus, a neuron



fires at a constant firing rate only when the membrane potential is
above the threshold. We define

Rlu] = {z|u(r) > 0} (4)
to be the excited region of the field for potential distribution u(z). We
also define local excitation as the state where the excited region is a
finite interval, i.e., the state represented by

Rlu] = (21, 12) (21 < x2) (5)

is the local excitation of length zo — ;.

3 Existence of local excitation solution

We define W(z) as follows:

W(z) = /0 " w(z)da'. (6)

We can see the relations of W(0) = 0 and W(z) = —W(—=z) from
Egs. (2) and (6).

We denote the membrane potential distribution at the steady state
by @(z). Since du/0t = 0 in Eq. (1) at the steady state, @(z) satisfies

a(z) = / (e — ) flae))de + S(x) — h

min

= / w(x —2")dz' + S(x) — h. (7)

R[u

Hence, the steady solution of local excitation with R[u] = (z7, z3) is
u(x) =W(x — i) — W(x —z3) + S(z) — h. (8)
Differentiation with respect to z yields

dS(x)
dr

=w(r —x}) —w(r — x5) +



By defining a* = 2} — 23, ul, = du(z})/dz, and Sk, = dS(x})/dx

Tl

for i= 1 and 2, we have the following relationships from Eq. (9):

IS

21 = w(0) —w(a®) + Sy, (10)
ury = —w(0) + w(a*) + S. (11)

We also define a function G(z) as
G(z) = Glryal,x3) = —W(x —zi) + W(z —z3) + h.  (12)
We can find the relation
G(a3) = G(z3) = —W (a5 — 27) + h. (13)

The following theorem gives conditions for the existence of a steady
local excitation solution.

Theorem 1 There exists a steady solution of local excitation with
Rlu] = (z3, %) (27 < 23) if and only if S(x) and G[z; 7, 5] satisfy
the following three conditions:

S(x) = Gz; 27, x5), if x=xa],z3, ( steady condition 1 ), (14)
> Gy oy, x5), if x] <x <aj, (steady condition 2 ), (15)

S(z) < Glz;ay,x3), if x <z, x5 < x. ( steady condition 3 ).
(16)

Proof. If there is a steady solution of local excitation with R[u] =
(23, 23), u(r) in Eq. (8) satisfies u(x}) = u(x}) = 0. Hence, we have

a(xy) = Wi(xy — 7))+ S(z]) —h =0, (17)
a(xy) = W(zy — 7)) + S(x5) —h =0, (18)
so that
S(ay) = S(w3). (19)
From Eqs. (13) and (17), we also have
S(ar) = =W(wy —a7) + h = G(27) = G(x3). (20)



Therefore, we obtain Eq. (14) from Egs. (19) and (20). When z} <
x < b, u(x) > 0 holds so that

S(x) > -W(x —a7)+W(z —23) +h=G(x). (21)

Thus, Eq. (15) holds. When x < 7 or x5 < z, we find a(z) < 0 so
that

S(x) < —W(x —a])+W(r —a5) + h=G(x). (22)
Hence, we obtain Eq. (16).
On the contrary, if Eqs. (14)-(16) hold, u(x) given by
u(x) =S(z) —Gx) =W(r —2a]) —W(x —z3) + S(x) —h (23)

satisfies u(z) > 0 only for 2} < = < 3. By substituting Eq. (23) into
Eq. (1), we have du(z,t)/0t = 0 so that Eq. (23) is a steady solution
of local excitation with R[u| = (z},z3). O

We refer to the conditions (14), (15), and (16) as the steady condition
1, 2, and 3, respectively. In cases where the steady condition 1 holds,
the relation S(z7) = S(x3) also holds from Eq. (13) so that we define
a variable S* = S(x7) = S(x3) for this case.

Corollary 1 Assume that w(z) satisfies the following relations in ad-
dition to Egs. (2) and (3):

dw(x)/dx <0, if 0<z <z, (24)
dw(x)/dz >0, if = > zo, (25)
w(zgy) <0, (26)
lim w(z) =0, (27)

where xy s a positive parameter. If the steady condition 1 and the
following relationships hold with S* = S(z7) = S(23) (2] < x3),

S* < h, (28)
S(x) > S*, if ] <z <, (29)
S(x) < S*, if z<ai, i<z, (30)

then the steady conditions 2 and 3 also hold.



The proof of the corollary is given in Appendix A.

Theorem 1 indicates that the relationship between S(z) and G(z) de-
cides whether a steady solution of local excitation exists. This theorem
is used to find steady local excitation solutions below in the discussion
about the graphic analysis method. If we find z] and z satisfying the
steady condition 1 by the method mentioned below, then we can find

whether the steady conditions 2 and 3 also hold by drawing graphs of
S(z) and G(z).

Corollary 1 also can be used in the graphic analysis method. The
conditions (24)-(27) in the corollary imply that w(z) is a typical
“Mexican-hat” shaped function. In cases where S(z) is unimodal or
takes a constant value throughout domain of the field, Eqgs. (29) and
(30) necessarily hold as far as the steady condition 1 holds. Therefore,
in such specific cases, only if the steady condition 1 and Eq. (28) hold,
we can easily find from Corollary 1 that steady conditions 2 and 3 also
hold. Figure 1 shows an example of S(z) and G(z) that satisfy all the
steady conditions in cases where w(z) is a Mexican-hat type and S(z)
is unimodal.

S(x)]
G(x)

»
»

X

Fig. 1. An example of S(x) and G(x) that satisfy the three steady conditions
in Theorem 1.



4 Stability of local excitation solution

Let us consider the stability of a steady solution of local excitation
with R[u] = (27, 23). Assume that the state of Rlu(z,t)] = (z1,22) at
time ¢ has changed to the state of R[u(x,t+dt)] = (v1 +dx1, v2+dxy)
at time ¢ + dt. Then, the following relations hold for ¢« = 1 and 2:

u(z;,t) =0, (31)
u(z; + dx;, t + dt) = 0. (32)

The Taylor expansion of the left-hand side of Eq. (32) yields

ou(z;,t) ou(w;,t) ,
o day + o dt = 0. (33)
From Egs. (1) and (31), we have
au(xia t) 2 ! !

T = / w(z; —x')dx" + S(x;)) —h=W(xy —x1) + S(x;) — h
(34)

so that a differential equation with respect to the boundaries x;(i =
1,2) of the excited region can be obtained as follows:

% — (.’L’“ )/at — 1 {W(I,Eg — $1) + S(l‘z) - h}7 (35)

dt Ugi TUg;

where u,; = 0u(x;,t)/0z. Let us denote small perturbations in z; and
Ug by Z; and tUg;. By substituting z; = x] + Z; and uz; = u); + Uy
into Eq. (35) and neglecting terms of Z} and a2,(n > 2), we have the
following equation with a* = z5 — z} and S, = dS(x})/dx:

(L - ) ) - )+ o) + ST + 2 ).
(36)

From the steady condition 1, we can find W(a

) + (x ) —h = 0.
Therefore, by neglecting terms of ,;7;(i = 1,2, j =1,

13
1,2), we obtain



a linear differential equation with respect to Z; and Z, as follows:

T
Ty

(37)

7 w(a™)/uze  —{wla”) + 55} /ug

1{{w<a*>s;1}/u;;1 —w(a®)/uly ]

Let A be the matrix in the right-hand side of Eq. (37). Then, the
characteristic equation of matrix A becomes

N +BA+C =0, (38)
where
B:l{_w(a )*_ Sml +U)(CL )*+ S:EQ}, (39)
T Uzt Uga
1 * * £ £ *
¢ = m{w(a )(S:vl - SJ:Z) + S:EIS:EQ}' (40)

We define A; and Ay to be eigenvalues of the matrix A. Here, let us
consider the classification of Case I : S}, # S», and Case I1: S}, = S%,,
and further classify Case I and Case II as follows:

*

Case I-1 : S} — Sk >0, w(a*)(Sk — Sky) + SiSky >0,
Case -2 : S7, — Siy >0, w(a)(Sy —Sk) + 55,55, <0,
Case I3 : S, — Sk, <0, w(a*)(Sk — Sky) + Sk Sk, >0,
Case I-4 : 7, — 57, <0, w(a®)(S5 — Syy) + 55155, <0,
Case II-1: S}, =S, # 0,

Case II-2 : S;, = Si, =0, w(a") >0,

Case I1-3: S;, =S5, =0, w(a*) <O0.

= e
W N =

W
ot

AN N N N N /N
Iy =~
(@)} =N

N N N N N e N

H~
-

Then, as shown in Table 1, we can find signs of the real part of
eigenvalues in each case by solving signs of B and C' (see Appendix B
for details). We have not examined the sign of B when C' < 0, because
signs of the real part of eigenvalues are independent of B in this case
(see Lemma 1 in Appendix B). In the table, Re();) denotes the real
part of the eigenvalue )\;, and the notation of \; > 0 or A\; < 0 is used
only when J); is a real number. “Relation between dY (a*)/da and o*”
in the table will be discussed in the following section.



Table 1 shows that, for Case I-2, real parts of the two eigenvalues are
negative and the system is asymptotically stable, but that, for Case
I-1, I-3, I-4, II-1, or II-2, the system is unstable.

In Case II-3, there exist zero and negative eigenvalues, which means
that the stability depends on second (or higher) order terms in per-
turbations z; and u,;. For the sake of simplicity, we neglect special
cases where S(z) takes a local maximum (or minimum) at = zj
or z3, and restrict the discussion in Case II-3 to the cases where
S(x) takes a constant value in a neighborhood of z = 7 and 3,
le,x € (2} —e,af +¢) = S(x) = S* for i=1 and 2 with € > 0. Then,
since Sk, = S, = 0 in Case II-3, we have from Egs. (10) and (11)

By defining ¢ = u}, = —ul,(> 0), Eq. (37) can be reduced to

d|Zv| w*)| 1 =125

dt 5:2 TC -1 1 il

(49)

This equation can be rewritten as the following two independent equa-
tions:

d . .y 2w(a¥) . .
a(ﬁz—xl)— s (T2 — 1), (50)
7 () =0 1)

Since w(a*) < 0 in Case II-3, Eq. (50) indicates that 7, —#; converges
to zero for ¢ — oo. We can find from Egs. (50) and (51) that, when
the excited region of local excitation is perturbed from a steady state,
the length of excited region returns to that of the steady state, but
that its position does not return. This means the shift of the excited
region without changing its length. Therefore, we consider the case
where the excited region of the steady local excitation solution with
R[u] = (x7, x3) has moved with keeping its length to the state denoted
by R[u] = (x}',2%) with 27" = 2] + ¢ and z}' = 25 + 6. We can find

10



S(zf') = S(x}) for i =1 and 2 as far as || < €. Since we can also find

Gl o a3y = —W(ay —a)+h=-W(zs—2])+ h
= Gz} 21, 23] = S(a7) (52)

)

for ¢ =1 and 2, we have
S(@) = Glwiat,ay), if @ =ai, a3 (53)

and the steady condition 1 holds with respect to local excitation of
Rlu] = (7', x3"). Since we can find the following relation:

Gl i 28] = W —2])+W(x —a3)+h
=Wz = 0) —27) + W((z - 6) — 3) + h = G(x — 0); 7, x3],
(54)

Glz; 2z}, x3] is a function given by translation of G|z;z7, 5] along
the xz-axis by d. Hence, as shown in Fig. 2, the relationship of steady
conditions 2 and 3 still hold between S(z) and G[z;z},x}] as far
as 0 is sufficiently small, so that the state of local excitation with
Rlu] = (7', x3') becomes a steady state.

Therefore, we can understand that, if S(x) takes a constant value
in a neighborhood of z = z7 and z7 in Case II-3, local excitation with
R[u] = (x7,x3) is stable, but not asymptotically stable.

S(x), Glx;x,,x,]
G(x)

>

e B * *y

1)
&N X X,

*I k!

Fig. 2. Relationship between G[z;z}, 23] and G[z; 7 x3']

11



The above discussion can be summarized as the following theorem.

Theorem 2 A steady solution of local excitation with R[u] = (27, z%) (27 <
x3) s

(1) asymptotically stable in Case I-2,
(2) unstable in Case I-1, I-3, I-4, II-1, or 1I-2,

(3) stable (not asymptotically stable) if S(x) takes a constant value in
a neighborhood of x = x7, x5 and w(a*) < 0 holds.

5 a— 95 curve

In order to prepare the basis for discussion about the graphic analysis
method, we define the ¢ — S curve and analyze its property.

Definition 1 We define the a — S curve to be a set of points (a, S) n
the plane spanned by a and S such that there exist x1 and x4 satisfying
the following relations:

T, < T, (55)
S(z1) = S(zy) = S, (56)
a=xy— 1. (57)

In the following section, we will show how to draw the a — S curve
and it will become clear that the points (a, S) defined above actually
constitute curves in the plane spanned by a and S. Figures 3(a) and
3(b) show an example of S(z) and the corresponding a — S curve,
respectively.

Here, we define a function Y (a) as follows:
Y(a) =h—W(a). (58)

Then, the following theorem shows that, if the a — S curve is plotted
with curve Y (a) on the same plane as shown in Fig. 3(c), an inter-
section of both curves corresponds to a solution of steady condition

12



(@  S(x)

S(x)

(b)

%N

a(=x,—x;)

i gradient @

>
~
~
Q
~

©

a—S curve

»

a
Fig. 3. An example of the a — S curve and function Y (a)

1.

Theorem 3 The steady condition 1 holds for x3, x5 (x} < x3) if and
only if S(x7) = S(x3) holds and the point (a*,S*) with a* = 25 — a7
and S* = S(x}) = S(x3) lies on an intersection of the a — S curve
with curve Y (a).

Proof. If the steady condition 1 holds for z}, x (27 < z3}) , then
S(x7) = S(x3) holds from Eq. (13). We find from Definition 1 that the

13



point (a*, S*) with a* = 25 — 27 and S* = S(z7) = S(z3) lies on the
a— S curve. We also find the following relationship by using Eq. (13),
Eq. (58), and steady condition 1:

Y(a)=h—-W(a")=h—-W(z5—2]) =5, (59)

so that the point (a*,S*) lies on curve Y'(a). Therefore, the point

(a*, S*) lies on an intersection of the a — S curve with curve Y (a).

On the contrary, if S(z7) = S(z%) holds and the point (a*, S*) with
a* = a3 —af and S* = S(x7) = S(x3) lies on an intersection of the two
curves, then Eq. (59) holds so that we can obtain the steady condition
1 from Eq. (13). O

We can understand from Theorems 1 and 3 that, if there exists
a steady solution of local excitation with R[u] = (z7,2%), the point
(a*, S*) with a* = 25 — 2} and S* = S(x}) = S(«3) lies on an intersec-
tion of the a — S curve and the curve Y'(a). As shown in Fig. 3(c), we
define o*(= dS(a*)/da) to be the gradient of the a — S curve at the
intersection point (a*, S*).

Here, we explore the relation between dY (a*)/da and o* for each
case in (41)-(47). Assume that z1, 25 (21 < 23), a, and S and their
perturbations denoted by Axy, Axs, Aa, and AS satisfy the following
equations:

~

S(zy) = S(w) = 8, (60)

S(xy + Azy) = S(wy + Azg) = S + AS, (61)
=1y — a1, (62)

a+ Aa = (r9 + Axy) — (21 + Axy). (63)

Figures 4(a) and 4(b) show the relationship of these variables with
S(x) and the corresponding a — S curve. Equations (60)-(63) means

~

that both points (@, S) and (a + Aa, S + AS) lie on the a — S curve.

14



b) S

a a+Aa
Fig. 4. Relationship among variables z;, x3, a, and S , and their perturba-

tions Axy, Azg, Aa, and AS.

We can find
ﬁ_ AS _AS AS AS_AS (64)
Aa  Azy— Az; Az Az Az, Axs

SO thAat, by taking the limit AS — 0, we obtain the gradient of the
a — S curve:

dS(a)  dS(xy) dS(z,) dS(zy)  dS(z2)
da dz dx /( de  dzx )’ (65)

where we have assumed dS(z;)/dz # dS(xs)/dz.

In Case I, by substituting x; = 2], 72 = 23, and a = a* into Eq.
(65), a* is given as

O{*

_ dS‘(a*) _ S715%9

= . 66
da 21— Spo ( )

15



Thus, we have

dY (a*)
da

—of = —w(a) - S215 _ _w(a*)(Sil —Sy) + 5215;2‘

* * * *
Sml - Sm2 S:El - S:EZ

(67)

Note that, if x € (] —e,27 +¢) = S(z) = S* for i = 1 or 2 holds
with € > 0 in Case I, we cannot use Eq. (64) because of AS = 0.
But, in this case, we can find from Definition 1 that a line segment
of {(a,S*)|a € (a* — £,a* 4+ ¢)} is a corresponding part of the a — S
curve, so that a* = 0 and Egs. (66) and (67) still hold.

Therefore, from Eqgs. (41)-(44) and Eq. (67), we have dY (a*)/da < o*
for Cases I-1 and I-4, and dY (a*)/da > a* for Cases I-2 and I-3.

In Case II-1, dS(a*)/da cannot take a finite value because Eq. (66)
yields |dS(a*)/da] — oo in the limit of S*, — S*, — 0. For the sake
of convenience, we set the gradient of the a — S curve in this case as
a* = 400. Then, we have dY (a*)/da < a* = 400 for Case II-1.

In Cases 1I-2 and II-3, we cannot use Eq. (66) since S}, = S%, = 0.
Here, just like the discussion about the stability analysis of Case II-3
in the previous section, we restrict the discussion for Cases II-2 and
I1-3 to the cases where S(z) takes a constant value in a neighborhood
of = a7 and z3, ie., x € (xf —e,2f +¢) = S(z) = S* fori =1
and 2 with £ > 0. Then, we can find from Definition 1 that a line
segment of {(a, S*)|a € (a* — 2¢,a* + 2¢)} is a corresponding part of
the a — S curve so that a* = 0. Since w(a*) = —dY (a*)/da, we have
dY (a*)/da < a* = 0 for Case II-2, and dY (a*)/da > o* = 0 for Case
I1-3.

The above discussion is summarized in Table 1 as “Relation between
dY (a*)/da and o*”. From Table 1, we can understand that S, —S%, >
0 and dY (a*)/da > a* hold only for Case I-2 and that S*, —S*, < 0 or
dY (a*)/da < a* holds for Case I-1, I-3, I-4, 1I-1, or II-2. We can also
find the relation of w(a*) < 0 < dY (a*)/da > o* when S(z) takes a
constant value in a neighborhood of z = 27 and z7. Therefore, we can
obtain the following theorem from Theorem 2.

Theorem 4 A steady solution of local excitation with R[u] = (a7, x3) (27 <
xh) is

16



(1) asymptotically stable if Sk — Sk, > 0 and dY (a*)/da > o,
(2) unstable if St — Sk, <0 or dY (a*)/da < o,

(8) stable (not asymptotically stable) if S(x) takes a constant value in
a neighborhood of x = x5, x3 and dY (a*)/da > a* (= 0).

The following corollary exists, which can be used in the graphic anal-
ysis method in the following section. (The corollary is easily proved
from Eq. (66). )

Corollary 2 Assume that S;,S;, > 0 and o* # +o00. Then, the fol-
lowing relations hold:

a*>0=8;,—-5,>0, (68)

a"<0= 8, —-5,<0. (69)

6 Graphic analysis method

Theorems 1, 3, and 4 imply that the conditions of existence and sta-
bility of local excitation solutions are expressed graphically by the re-
lationship of four curves: S(z), G(z), Y (a), and the a — S curve. Here
we bring together the above results and construct a graphic analysis
method to find steady local excitation solutions and examine their
stability.

Definition 2 We say that f(x) is a monotone increasing (decreasing)
function if f(x1) < f(x2)(f(x1) > f(x2)) for any x1, xy with x; <
Ty in its domain. We refer to a monotone increasing or decreasing
function as a monotone function. We also say that f(z) is a constant
function if f(x1) = f(x2) for any x1 and x4 in its domain.

Definition 3 We define S;(x) (i = 1,..., N) to be functions that sat-

isfy the following four conditions, where a finite interval D; = [xp;, vpi) (xp; <
xg;) is the domain of S;(x), and R; is the range of S;(x). We refer to

a function S;(x) as a subfunction of S(x).
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(1) Si(x) takes the same values as those of S(x), i.e., Si(x) = S(x)
forx € D,.

(2) S;(x) is either a monotone or constant function,

(3) D; and D; with i # j do not have a common part except for their
boundaries, i.e., 1 # j = vpg; < Tpj or Ty < T,

(4) The domain of the neural field is covered with D;(i = 1,...,N),

i.e.,

U Dz — [xmina xmax]- (70)

i=1

Note that, if the domain of the neural field is (—o0, 00), a sufficiently
large positive (negative) finite value is used as a value of Tmax(Tmin)

in Eq. (70).

Definition 3 means the division of S(z) into N subfunctions S;(x) (i =
1,..., N) such that each subfunction is a monotone increasing, mono-
tone decreasing, or constant function. There exist many ways to de-
cide subfunctions according to the definition, and we can choose any of
them as far as the above four conditions are satisfied. Figure 5 shows
an example for N = 6, although we don’t need to set indexes i of
subfunctions S;(z) in sequence like the example.

S(x) S.(x)

S, (x)

Xmin ~ XH1 Xu2 X3 Xya  Xms Xinax
(xp) (xp5) (xg3) (x.4) (x,5) (xg6) (X46)
Fig. 5. An example of subfunctions

Definition 4 We define I';j(i = 1,..,N, j =1,....N) to be a set of
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(a, S) such that there exist x1 and xo satisfying the following relations:

x| € DZ', To € Dj,
1 < To9,
Si(x1) = Sj(x2) = 3,
a =Ty — T1.

(
(
(
(

From Definitions 1 and 4, we can find that I';; is a subset of the

a — S curve and that the a — S curve is described as ULy;.
i!j

Definition 5 We define the inequality sign with respect to D; and D;
as

D; < Dj(ngz' < rgj, (75)

D;<D;YD,=D; or D, <D, (76)

(Note that we have D; = D; < i = j from Definition 3.)
D; < D;j means that the interval D; is at the positive side of D;. We
can see from Definitions 3 and 5 that a relation of D; < D;, D; > Dj,

or D; = D; always holds for every 7 and j.

Definition 6 Let S;'(S) and Sg;(S) (S € R;) be functions such that

STUS),  if S is a monotone function,
S5y =4 TS ! @
TrLis if S; is a constant function,
B S;HS), if S;i is a monotone function,
Swi(S) = o _ (78)
THi, if Si is a constant function,

where S;'(S) denotes an inverse function of Si(x).
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We have the following theorem from the above definitions.
Theorem 5 I';; is described as follows:

(1) When both S; and S; are monotone functions and D; < D; and
R;N Rj 7& ¢7

Iy = {(a,9)]a = S74(S) = S74(S), a>0, S€ RiNR;}, (79)

J

(2) When S; and/or S; are constant functions and D; < D; and R; N

Fij :{(a7 S)‘a’ S [ngl(sc) - S;Izl(Sc)a S;I;(Sc) - Sizl(sc)];
a>0, S=S5.}, (80)

where S, is defined such that {S.} = R; N R;,

(3) Otherwise,

L =¢. (81)

The proof is given in Appendix C. Since the a — S curve is U Ty
i\

as mentioned above, we can draw the a — S curve by plotting points
(a,S) € I';; for every i,j with I';; # ¢ by using Theorem 5.

We introduce a notation (a,S5)|T'y; to denote a point (a,S) with
(a,S) € Ty;. Since we can see from Definition 4 that there exist 21 and
x5 satisfying Eqs. (71)-(74) for any point (a, S)|T;;, we denote a set of
these points (z1,z5) by O[(a, S)|T;].

Theorem 6 O[(a, S)|Ty;] is given as follows:
(1) When S; and/or S; are monotone functions,

Ol(a, S)|Ty;] = {(z1, m2)|71 = max(S,; (S), S} (S) — a), x2 = z1 + a},
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(2) When both S; and S; are constant functions,

O[(a, 5)|I'y] ) )
= {(z1,22)|z1 € [max(S; (S), Sz;(S) —a),
min(S5(S), Sl}}(g) —a)], xo =z +a}. (83)

The proof is given in Appendix D.

We denote the intersection points of the a — S curve with Y (a)
by (aj, S§)|Ti . (k= 1,..., M), where k is the label of intersections
given in arbitrary order, (aj,S;) denotes the coordinate of the kth
intersection, and i, and jj, denote integers such that (aj, Sy) € L'y j, -
When an intersection point (a*, S*) belongs to I';; for more than one
pairs of 7,7, we assign different indexes k for each different pair of
t,7. Thus, M denotes a total number of intersections considering such
overlapping. For the sake of notational simplicity, we define O, =
Ol(ag, Sp)|Ti ) (k=1,..., M). Then, we obtain the following corollary
from Theorem 3.

Corollary 3 The steady condition 1 holds for x3, x% (x7 < x3) if and
only if (s, 73) € U Oy
k

The proof is given in Appendix E.

Definition 7 We define Wy to be a set of (x3,x3) satisfying the fol-
lowing relations:

(z1,23) € O, (84)
S(x) > Glz;ay, x3), if 27 <z <, (85)
S(x) < Gz ay,x3), if ©<uxi, x5 <. (86)

Equations (85) and (86) are the same as steady conditions 2 and 3.
From Definition 7, we have the following corollary (the proof is easily
obtained from Theorem 1 and Corollary 3).

Corollary 4 There exists a steady solution of local excitation with
Rlu] = (7, x3) (27 < x3) if and only if (7, 25) € U V.
k
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In case of (x},2%) € Wy, (27, 25) € O also holds, so that we have
aj, = x5 — x} and S(z7) = S(x3) = S;. As mentioned above, T'; j, is a
subset of the a — S curve so that, if we define aj, to be the gradient
of curve T'; ;, at the point (aj, S;)|l, ., we can check the stability
of local excitation solution of R[u] = (a7, x3) with (z],z3) € Uy by
replacing a* by aj, and a* by «j in Theorem 4. (See Step 5 below.)

From the above discussion, the graphic analysis method can be
described as follows.

Step 1. Set subfunctions S;(z)(i = 1,..., N) according to Definition 3.

Step 2. Draw the a — S curve by plotting points (a, S) e I';; for every
i,j (1=1,..,N,j=1,..,N) with I';; # ¢ by using Theorem 5.

Step 3. Plot the curve Y(a) = h — W{(a) on the same plane as the
a— S curve, and find intersections (af, S{)|Ty,j, (k = 1,..., M) of these
two curves. Note that, when one intersection point belongs to I';; for
more than one pairs of 7, j, we assign different indexes k corresponding
to each different pair of 4,j. (M is the total number of intersections
considering such overlapping.)

Step 4. Find Ox(= O[(a, S§)|Ti,;.]) for all k& from Theorem 6. Plot
S(z) and G[z;z], x5] with (z7,23) € Oy for each k on the same co-
ordinate system. Then, check whether the steady conditions 2 and 3
hold to find ¥y from Definition 7 (from the definition, (z7,z}) € ¥y
holds only when (z}, 23) € © and the steady conditions 2 and 3 hold).
From Corollary 4, there exist steady solutions of local excitation with
R[u] = (z7,x3) only for (x7,x3) € LkJ\Ifk

Step 5. Let o be the gradient of curve I'; ;, at the intersection point
(aj, S§)|Ti .- (Consider that aj = +oo if the curve is vertical, i.e.
parallel to the S - axis, at the intersection.) Let S* and S*, be
the gradient of S(z) at the points (x7, S(z})) and (25, S(z3)) with
(xf,25) € Ui(# ¢). ( Note that, only the points (x7,S(z})) and
(x5, S(x3)) are intersections of S(z) with G[z; 27, 23] for (27, 23) € Uy
because of steady conditions 1-3. ) Then, from Theorem 4, a steady so-
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lution of local excitation with R[u] = (z}, x3) with (27, 23) € ¥r(# ¢)
is

(1) asymptotically stable if S*, > S, and dY (a})/da > o,
(2) unstable if 5%, < SZ, or dY (a})/da < aj.

(3) stable (not asymptotically stable) if S(z) takes a constant value
in a neighborhood of z = z}, 2} and dY (a})/da > aj (= 0).

In step 4, we need to plot functions G|z;x}, z3] with (z7,z3) € O
in order to find Wy. If S;, and/or Sj, are monotone functions, then we
can easily plot Glz; z7, x3] since © contains only one element (z7, x3)
in this case, as shown in Theorem 6. However, if both S; and S;
are constant functions, ©; contains infinite number of elements in
Theorem 6 so that we must pick up several elements (z},z3) € O
and plot Glz; 7}, x3] for each of them to obtain W by the required
accuracy. Note that, in cases where (z],z3) € O, and Eqs. (24)-(27)
hold (i.e., w(x) is a Mexican-hat type function), we can find from
Corollary 1 that steady conditions 2 and 3 hold if the following three
conditions hold:

Sy < h, (87)
S(x) > S;, if 2] <z <aj, (88)
S(x) <S;, if z<a], x5 <. (89)

As discussed above, when S(x) is unimodal or takes a constant value
throughout the domain of the field, conditions (88) and (89) always
hold in case of (z7,23) € ©y. Hence, in such specific cases, we can
easily find that (z3,z3) € W without plotting G[z;x}, 3], only if
condition (87) holds.

In step 5, sometimes it might be difficult to distinguish a larger
one between S}, and S}, visually from the graph of S(x) when S},
is nearly equal to S},. In this case, if S;;S;, > 0 holds, we can use
Corollary 2 that af > 0= S}, > S, and o) < 0= S, <S5},.
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7 Example

We apply the graphic analysis method to the following example:
Tmin = 0, ZTmax = 29,
—0.28(x —10)2+7, for 5 <z <15,
S(r) = q —0.75(x — 18)2+ 3, for 16 <z < 20,

0, otherwise,

w(r) = 2.8exp{—2?/(2-3.9%)} — L.lexp{—2?/(2-9.6%)},
h = 6.

The Steps 1 - 5 shown below is corresponding to the steps in the
previous section.

Step 1. Set subfunctions S;(z)(i = 1,...,7) as shown in Fig. 6(a).

Step 2. Draw the a — S curve by plotting points (a, 5’) e I';; for every
i,j with I';; # ¢ as shown in Fig. 6(b) where the line of S =0 con-
tains I[';; for several pairs of 4, j, but their labels are omitted to avoid
complexity.

Step 3. Plot function Y (a) on the same plane as the a — S curve as
shown in Fig. 6(c). Then, we can find 5 intersections (aj, S;)|L,j, (k =
1,...,5) that are indicated by P; to Ps. The coordinates of points
(ag, S§) and the numbers of (i, ji) are shown for each & in Table 2.

Step 4. Find O for all £ (k = 1,...,5). Since © contains only one
element (z7, %) for each k in this example, we denote this element
by (27 1, 25,). The actual values of (7, 5,) are also shown in Ta-
ble 2. Plot S(z) and G[z; 2], 25,](k = 1,...,5) as shown in Fig.
6(d) to check whether the steady conditions 2 and 3 hold with re-
spect to local excitation of R[u] = (z} ;, 3 ;). In Fig. 6(d), each curve
Gr(k =1,...,5) denotes G[x;z} ;, 73] and open circles denote points
(z1 4, S(x1,)) and (x5, S(x5,)) with the corresponding number .
Note that, since z7, < 3, the point (z3,,S(v3;)) is at the right
side of (27, S(77;)) in the figure for each k. We can find from the
figure that the steady conditions 2 and 3 hold between S(z) and
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Glr; a7y, x5,] only for k = 3,4,5. In Fig. 6(d), Glz;2},,v5,] are
plotted by solid lines when steady conditions 2 and 3 hold and by
dashed lines otherwise. Hence, we have ¥, = ¢ for £ = 1,2 and
V= {(2] 4, 75,)} for k = 3,4,5. Therefore, there exist three steady
local excitaiton solutions of R[u] = (x},,75,) (k = 3,4,5).

Step 5. We examine the stability of the three steady solutions from
Figs. 6(c) and 6(d). In Fig. 6(c), we compare aj, and dY (a})/da, i.e. the
gradient of the a — S curve and that of curve Y (a) at each intersection
point Py(k = 3,4,5). Then, we find dY (a;)/da > o}, for k = 3,5 and
dY (a})/da < aj for k = 4. In Fig. 6(d), we compare S¥, and SZ,, i.e.,
the gradients of S(x) at the points (z7,, (27 )) and (z3,,S(x5,)).
Then, we find S}, > S}, for k = 3,4,5. In case of k = 4, we find S}, > 0
and S¥, > 0 (i.e.,, S* Sk, > 0) from Fig. 6(d) and aj > 0 from Fig.
6(c), so that S > S, can be obtained also from Corollary 2. There-
fore, we find that S}, > S, and dY (a;)/da > af holds for k = 3,5
and that S}, > S%, and dY (a})/da < «j, holds for k = 4, so that the
steady local excitation solutions of R[u] = (z7],75,) (k= 3,4,5) are
asymptotically stable for £ = 3,5 and unstable for k£ = 4.

This example shows how localized neural activity can be elicited
by two input stimuli applied simultaneously to the neural field. We
can understand from the above result that, if two stimuli are applied
to sufficiently nearby positions in the field, two kinds of stable local
excitation pattern solutions coexist: a pattern in response to only one
stimulus and the other bridging the two stimuli. This type of pattern
dynamics cannot be obtained in the small external input condition
discussed in [2].

The definitions of the a — S curve and function Y (a) imply that
the @ — S curve signifies the effect of external input, whereas Y (a)
signifies the connectivity, or the effect of mutual excitaiton and inhi-
bition among neurons. Since solutions can be obtained corresponding
to intersections of both curves, the pattern dynamics shown in the
example reflects interaction of external inputs with mutual excitation
and inhibition.
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S(x), G(x)

Fig. 6. An example of the graphic analysis method

8 Discussion

Local excitation pattern solutions in a one-dimensional neural field
have been analyzed in the presence of arbitrary time-invariant external
inputs. We have obtained the conditions for existence and stability of
local excitation solutions by reducing the dynamics of the neural field
into that of boundaries of the excited region. We have also established
a graphic analysis method to find steady local excitation solutions and
examine their stability.

For the sake of mathematical convenience, we have assumed that
the output function is the step-function. The field dynamics is robust
as demonstrated by the analysis of Kishimoto and Amari [3] that
states that the field with more general output function has the similar
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dynamical property. Thus, the results of the present paper may provide
approximation of the cases for more general output functions.

Amari [2] has argued that, when an external input stimulus is
very strong compared with mutual excitation and inhibition among
neurons, the external input dominates the solution. On the other hand,
as shown in the above example, field dynamics is more complicated
and determined by interaction of both effects if the external input
is strong to the extent such that its effect matches that of mutual
excitation and inhibition. We have also demonstrated the existence of
pattern dynamics that cannot be obtained in small input conditions in
[2]. Analysis of pattern formation with more than one excited regions
elicited by such interaction is a problem for the future work.

The proposed graphic analysis method can visualize variations in
excitation patterns depending on external inputs as well as other pa-
rameters. Therefore, the method is useful for intuitive understanding
of changing neural activity in the cortical cell assembly under various
conditions.
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Appendix

A Proof of Corollary 1

We define function ua(x) by using a* = 23 — 23(> 0) as

ua(x) =W(x)—W(z —a*)—h+ S™ (A.1)
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From the steady condition 1 and Eq. (13), W (a*) — h+ S* = 0 holds,
so that we find u4(0) = ua(a*) = 0. For 0 < x < a*, we can find the
following relations from w(z) = dW (z)/dx and Eqgs. (24)-(27):

W (x) @x, (A.2)
W(a* —z) > Wéf*) (a* —x) (A.3)

so that
ug(z) =Wix)+W(a" —z) —h+S">W(a")—h+S5" =0. (A4)
Differentiation of Eq. (A.1) gives

dua(z)
dz

=w(z) —w(x —a"). (A.5)

From Eqs. (24)-(27), there exists x1(> a*) satisfying w(z) = w(x; —
a*), and we can find relations of du,(z)/dx < 0 for a* < = < z; and
dus(z)/dx > 0 for x > x; from Eq. (A.5). Since we can also find
lim ua(z) = —h + 5" <0 from Eqgs. (27) and (28), ua(z) < 0 holds
for x > a*.

Since uy(a* — ) = ua(x), ua(z) is symmetric with respect to
r = a*/2. Therefore,

ua(z) >0, if 0 <z <a”, (A.6)
ua(z) <0, if 2 <0, a" <uz. (A.7)

From Eqgs. (12) and (A.1), we have G(z) = —us(z — 27) + S*, so that
we obtain the following relations:

G(x) < S*, if 2] <z <3, (A.8)
G(x)>S*, if v <uz], 25 <uw. (A.9)

From Egs. (29),(30),(A.8), and (A.9), we obtain steady conditions 2
and 3.

28



B Analysis of characteristic equation (38)

Lemma 1 Let A\; and Ay be two roots of the characteristic equation
A2+ B)X+ C = 0. Then, we have the following relations:

1) If B> 0 and C > 0, then Re(\;) <0, (i =1,2),
2) If B <0 and C > 0, then Re(\;) >0, (i =1,2),

3)If B> 0 and C = 0, then Ay and Ay are real numbers such that
M =0 cmd)\2<0,

4) If B <0 and C = 0, then Ay and Ay are real numbers such that
A =0 cmd)\2>0,

5) If C < 0, then Ay and Ay are real numbers such that \y > 0 and
Ay < 0,

where Re(\;) denotes the real part of A;.

We can easily prove this lemma by using the relations of B =
— (A + A2) and C' = A\ \o. We can also find signs of B and C' for each
case as follows; we do not consider the sign of B when C' < 0, since
signs of the real parts of eigenvalues do not depend on B in this case:

1) For Case I-1 and Case 1-3, we find C' < 0 by using %, > 0 and
ui, < 0in Eq. (40).

2) For Case I-2, we find C' > 0 by using v}, > 0 and u}, < 0 in Eq.
(40). From Egs. (10) and (11), Eq. (39) can be transformed into

B = —— [w(0){2u(a) = S}, + S} — 20(a)’
+2{(51 — Sa)w(a®) + 5215;2}]
= m*iu*z [w(0){2w(a") = S}, + Sj,} — 2w(a’)?] +27C. (B.1)
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From Eq. (42), we have

25* S* S*2+S*2
2w(a") = Sp + 85 < oo = Sh+ S = —or e < 0.
zl = Mx2 zl = Mx2
(B.2)

Hence, we have B > 0 from Egs. (3), (B.1), and (B.2).

3) For Case I-4, we find C' > 0 by using v}, > 0 and u}, < 0 in Eq.
(40). Since we have from Eq. (44)

S* 5%
w(a®) > —*L‘ﬂ*, (B.3)
zl Sz?
we find
S* S* 5*2
w(a) =83 > g e = Sy = e 2 0, (B.4)
zl = Mx2 rl = Mx2
S* S* 5*2
w(a*) + S5y > — e+ Spy = — e 2 0. (B.5)
zl = Mz2 1l Sa:2

From Egs. (39), (B.4), and (B.5), we find B < 0.

4) For Case II-1, we find C' < 0 by using u}, > 0 and u}, < 0 in Eq.
(40).

5) For Cases II-2 and II-3, we find C' = 0 from Eq. (40). We also find
from Eq. (39)

B w@) (_LJFL), (B.6)

* *
T Uz Ugo

From v}, > 0 and u}, < 0, we have B < 0 for Case II-2 and B > 0
for Case II-3.

Since we have obtained signs of B and C for each case, we can
find signs of the real parts of eigenvalues from Lemma 1, which is
summarized in Table 1.
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C Proof of Theorem 5

We can find I';; = ¢ for the following three cases:

1) In case of D; > D;, 1 > x5 holds for z; € D; and x5 € D,. Thus,
Eq. (72) does not hold so that I';; = ¢.

2) In case of R, N R; = ¢, Sij(x1) # Sj(x2) holds for x; € D; and
zy € D;. Thus, Eq. (73) does not hold so that I';; = ¢.

3) In cases where S; is a monotone function and i = j, S;(x1) # Si(z2)
holds for zy,29 € D; with 21 < x4, so that Eq. (73) does not hold.
Hence, I';; = ¢.

Then, we consider I';; in the following Cases a) - ) by excluding the
above three cases:

Case a) Both S; and S; are monotone functions and D; < D, and

RiﬂRj#QSa

Case b) S; is a monotone function and S; is a constant function and
D; <Dj and RiﬂRj#Qﬁ,

Case c) S; is a constant function and S; is a monotone function and
D; <Dj and RiﬂRj#¢,

Case d) S; is a constant function and i = j,

Case e) Both S; and S; are constant functions and D; < D; and
RN R; # ¢.

Lemma 2 Let S,; be the value of a subfunction S;(x) when S;(x) is
a constant function. Then, T';; is described as follows for the above

Cases a) - e).
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L= {(a, S)a = S74(S) — S;71(S),a> 0,5 € RN Rj} , for Case a),

(C.1)

Lij = {(a,9)]a € [z1; — S, (Sej)s xm; — SiH(Se)la > 0,8 = S},
for Case b), (C.2)
Ty = {(a,9)|a € [S;"(Sei) = i, S;'(Set) = w14l @ >0, § =8},
for Case c), (C.3)
L= {(a, 5')|a € (0, xy; — x4, S = Sci}, for Case d), (C.4)
Ly = {(a7 9)a € (@0 — g, T — Tri),a > 0,5 = Sci} , for Case e).
(C.5)

Proof. Since proofs of Cases a) - e) are similar, we show only proof of
a) and omit proofs of the other cases.

If (a,S) € Iy, there exist x; and z, that satisfy Eqs. (71) - (74)
from the definition of I';;. We can find S € R; N R; from Eq. (73) and
a= S;l(g) — S7Y(S) from Egs. (73) and (74). We can also have a > 0
from Eqgs. (72) and (74) so that

(a,8) € {(a,8)]a=87"($) = $71(S), a>0, S€ RinR;}. (C.6)

J

On the contrary, if Eq. (C.6) holds, we can obtain Eqs. (71) - (74) by

~ ~

setting z; = S5; '(S) and zy = S;'(S). Thus, we have (a,5) € I';;. O

We can see that Eq. (C.1) for Case a) is the same as Eq. (79), and
that Egs. (C.2) - (C.5) in Cases b) - e) can be summarized as Eq. (80)
by using notations of S7;' and Sy}, so that we obtain Theorem 5.
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D Proof of Theorem 6

Lemma 3 In Cases a) - ¢) in Appendiz C, ©[(a, S)|T';;] is described
as follows:

O[(a, S)|Ty;] = {(z1, z2)|z1 = S;71(S), 23 = 1 +a}, for Case a),
(D.1)
O[(a, 9)|Ty] = {(x1,22) w1 = S; '(S), ws =1 +a}, for Caseb),
(D.2)
O[(a, S)|Ti;] = {(z1, z2)|z1 = S;l(g) —a, Ty =x1 +a}, for Case c),
(D.3)
Ol(a, S)|Tij] = {(z1, 22) |21 € [w1i, 255 — a], w9 = 21 + a}, for Case d),
(D.4)
O[(a, 9)|Ty]
= {(z1, 29)|21 € [max(x;, 2 — @), min(xg;, xg; — a)], 22 = 1 + a},
for Case e).
(D.5)

Proof. Since proofs for Cases a) - e) are similar, we show only proof
of Case a) and omit proofs of the other cases.

From (a,S) € T';; and Eq. (C.1) in Lemma 2, we have

a=S;"(S) - S7H(9), (D.6)
a>0, (D.7)
S e R; N Rj. (DS)

If (x1,75) € ©[(a,S)|T;], we find 2, = S7H(S) and z, = SJ_I(S)
from Eq. (73). By using Eq. (D.6), we have z9 = 1 + a, so that

(1, 72) € {(w1, 2) |11 = S, (), 22 = 71 +af. (D.9)
On the contrary, if Eq. (D.9) holds, we have

z = S7Y(9), (D.10)
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Ty =21 + a. (D.11)

From Egs. (D.7) and (D.11), a = 22 — 21 > 0 holds, so that we
obtain Eqgs. (72) and (74). Since we have from Egs. (D.6), (D.10), and
(D.11)

S;(S) =a+S71(S) = a+m =, (D-12)

ry € D; holds. We also have z; € D; from Eq. (D.10), so that Eq.
(71) holds. Furthermore, Eq. (73) holds from Egs. (D.10) and (D.12).
Therefore, Egs. (71)-(74) hold and we obtain (zy,x3) € O[(a, S)|T;].
(|

If we use the notation of S;;' and Sy, then Eqs. (D.1)-(D.5) in
Lemma 3 can be summarized as Theorem 6.

E Proof of Corollary 3

If the steady condition 1 holds for =7, 2% (2 < z3%) , the point (a*, S*)
with a* = 25 — 2] and S* = S(27) = S(z7) is an intersection of the
a — S curve with Y (a) from Theorem 3. We find

Si(x}) = Sj(a3) = 57 (E.1)
with 4, j satisfying 7 € D; and x5 € Dy, so that (a*, S*) € I[';; from

Definition 4. Since we can find a* = aj,, S* = S}, i = i, and j = jj
for some k, we obtain

.l'ﬂl( S Dik; fE; S Djk? (E2)
S (21) = S5 (23) = S, (E.3)
ay = ry — x]. (E.4)

Therefore, (23, 23) € O holds so that we obtain (x}, 23) € U O.
k

On the contrary, if (z7],z3) € U©Oy, then we have (z7,23) € O for
k

some k. Thus, from the definition of ©, we have a; = 25 — ] and
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Si,(x7) = S, (23) = Sj. Since (aj, Sf) lies on an intersection of the
a—S curve with Y (a), we obtain the steady condition 1 from Theorem
3.0
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LE

Table 1

Analysis of eigenvalues 4, and 4, given by the characteristic equation (38) for (a) Case I and (b) Case Il (4, and 4,

can be exchanged). Note that the notation of 4, >0 or 4, <0 isusedonlywhen 4, isa real number.

(@) Casel: S, #S.,

¢ g w(a )(S5, - S5,) Relzition between . Signs of Signs of real part of
T2 +8,S., dY(a )lda and « B and C A, and 1,
Case I-1 >0 >0 dY(a)lda<da" C<0 4,>0,4,<0
Case I-2 >0 <0 dY(a')lda>a" B>0, C>0 Re(Z,)<0(i=1,2)
Case I-3 <0 >0 dY(a")lda> o C<0 41>0,4,<0
Case 1-4 <0 <0 dY(a)lda<a B<0, C>0 Re(1,)>0(i=12)
(b) Case Il: S, =S,
S*1(= S*z) w(a*) dl;elation between ) Signs of Signs of real part of
x x (a )/da and a B and C Ay and 1,
Case I1-1 #0 - dY(a")lda<a" =+ C<0 21>0,4,<0
Case 11-2 = >0 dY(a)lda<a =0 B<0, C=0 4,=0,1,>0
Case 11-3 = <0 dY(a")lda>a =0 B>0, C=0 4,=0,1,<0




Table 2

Values of (a,,S;), (i,j,), and (x;k,x;k) for k=1,..5 in the

example of the graphic analysis method.

index k& 1 2 3 4 5
(a,,S)) | (2.6,2.0) | (5.0,0.3) | (9.1,1.3) | (11.2,2.4) | (12.2,2.9)
(ik’jk) (31 5) (31 6) (21 3) (21 5) (21 6)

(X %04) | (14.2,16.9) | (14.9,19.9) | (5.5,14.5) | (5.9,17.1) | (6.2, 18.4)
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