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Abstract

This paper investigates support vector machine (SVM) with a discrete
kernel, named electric network kernel, defined on the vertex set of an
undirected graph. Emphasis is laid on mathematical analysis of its theo-
retical properties with the aid of electric network theory and the theory
of discrete metrics. SVM with this kernel admits physical interpretations
in terms of resistive electric networks; in particular, the SVM decision
function corresponds to an electric potential. Preliminary computational
results indicate reasonable promise of the proposed kernel in comparison
with the Hamming and diffusion kernels.

keywords: support vector machine (SVM), discrete kernel, discrete Green’s func-
tion, tree metric, electric network, inverse M-matrix

1 Introduction

Support vector machine (SVM) has come to be very popular in machine learn-
ing and data mining communities. SVM is a binary classifier using an optimal
hyperplane learned from given training data. Through kernel functions, which
are a kind of similarity functions defined on the data space, the data can be
implicitly embedded into a high (possibly infinite) dimensional Hilbert space.
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With this kernel trick, SVM achieves a nonlinear classification with low compu-
tational cost.

Input data from real world problems, such as text data, DNA sequences
and hyperlinks in World Wide Web, is often endowed with discrete structures.
Theory and application of “kernels on discrete structures” are pioneered by D.
Haussler [9], C. Watkins [20] and R. I. Kondor and J. Lafferty [11]. Haussler and
Watkins independently introduced the concept of convolution kernels. Kondor
and Lafferty utilized spectral graph theory to introduce diffusion kernels, which
are discrete kernels defined on vertices of graphs.

In this paper we propose a novel class of discrete kernels on vertices of an
undirected graph. Our approach is closely related to that of Kondor and Laf-
ferty, but is based on electric network theory rather than on spectral graph
theory. Accordingly we will name the proposed kernels electric network kernels.
SVM using an electric network kernel admits natural physical interpretations.
The vertices with positive label and negative label correspond, respectively, to
terminals with +1 electric potential and −1 electric potential．The resulting
decision function corresponds to an electric potential, and the separating hy-
perplane to points with potential equal to zero.

Emphasis is laid on mathematical analysis of the electric network kernel
with the aid of electric network theory and the theory of discrete metrics. An
interesting link to discrete metrics is revealed by considering the special case
where the underlying graph is a tree. Then the electric network kernel is equiv-
alent, in a nontrivial sense, to a tree metric, which is a fundamental concept in
phylogeny [16]. Combination of this observation with the Gomory-Hu cut tree
known in network flow theory (see, e.g., [4]) naturally leads to a discrete kernel
based on the minimum cuts in an undirected graph. Another interesting special
case is where the underlying graph is a hypercube. By exploiting symmetry of a
hypercube, we provide an explicit formula for the electric network kernel, which
makes it possible to apply the electric network kernel to large-scale practical
problems. In our preliminary computational experiment the electric network
kernel shows fairly good performance for some data sets, as compared with the
Hamming and diffusion kernels.

This paper is organized as follows. In Section 2, we review SVM and its
formulation as optimization problems. In Section 3, we propose our kernel and
investigate its properties. Physical interpretations to SVM with our kernel are
also explained. In Section 4, we consider the case of a tree and indicate links
to a tree metric. In Section 5, we deal with the case of a hypercube, and show
some computational results for some real world problems.

2 Support Vector Machines

In this section, we review SVM and its formulation as optimization problems;
see [15], [19] for details. Let X be an input data space, e.g. Rn, {0, 1}n, text
data and DNA sequence, etc. A symmetric function K : X × X → R is said to
be a kernel on X if it satisfies the Mercer condition:

For any finite subset Y of X
matrix (K(x, y) | x, y ∈ Y ) is positive semidefinite. (2.1)
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For a kernel K, it is well known that there exists some Hilbert space H with
inner product 〈·, ·〉 and a map φ : X → H such that

K(x, y) = 〈φ(x), φ(y)〉 (x, y ∈ X ).

Given a labeled training set (x1, η1), (x2, η2), . . . , (xm, ηm) ∈ X×{±1}, SVM
classifier is obtained by solving the optimization problem

min
α∈Rm

1
2

∑

1≤i,j≤m

αiαjηiηjK(xi, xj)−
∑

1≤i≤m

αi

s.t.
∑

1≤i≤m

ηiαi = 0, 0 ≤ αi ≤ C (i = 1, . . . , m),

where C is a penalty parameter that is a positive real number or +∞. If
C = +∞, it is called the hard margin SVM formulation. If C < +∞, it is called
the 1-norm soft margin SVM formulation.

For our purpose, it is convenient to consider the equivalent problem

[SVM] : min
u∈Rm

1
2

∑

1≤i,j≤m

uiujK(xi, xj)−
∑

1≤i≤m

ηiui

s.t.
∑

1≤i≤m

ui = 0, (2.2)

0 ≤ ηiui ≤ C (i = 1, . . . ,m), (2.3)

where ui = ηiαi for i = 1, . . . , m.
Let u∗ ∈ Rm be an optimal solution of the problem [SVM] and b∗ ∈ R be

the Lagrange multiplier of constraint (2.2) at u∗, where the Lagrange function
of [SVM] is supposed to be defined as

L(u, λ, µ, b) =
1
2

∑

1≤i,j≤m

uiujK(xi, xj)−
∑

1≤i≤m

ηiui

−
∑

1≤i≤m

λiηiui −
∑

1≤i≤m

µi(ηiui − C) + b
∑

1≤i≤m

ui,

where u ∈ Rm, λ, µ ∈ Rm
≥0, and b ∈ R. Then the decision function f : X → R

is given as

f(x) =
m∑

i=1

u∗i K(xi, x) + b∗ (x ∈ X ). (2.4)

That is, we classify a given data x according to the sign of f(x). A data xi

with ηiu
∗
i > 0 is called a support vector. In the case of the 1-norm soft margin

SVM, a support vector xi is called a normal support vector if 0 < ηiu
∗
i < C and

a bounded support vector if ηiu
∗
i = C.

3 Proposed Kernel and Its Properties

Let (V, E, r) be a resistive electric network with vertex set V , edge set E, and
resistors on edges with the resistances represented by r : E → R>0. We assume
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that the graph (V, E) is connected. Let D : V × V → R be a distance function
on V defined as

D(x, y) = resistance between x and y (x, y ∈ V ). (3.1)

Fix some vertex x0 ∈ V as a root, and define a symmetric function K : V ×V →
R on V as

K(x, y) = {D(x, x0) + D(y, x0)−D(x, y)}/2 (x, y ∈ V ). (3.2)

Seeing that K(x0, y) = 0 for all y ∈ V , we define a symmetric matrix K̂ by

K̂ = (K(x, y) | x, y ∈ V \ {x0}). (3.3)

Remark 3.1. Given a distance function D, the function K defined by (3.2) is
called the Gromov product.

Let L be the node admittance matrix defined as

L(x, y) =
{ ∑{(r(e))−1 | x is an endpoint of e ∈ E} if x = y

−(r(xy))−1 if x 6= y
(x, y ∈ V ).

(3.4)
If all resistances are equal to 1, then L coincides with the Laplacian matrix of
graph (V, E). Let L̂ be a symmetric matrix defined as

L̂ = (L(x, y) | x, y ∈ V \ {x0}).
Note that L̂ satisfies

L̂(x, y) ≤ 0 (x 6= y), (3.5)∑

z∈V \{x0}
L̂(x, z) ≥ 0 (x ∈ V \ {x0}). (3.6)

Hence L̂ is a nonsingular diagonally dominant symmetric M-matrix. In partic-
ular, L̂ is positive definite. A matrix whose inverse is an M-matrix is called an
inverse M-matrix. The following relationship between K and L is well known
in electric network theory; see [6] for example.

Proposition 3.2. We have K̂−1 = L̂. In particular K̂ is an inverse M-matrix.

Proof. A proof is provided for completeness. For x, y ∈ V , the resistance be-
tween x and y is given by the electric potential difference between x and y
when unit electric current flows from x to y. By Ohm’s law, electric potential
p : V → R in this setting is given by the solution of linear equation

Lp = χx − χy, (3.7)

where χx is the unit vector defined as χx(z) = 1 if z = x and 0 otherwise. Now
fix potential p(x0) to 0, then the solution of (3.7) is uniquely determined. Hence
the resistance D(x, y) is given as

D(x, y) = p(x)− p(y)

=





L̂−1(x, x) + L̂−1(y, y)− 2L̂−1(x, y), if x, y ∈ V \ {x0},
L̂−1(x, x) if x ∈ V \ {x0}, y = x0,

L̂−1(y, y) if y ∈ V \ {x0}, x = x0.
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From this, we have

K(x, y) = {D(x, x0) + D(y, x0)−D(x, y)}/2 = L̂−1(x, y)

for x, y ∈ V \ {x0}.
Hence, K in (3.2) satisfies the Mercer condition. We shall call such K an

electric network kernel.

Remark 3.3. An electric network kernel K of (V, E, r) with root x0 coincides
with discrete Green’s function of (V,E, r) taking {x0} as a boundary condi-
tion [3].

We consider the SVM on electric network (V, E, r) with the kernel K of (3.2).
Let {(xi, ηi)}i=1,...,m ⊆ V × {±1} be a training data set, where we assume that
xi (i = 1, . . . ,m) are all distinct. Just as the SVM with a diffusion kernel, we
assume that {x1, . . . , xm} is a subset of the vertex set V ; accordingly we put
V = {x1, . . . , xn} with n ≥ m.

Lemma 3.4. The optimization problem [SVM] is determined independently of
the choice of a root x0 ∈ V .

Proof. The objective function of [SVM] is in fact independent of x0, since its
quadratic term can be rewritten as

∑
i,juiujK(xi, xj) =

∑
i,juiuj(D(xi, x0) + D(xj , x0)−D(xi, xj))/2

=
∑

juj

∑
iuiD(xi, x0)− (1/2)

∑
i,juiujD(xi, xj)

= −(1/2)
∑

i,juiujD(xi, xj),

where the last equality follows from the constraint (2.2).

Next we give physical interpretations to the problem [SVM] with the aid
of nonlinear network theory (see [10, Chapter IV]). Suppose that we are given
an electric network (V, E, r) and labeled training data set {(xi, ηi)}i=1,...,m ⊆
V × {±1}, where x1, . . . , xm are all distinct. We connect voltage sources to
(V, E, r) as follows:

For each xi with 1 ≤ i ≤ m, connect to the earth a voltage source
whose electric potential is ηi and the current flowing into xi is re-
stricted to [0, C] if ηi = 1 and [−C, 0] if ηi = −1.

By using voltage sources, current sources and diodes, this network can be real-
ized as in Figure 1.

Let A = (A(x, e) | x ∈ V, e ∈ E) be the incidence matrix of (V, E) with some
fixed orientation of edges and let R = diag(r(e) | e ∈ E) be the diagonal matrix
whose diagonals are the resistances of edges.

The electric current in this network is given as an optimal solution of the
problem:

[FLOW] : min
(ζ,ξ)

1
2
ζ>Rζ −

m∑

i=1

ηiξi

s.t. Aζ =
(

ξ
0

)

∑

1≤i≤m

ξi = 0, 0 ≤ ηiξi ≤ C (i = 1, . . . ,m),
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Figure 1: Physical interpretation

where ζ represents the currents in edges and ξi represents the current flowing
into xi for i = 1, . . . ,m. The first and second terms of the objective function
of [FLOW] represents current potential of edges E and of the voltage sources
respectively. The electric potential of this network is given as an optimal solution
of the problem:

[POT] : min
p∈Rn

1
2
p>AR−1A>p + C

m∑

i=1

max{0, 1− ηipi},

where pi represents the potential on vertex xi for i = 1, . . . , n. The first and
second terms of the objective function of [POT] represent voltage potentials of
edges E and of the voltage sources respectively.

Proposition 3.5. The electric current (ζ∗, ξ∗) in this network is uniquely de-
termined. If there exists i ∈ {1, . . . , m} with 0 < ηiξ

∗
i < C, then the electric

potential is also uniquely determined.

Proof. The first assertion follows from the uniqueness theorem [10, Theorem
16.2]. Note that [FLOW] and [POT] are a dual pair. Hence if such ξ∗i exists, from
complementarity condition, any optimal solution p∗ of [POT] must satisfy p∗i =
ηi. Consequently, the potentials of other vertices are also uniquely determined
by Ohm’s law p(x)− p(y) = R(xy)ζ(xy) for xy ∈ E, x, y ∈ V .

The following theorem indicates the relationship between SVM problem and
this electric network.

Theorem 3.6. Let u∗ be the optimal solution of [SVM]. Then u∗i coincides with
the electric current flowing into xi for i = 1, . . . , m. Moreover, the decision
function f of (2.4) for [SVM] is an electric potential.

Proof. The problem [FLOW] is equivalent to

[FLOW′] : min
ξ

W (ξ)−
m∑

i=1

ηiξi

s.t.
∑

1≤i≤m

ξi = 0, 0 ≤ ηiξi ≤ C (i = 1, . . . , m),
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where W : Rm → R is defined as

W (ξ) = min
ζ

{
1
2
ζ>Rζ

∣∣∣∣ Aζ =
(

ξ
0

)}
.

By the Lagrange multiplier method, we can easily show that

W (ξ) =
1
2

∑

1≤i,j≤m

ξiξjK(xi, xj).

This implies that the problem [FLOW′] coincides with [SVM]. Next we show
the latter part. From the fact that [FLOW] and [POT] are a dual pair, it can
be shown that the decision function f : V → R defined by (2.4) satisfies the
optimality condition of [POT].

From Proposition 3.5 and Theorem 3.6, we see that the electric potential
coincides with the decision function of [SVM], provided that the optimal solution
of [SVM] has a normal support vector. Furthermore, the Lagrange multiplier
b∗ corresponds to the electric potential of the root vertex x0, if the potential is
normalized in such a way that the earth has zero electric potential.

Next we consider the case of the hard-margin SVM. The following propo-
sition indicates that solving [SVM] with C = +∞ reduces to solving linear
equations.

Proposition 3.7. For the electric network kernel K, an optimal solution u∗ of
the unconstrained optimization problem

[SVM′] : min
u∈Rm

1
2

∑

1≤i,j≤m

uiujK(xi, xj)−
∑

1≤i≤m

ηiui

s.t.
∑

1≤i≤m

ui = 0

is also optimal to [SVM] with C = +∞.

Proof. Suppose that ηi = +1 for 1 ≤ i ≤ k and ηi = −1 for k + 1 ≤ i ≤ m. By
a variant of Lemma 3.4, we may take xm as the root. Then problem [SVM′] is
equivalent to

min
u∈Rm−1

1
2

∑

1≤i,j≤m−1

uiujK(xi, xj)−
∑

1≤i≤k

2ui,

where we substitute um = −∑
1≤i≤m−1 ui in [SVM′]. Let K = (K(xi, xj) | 1 ≤

i, j ≤ m− 1). Hence the optimal solution u∗ ∈ Rm is given by

u∗i = 2
∑

1≤j≤k

(K
−1

)ij (1 ≤ i ≤ m− 1),

u∗m = −2
∑

1≤j≤k

∑

1≤h≤m−1

(K
−1

)hi.

Since K is an inverse M -matrix by Proposition 3.2, we have

u∗i ≥ 0 (1 ≤ i ≤ k), u∗i ≤ 0 (k + 1 ≤ i ≤ m).

Hence u∗ satisfies the inequality constraint of [SVM] and is optimal.
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Hence, in the case of the hard-margin SVM, the following correspondence
holds.

SVM electric network
positive label data +1 voltage sources
negative label data −1 voltage sources

optimal solution of [SVM] electric current from voltage sources
decision function electric potential

The following corollaries immediately follow from these physical interpretation,
where we assume the hard-margin SVM.

Corollary 3.8. Let u∗ ∈ Rm be the optimal solution of [SVM]. Then, for
i ∈ {1, . . . , m}, xi is a support vector, i.e., u∗i > 0 if and only if there exists
a path from xi to some xj with ηi 6= ηj such that it contains no other labeled
training vertex (data).

Suppose that there exists some training data x such that the deletion of x
from (V,E) makes two or more connected components, i.e., x is an articulation
point of (V, E). Let U1, . . . , Uk be the vertex sets of the connected components
after the deletion of x. Let (U1 ∪ {x}, E1), . . . , (Uk ∪ {x}, Ek) be subgraphs of
(V, E). Restricting training data set to each subgraph, we obtain SVM problems
[SVM1], . . . , [SVMk].

Corollary 3.9. Under the above assumption, the optimal solution of [SVM] can
be represented as the sum of optimal solutions of [SVM1], . . . , [SVMk]. Conse-
quently, for each i ∈ {1, . . . , k}, the restriction to Ui ∪ {x} of the decision func-
tion of the hard-margin [SVM] coincides with the decision function of [SVMi].

Remark 3.10. SVM with an electric network kernel falls in the scope of dis-
crete convex analysis [13], which is a theory of convex functions with additional
combinatorial structures. Specifically, the objective function of [SVM] with an
electric network kernel is an M-convex function in continuous variables, and the
optimization problem [SVM] is an M-convex function minimization problem.

Remark 3.11. Smola and Kondor [18] consider various kernels constructed
from the Laplacian matrix L of an undirected graph (V, E). In particular, they
introduced the kernel

K = (I + σL)−1,

where σ is a positive parameter. In our view, this kernel corresponds to the
electric network kernel of a modified graph (V ∪ {x0}, E ∪ {yx0 | y ∈ V }) with
a newly introduced root vertex x0.

The computation of elements of D or K through numerical inversion of L̂ is
highly expensive because the size of L̂ is usually very large. In Sections 4 and
5, we consider two classes of graphs (V, E), trees and hypercubes, that admit
efficient computation of the elements of K.
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Figure 2: D and K on a tree

4 SVM on Trees

4.1 Relationship to tree metrics

In this section, we consider the case where (V, E) is a tree. By regarding the
resistance r as the edge length, we then have

D(x, y) = path length between x and y. (4.1)

Hence D is a tree metric. We take any x0 ∈ V as the root. Then K is given by

K(x, y) =
path length between x0 and the youngest common ancestor of x and y,

where “youngest” means “most distant from x0.” Hence K can be recognized
as the similarity function naturally derived from a dendrogram (see Figure 2).

As is well known, a tree metric can be characterized by the four-point con-
dition.

Theorem 4.1 ([1][17][21]). Let X be a finite set and D : X × X → R be a
distance function on X . Then D can be expressed as the path length of some
weight tree (V,E, r) if and only if D satisfies the four-point condition:

∀x, y, z, w ∈ X ,

D(x, y) + D(z, w) ≤ max{D(x, z) + D(y, w), D(x,w) + D(y, z)}. (4.2)

Corresponding to this, the following equivalent theorem is also well known;
see [16] for example.

Theorem 4.2. Let X be a finite set and K : X ×X → R be a symmetric func-
tion on X . Then K can be expressed as the Gromov product of some weighted
tree (V, E, r) with a root x0 ∈ V if and only if it satisfies the ultra-metric con-
dition:

∀x, y, z ∈ X ,

K(x, x) ≥ K(x, y) ≥ min{K(x, z),K(x, y)} ≥ 0. (4.3)

Hence, in any finite set X , if we give a symmetric function K : X ×X → R
satisfying (4.3), then X is implicitly embedded into some weighted tree. In
particular, K is an electric network kernel. Hence the arguments in the previous
section are applicable to SVM on X with this kernel K. Two specific applications
of this idea are expounded below.
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4.2 Min-cut kernel for undirected graphs

Let G = (U,F, c) be an undirected graph with vertex set U , edge set F and
edge capacity c : F → R>0. Let κ : 2U → R be the cut function of G defined as

κ(X) =
∑

{c(e) | e = xy ∈ F, x ∈ X, y ∈ U \X} (X ⊆ U). (4.4)

We define the min-cut kernel K : U × U → R for G as

K(x, y) =
{

κ({x}) if x = y
min{κ(X) | X ⊆ U, x ∈ X, y ∈ U \X} otherwise.

Proposition 4.3. The min-cut kernel K satisfies the ultra-metric condition (4.3).

Proof. Note that κ satisfies κ(X) = κ(U \ X) ≥ 0 for X ⊆ V . From this,
nonnegativity of K is observed. Clearly we have K(x, x) = κ({x}) ≥ K(x, y)
for y ∈ U \ {x}. We show K(x, y) ≥ min{K(x, z), K(y, z)} for x, y, z ∈ U . Let
X∗ ⊆ U be a minimizer of min{κ(X) | X ⊆ U, x ∈ X, y ∈ U \ X}. Then we
have K(x, y) = κ(X∗). If z ∈ X∗, we have κ(X∗) ≥ K(y, z). If z 6∈ X∗, we
have κ(X∗) ≥ K(x, z).

Hence, the vertices of graph G are implicitly embedded into some weighted
tree by the min-cut kernel. The max-flow min-cut theorem implies that

K(x, y) = maximum flow value between x and y (x 6= y).

Hence, the value of K can be efficiently computed through maximum flow algo-
rithms or the Gomory-Hu cut tree algorithm [4].

Remark 4.4. The fact that the maximum flow values between two terminal
node pair satisfies the ultra-metric condition is already known in 1960s [7], [10].

4.3 Relationship to MPR problem in phylogeny

Here, we discuss the relationship between our SVM on trees and Most-Parsimonious
Reconstruction (MPR) problem in phylogeny. First we briefly summarize the
MPR problem; see [8], [12] for details. Let C be a set called the character states,
and d : C×C → R be a distance function on C. The MPR problem in phylogeny
is mathematically formulated as follows:

Given a tree T = (V, E) (phylogenetic tree), a subset X ⊆ V , and a
function χ : X → C called a character on X. Find a full character
χ : V → C that is a minimizer of the optimization problem

[MPR] : min
χ:V→C

∑
{d(χ(x), χ(y)) | xy ∈ E, x, y ∈ V }

s.t. χ(x) = χ(x) (x ∈ X).

The following proposition indicates the relationship between our SVM on trees
and the MPR problem.

Proposition 4.5. Consider the hard-margin SVM on tree T = (V,E) with
unit resistance on each edge and training data set (x1, η1), . . . , (xm, ηm) ⊆ V ×
{±1}. Then the resulting decision function f coincides with the solution of
[MPR] problem with tree T = (V, E), character state C = R, character χ :
{x1, . . . , xm} → R defined as χ(xi) = ηi, and distance function d(u, v) = |u−v|2
for u, v ∈ R.
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Proof. In fact, the dual problem of hard-margin SVM is given by

min
p:V→R

1
2

∑
{(p(x)− p(y))2 | xy ∈ E, x, y ∈ V }

s.t. p(xi) = ηi (i = 1, . . . , m).

This problem coincides with [MPR] in the above setting.

For various C and d, it is shown that MPR problems can be efficiently solved
based on the dynamic programming [8], [12]. Hence our hard-margin SVM on
trees can be also efficiently solved by these algorithms.

5 SVM on Hypercubes

5.1 Explicit formula for the resistance

In this section, we consider the case where (V, E) is an N -dimensional hyper-
cube. We regard (V, E) as an electric network where all resistances of edges
are equal to 1. Hence the node admittance matrix of (V, E) coincides with the
Laplacian matrix.

The vertices are naturally regarded as 0-1 vectors, i.e., V = {0, 1}N . Let
dH : V × V → R be the Hamming distance defined as

dH(x, y) = #{i ∈ {1, . . . , N} | xi 6= yi} (x, y ∈ {0, 1}N ),

or equivalently, dH(x, y) is the minimum path length between x and y on (V,E).
It should be clear that xi denotes the ith element of x. By symmetry of the
hypercube, the resistance D between two vertex pair is given as a function
in the Hamming distance of the pair as follows. The proof is presented in
Subsection 5.3.

Theorem 5.1. The resistance D : V × V → R of an N -dimensional hypercube
(V, E) is given by

D(x, y) =
1

2N−2

dH(x,y)∑
s=1,3,5,...

N−dH(x,y)∑
t=0

1
2(s + t)

(
dH(x, y)

s

)(
N − dH(x, y)

t

)
. (5.1)

The theorem implies, in particular, that each element of kernel K can be
computed with O(N3) arithmetic operations. This makes it possible to apply
the electric network kernel to large-scale practical problems on hypercubes.

Remark 5.2. The derivation of the explicit formula above relies essentially on
the fact that the number of distinct eigenvalues of L is bounded by O(N); See
Lemma 5.3 in Subsection 5.3. From this observation, we expect that the electric
network kernel for N tensor product of k-complete graph also admits an explicit
formula, and hence can be efficiently computed because the Laplacian matrix
for this graph has only O(N) distinct eigenvalues.
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Table 5.1: Data sets

Data set Size Positive Negative Attribute
Hepatitis 155 32 123 12

Votes 435 168 267 16
LED2-3 1914 937 977 7

Table 5.2: Experimental results

HK DK ENK
Data set SVs Acc (C) SVs Acc (C, β) SVs Acc (C)
Hepatitis 60 79.125 (64) 60 79.775 (256, 3.5) 106 77.725 (256)

Votes 36 95.975 (4.0) 53 96.025 (512, 3.0) 274 84.450 (128)
LED2-3 386 89.550 (2.0) 392 89.700 (0.2, 3.0) 388 89.800 (70)

HK = Hamming kernel, DK = diffusion kernel, ENK = electric network kernel.

5.2 Experimental results

Here, we describe preliminary experiments with our electric network kernels
on hypercubes. In order to estimate the performance, we compare the electric
network kernel with the Hamming kernel and the diffusion kernel [11] using
benchmark data having binary attributes. By the Hamming kernel we mean
the kernel defined as

K(x, y) = N − dH(x, y) (x, y ∈ {0, 1}N ).

The diffusion kernel and the electric network kernel are implemented to LIB-
SVM package [2], which is one of the common SVM package programs. For
benchmark data sets, we use Hepatitis, Votes, and LED2-3 taken from UCI
Machine Learning Repository [14] (Table 5.1). In Hepatitis data set, we use
12 binary attributes of all 20 attributes. LED2-3 data set is made through the
data generating tool in [14] by adding 10% noise.

Table 5.2 shows the experimental results with Hamming kernel (HK), diffu-
sion kernel (DK), and electric network kernel (ENK) for these data sets, where
Acc means the ratio of correct answers averaged over 40 random 5-fold cross
validations and SVs is the number of support vectors for whole data set. Results
are reported for the setting of the soft margin parameter C and the diffusion
coefficient β achieving the best cross validated error rate.

For Hepatitis and Votes data sets, three kernels show almost equivalent
performance. For Votes data set, However, our ENK shows somewhat poor
performance than others. In Hepatitis and Votes, ENK has larger SVs than
other kernels. This phenomenon can be explained by Corollary 3.8 as follows.
Since these two data sets are well separated than LED2-3, the soft margin SVM
with ENK is close to the hard margin SVM. Hence it is expected from Corollary
3.8 that these SVM with ENK have many SVs.

The above results indicate that our electric network kernel works well as an
SVM kernel. It is fair to say, however, that more extensive experiments against
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various kinds of data sets are required before its performance can be confirmed
with more precision and confidence. Comprehensive computational study is left
as a future research topic.

5.3 Proof of Theorem 5.1

First, we derive eigenvalues and eigenvectors of the Laplacian matrix LN of
an N -dimensional hypercube. We regard functions defined on {0, 1}N as 2N -
dimensional vectors indexed by {0, 1}N arranged in lexicographic order. Hence
LN is an 2N × 2N matrix like:

L1 =
(

1 −1
−1 1

)
, L2 =




2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2


 .

Lemma 5.3. The eigenvalues of LN are given by

2k (k = 0, 1, . . . , N) (5.2)

with the multiplicity of 2k being
(
N
k

)
. The eigenvectors for eigenvalue 2k are

given by

pS = φS
1 ⊗ φS

2 ⊗ · · · ⊗ φS
N (S ⊆ {1, 2, . . . , N}, #S = k), (5.3)

where φS
i is a 2-dimensional vector defined as

φS
i =





(
+1
−1

)
if i ∈ S,

(
+1
+1

)
otherwise,

(i ∈ {1, . . . , N}). (5.4)

Proof. LN has the following recursive relation:

L1 =
(

1 −1
−1 1

)
,

LN+1 =
(

LN + I −I
−I LN + I

)
. (5.5)

From this, the characteristic polynomial fN (λ) of LN enjoys the following re-
cursive relation:

f1(λ) = λ(λ− 2),
fN+1(λ)
= det(LN+1 − λI)

= det
[(

I 0
−I I

)(
I 0
0 LN − λI

)(
LN + 2I − λI −I

0 I

)(
I 0
I I

)]

= det(LN − λI) det(LN − (λ− 2)I)
= fN (λ)fN (λ− 2).

13



Hence, the characteristic polynomial fN (λ) of LN is given by

fN (λ) =
N∏

k=0

(λ− 2k)(
N
k). (5.6)

Hence, we have (5.2). Next we consider eigenvectors. If p is an eigenvector of
eigenvalue λ of LN , then, from (5.5), we have

LN+1

(
p
p

)
= λ

(
p
p

)
, LN+1

(
p
−p

)
= (λ + 2)

(
p
−p

)
. (5.7)

The eigenvectors of L1 are given as
(

+1
+1

)
for λ = 0,

(
+1
−1

)
for λ = 2. (5.8)

From (5.7) and (5.8), we obtain (5.3).

Remark 5.4. The graph of a hypercube can be expressed as a tensor product
of single edges (1-dimensional hypercubes). Hence, Lemma 5.3 can be derived
from the general formula for the spectra of the tensor product of graphs [5,
Theorems 2.23 and 2.24 and p.75].

The expression (5.3) implies the following.

Lemma 5.5. For d ∈ {1, . . . , N}, 1 ≤ i1 < · · · < is ≤ d and d < j1 < · · · <
jt ≤ N , we have

p
{i1,...,is,j1,...,jt}
2d = (−1)s, (5.9)

where the left-hand side above denotes the 2dth element of the vector pS with
S = {i1, . . . , is, j1, . . . , jt}.

Let P be a 2N × 2N matrix whose column vectors are eigenvectors pS , i.e.,

P = (pS | S ⊆ {1, 2, . . . , N}, #S = k, 0 ≤ k ≤ N).

Then LN is diagonalized as

LN = P




λ1

λ2

. . .
λ2N


P>/2N ,

where 0 = λ1 < λ2 ≤ · · · ≤ λ2N are the eigenvalues of LN . Let L̂N and P̂ be
the (2N − 1) × (2N − 1) submatrices of LN and P , respectively, with the first
columns and the first rows deleted. This means that 0 ∈ {0, 1}N is taken as the
root vertex x0. Then we have

K̂ = (L̂N )−1 = 2N (P̂ )−1




1/λ2

. . .
1/λ2N


 (P̂>)−1. (5.10)
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Lemma 5.6. P̂−1 is given as

P̂−1 = (P̂> − 11>)/2N , (5.11)

where 1 is the (2N − 1)-dimensional vector with all elements 1.

Proof. P can be expressed as

P =
(

1 1>

1 P̂

)
.

Since PP> = 2NI, we have

1> + 1>P̂> = 0, 11> + P̂ P̂> = 2NI. (5.12)

Substituting the first equation to the second in (5.12), we obtain

−11>P̂> + P̂ P̂> = 2NI.

This implies P̂−1 = (P̂> − 11>)/2N .

It follows from (5.10) and (5.11) that

K̂ = (P̂ − 11>)




1/λ2

. . .
1/λ2N


 (P̂ − 11>)>/2N . (5.13)

Finally we derive the resistance D. For x, y ∈ {0, 1}N with d = dH(x, y),
from symmetry of the hypercube, we have

D(x, y) = D(0, 2d) = K̂(2d, 2d),

where 2d is a short-hand notation for (1, · · · , 1︸ ︷︷ ︸
d

, 0, · · · , 0︸ ︷︷ ︸
N−d

). From (5.13) and (5.9),

we have

K̂(2d, 2d) =
1

2N

2N∑

i=2

1
λi

(Pi2d − 1)2

=
1

2N

N∑

k=1

1
2k

∑

1≤i1<i2<···<ik≤N

(p{i1,i2,...,ik}
2d − 1)2

=
1

2N

N∑

k=1

∑

0≤s, 0≤t
s+t=k

1
2(s + t)

∑

1≤i1<···<is≤d
d<j1<···<jt≤N

((−1)s − 1)2

=
1

2N−2

d∑
s=1,3,5,...

N−d∑
t=0

1
2(s + t)

(
d

s

)(
N − d

t

)
.

Thus we have proven Theorem 5.1.
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