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Naonori KAKIMURA∗† Satoru IWATA∗‡

October, 2004

Abstract

A symmetric matrix A is said to be sign-nonsingular if every symmetric matrix with the same
sign pattern as A is nonsingular. Hall, Li and Wang (2001) showed that the inertia of a sign-
nonsingular symmetric matrix is determined uniquely by its sign pattern. The purpose of this
paper is to present an efficient algorithm for computing the inertia of such matrices. The algorithm
runs in O(nm) time for a symmetric matrix of order n with m nonzero entries. The correctness of
the algorithm provides an alternative proof of the result by Hall et al. In addition, for a symmetric
matrix in general, it is shown to be NP-complete to decide whether the inertia of the matrix is not
determined by the sign pattern.

1 Introduction

The inertia of a symmetric matrix indicates the number of the positive/negative eigenvalues. This is
an important quantity invariant under the congruence transformation. Quadratic forms are classified
by the inertia of the coefficient matrices. In this paper, we discuss computing the inertia of a given
symmetric matrix from the sign pattern of its entries without numerical information.

Matrix analysis with sign pattern has been studied by many researchers (see [2]). The analysis is
called qualitative matrix theory. It is useful because the sign pattern of a matrix can be easily inferred
in a variety of situations, rather than the exact value of the matrix entries. For a matrix A, we denote
by Q(A) the set of all matrices having the same sign pattern as A, which is called the sign pattern
class of A. Klee, Ladner and Manber[5] proved that for a rectangular matrix A, it is NP-complete to
discern whether there exists Ã ∈ Q(A) which is not row full-rank. However, Robertson, Seymour and
Thomas[8] devised a polynomial time algorithm to discern whether Ã is nonsingular for any square
matrix Ã ∈ Q(A).

This paper deals with the sign pattern class of symmetric matrices, which is denoted by Q∗(A) :=
{Ã | Ã ∈ Q(A), Ã> = Ã}. A symmetric matrix A is said to be sign-nonsingular if Ã is nonsingular
for any symmetric matrix Ã ∈ Q∗(A). We first discuss computing the inertia of a sign-nonsingular
symmetric matrix from the sign pattern. Hall, Li and Wang[3] gave several characterizations of the
symmetric sign patterns that require unique inertia in 2001. Their result implies that the inertia
of a sign-nonsingular symmetric matrix is determined uniquely by the sign pattern. We prove the
uniqueness of the inertia of a sign-nonsingular symmetric matrix in a different way from Hall et al.,
that is, we find a nested sequence {Ak}n

k=1 of the principal submatrices of order k such that at least
one of Ak−1 and Ak is sign-nonsingular for any k = 2, . . . , n. Our proof is based on a characterization
of the structure of a symmetric bipartite graph. Furthermore, our proof naturally provides an O(nm)
time algorithm for computing the inertia of a sign-nonsingular symmetric matrix of order n with m
nonzero entries.
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We also discuss the problem of deciding whether a symmetric matrix is sign-nonsingular or not. We
prove that the decision problem whether a given matrix is not a sign-nonsingular symmetric matrix is
NP-complete by the result of Klee et al. Hence, for a symmetric matrix A in general, it is NP-complete
to discern whether the inertia of Ã is not the same for all Ã ∈ Q∗(A).

The present paper is organized as follows. Section 2 contains some notations and preliminaries
about matrices and bipartite graphs. In Section 3, we recapitulate the inertia of a symmetric matrix
in terms of linear algebra. From Section 4 to 6, we discuss the inertia of a sign-nonsingular symmetric
matrix. In Section 4, we give the structure of a symmetric bipartite graph with perfect matchings. In
Section 5, we show that the inertia of a sign-nonsingular symmetric matrix A is determined uniquely
be the sign pattern. In Section 6, we design an efficient algorithm for computing the inertia of a sign-
nonsingular symmetric matrix. In Section 7, we describe NP-completeness of the decision problem
whether any Ã ∈ Q∗(A) does not have the same inertia for a symmetric matrix A in general.

2 Matrices and Bipartite Graphs

For a matrix A, the row index set and the column index set are denoted by Row(A) and Col(A),
i.e., A = (aij | i ∈ Row(A), j ∈ Col(A)), where aij is the (i, j)-entry of A. For I ⊆ Row(A) and
J ⊆ Col(A), A[I, J ] = (aij | i ∈ I, j ∈ J) means the submatrix of A with row set I and column set J .

For a square matrix A of order n, the determinant of A is defined by

detA :=
∑

π∈Sn

sgnπ

n∏

i=1

aiπ(i), (2.1)

where Sn denotes the set of all the permutations of order n, and sgnπ ∈ {1,−1} is the signature of
the permutation π ∈ Sn. A square matrix is said to be nonsingular if its determinant is distinct from
zero.

As a combinatorial counterpart of nonsingularity, we say that a matrix A is term-nonsingular if
the expansion in (2.1) contains at least one nonvanishing term, that is, if aiπ(i) 6= 0 (∀i ∈ Row(A)) for
some permutation π ∈ Sn. Obviously, nonsingularity implies term-nonsingularity, since the right-hand
side of (2.1) is distinct from zero only if the summation contains a nonzero term. The term-rank of
A is the maximum size of a term-nonsingular submatrix of A. We denote term-rank of A by t-rankA.
Hence we have t-rankA ≥ rankA.

Let G = (U, V ;E) be a bipartite graph with vertex sets U, V and an edge set E ⊆ U × V . A
path P ⊆ E is a sequence of consecutive edges in a graph. A circuit C ⊆ E is a path which ends at
the vertex it begins. For F ⊆ E, we denote by ∂F the set of all the end-vertices of edges in F , i.e.,
∂F := {ui, vj | (ui, vj) ∈ F}. An edge subset M in G is called a matching if 2|M | = |∂M |, and a
matching M is said to be a perfect matching if ∂M = U ∪ V .

With a matrix A, we associate a bipartite graph G(A) = (U, V ; E) with vertex sets U := {ui |
i ∈ Row(A)} and V := {vj | j ∈ Col(A)}. The edge set E is given by E := {(ui, vj) | aij 6= 0, ui ∈
U, vj ∈ V }, that is, an edge of G(A) represents a nonvanishing entry of A. A perfect matching in
G(A) corresponds to one nonvanishing term of detA. Therefore, A is term-nonsingular if and only
if G(A) has a perfect matching. Furthermore, the term-rank of A is equal to the maximum size of a
matching in G(A).

For a square matrix A, we say that A has an equisignum determinant if every nonvanishing term of
the determinant of A has the same sign. If a square matrix has an equisignum determinant, the matrix
is obviously nonsingular. It is known that Ã is nonsingular for any Ã ∈ Q(A) if and only if A has an
equisignum determinant[5]. Hence this is a sufficient condition for a matrix to be a sign-nonsingular
symmetric matrix.

Consider a directed bipartite graph D = (U, V ; E). An edge subset F is said to be central if the
subgraph obtained from D by deleting the vertices ∂F has a perfect matching. A circuit is said to be
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oddly oriented in D if the circuit contains an odd number of edges that are directed in the direction
of each orientation of the circuit. We say that a directed graph D is Pfaffian if every central circuit
in D is oddly oriented.

Let D(A) be a directed bipartite graph associated with a matrix A defined as follows. A vertex set of
D(A) is the same as that of G(A), and an edge e = (ui, vj) is oriented from ui to vj if aij > 0, and from
vj to ui if aij < 0. It is known that A has an equisignum determinant if and only if D(A) is Pfaffian[6].
The complexity status of the decision problem whether a given matrix has an equisignum determinant
or not had been an open problem for a long time. This problem is polynomial time equivalent to the
decision problem whether a given undirected bipartite graph has a Pfaffian orientation[9]. In 1999,
Robertson, Seymour and Thomas[8] gave a polynomial time algorithm to discern if a given bipartite
graph has a Pfaffian orientation. This algorithm can be easily applied to discern if a given directed
bipartite graph is Pfaffian or not. Thus it can be tested in polynomial time whether Ã is nonsingular
for any Ã ∈ Q(A) for a given matrix A.

3 The Inertia of Symmetric Matrices

In this section, we recapitulate the inertia of a symmetric matrix in terms of linear algebra. We
consider a symmetric matrix A of order n, where Row(A) and Col(A) are both identical with a finite
set N of cardinality n.

Let p(A) be the number of positive eigenvalues of A, q(A) the number of negative eigenvalues,
and z(A) the number of zero eigenvalues, all counting multiplicity. The ordered triple In(A) :=
(p(A), q(A), z(A)) is called the inertia of A. By the definition of the inertia, we have

rankA = p(A) + q(A), (3.1)
z(A) = n− rankA. (3.2)

Consider transforming A to S>AS by a nonsingular matrix S. This transformation is called a
congruence transformation. It is known that the inertia of a symmetric matrix is invariant under
congruence transformations (Sylvester’s law of inertia[4]). Hence, a symmetric matrix A is congruent
to a diagonal matrix as follows:

S>AS = diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0), (3.3)

where the indicated matrix has exactly p(A) “1”, q(A) “−1”, and z(A) “0” in its diagonal entries.
Let us consider the determinant of S>AS. If A is nonsingular, it follows from (3.3) that

det(S>AS) = (detS)2 detA = (−1)q(A). (3.4)

The sign of detA is thus determined by the parity of q(A).
Let Ak be a principal submatrix of order k for 1 ≤ k ≤ n. Then there exists a nonsingular matrix

S such that

S>AS =




Ip(Ak) O O

O −Iq(Ak) O

O O H


 , (3.5)

where H is a symmetric matrix. This implies

p(Ak) ≤ p(A), q(Ak) ≤ q(A).

Let {Ak}n
k=1 be a nested sequence of principal submatrices of order k (An := A). In a similar way, we

have
p(Ak) ≤ p(Al), q(Ak) ≤ q(Al), (3.6)
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for each 1 ≤ k ≤ l ≤ n.
A nonsingular symmetric matrix A has a nested sequence {Ak}n

k=1 of principal submatrices such
that no two consecutive submatrices are singular. We call such a sequence admissible. If we find an
admissible nested sequence {Ak}n

k=1 of principal submatrices, then the inertia of A can be obtained
by comparing the signs of detAk as follows.

If both Ak and Ak−1 are nonsingular (k ≥ 2), then (3.4) implies that the signs of the principal mi-
nors detAk and detAk−1 are equal to (−1)q(Ak) and (−1)q(Ak−1), respectively. Moreover, the difference
between q(Ak) and q(Ak−1) is at most one by (3.1) and (3.6). Therefore, we have

In(Ak) =
{

In(Ak−1) + (1, 0, 0) (if sgn detAk = sgn detAk−1)
In(Ak−1) + (0, 1, 0) (if sgn detAk 6= sgn detAk−1).

(3.7)

In an admissible sequence {Ak}n
k=1, if Ak is nonsingular and Ak−1 is singular (k ≥ 3), then Ak−2

is nonsingular. Consider transforming Ak by a nonsingular matrix S to diagonalize Ak−2 as (3.5).
Since Ak−1 is singular and Ak is nonsingular, this implies the determinant of the submatrix H in the
right-hand side of (3.5) is nonpositive. Hence sgn detAk 6= sgn detAk−2. Then, by (3.4), the parities
of q(Ak) and q(Ak−2) are different. Moreover, the difference between q(Ak) and q(Ak−2) is at most
two by (3.1) and (3.6). Therefore, we have

In(Ak) = In(Ak−2) + (1, 1, 0). (3.8)

4 Symmetric Bipartite Graphs

Let G = (U, V ;E) be a bipartite graph with vertex sets U := {u1, . . . , un} and V := {v1, . . . , vn}.
Both of the vertex sets are identified with N := {1, . . . , n}. A bipartite graph G = (U, V ; E) is said
to be symmetric if e = (ui, vj) ∈ E implies (uj , vi) ∈ E for all e ∈ E. The bipartite graph G(A)
associated with a symmetric matrix A is symmetric.

Let G = (U, V ;E) be a symmetric bipartite graph with perfect matchings. An edge (ui, vi) ∈ E is
called a diagonal edge for i ∈ N . For an edge subset F of G, we call F> := {(uj , vi) | (ui, vj) ∈ F}
the transpose of F . If F> coincides with F , it is called symmetric, otherwise asymmetric. For edge
subsets F1 and F2 of G, we denote by F14F2 the symmetric difference between F1 and F2.

Let M be a perfect matching in G. We denote by π a permutation corresponding to M . Since G
is symmetric, M> is also a perfect matching in G. Then M> corresponds to the inverse permutation
π−1. A permutation π is expressed uniquely as a product of some cyclic permutations. We suppose
π =

∏h
k=1 σk, where h is a positive integer and σk is a cyclic permutation. Let Mk ⊆ M be a matching

in G corresponding to σk. Then M is the disjoint union of Mk, that is, M =
⋃h

k=1 Mk.
Let C be a circuit in G. Since G is symmetric, the transpose C> is also a circuit in G. A chord of

a circuit is an edge in E \ C having both ends on the circuit. We say that a circuit C is chordless if
C has no chord.

Theorem 4.1 Let G be a symmetric bipartite graph with perfect matchings. Then G satisfies the
following (a), (b) or (c).

(a) There exists a perfect matching M in G such that (ui, vi) ∈ M for some i ∈ N .

(b) There exists a perfect matching M in G such that (ui, vj) ∈ M and (uj , vi) ∈ M for some distinct
i, j ∈ N .

(c) The symmetric bipartite graph G is a disjoint union of some chordless symmetric circuits.

Proof. By the assumption, the symmetric bipartite graph G has a perfect matching M and its
transposed perfect matching M>. Furthermore, M is the disjoint union of matchings Mk for k =
1, . . . , h corresponding to cyclic permutations.
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We will show that if G does not satisfy the condition (a) or (c), then G satisfies the condition (b).
First, we claim that M ∪M> consists of Ck ∪ C>

k for k = 1, . . . , h, where Ck is a circuit (Ck may
coincide with C>

k ). Indeed, M ∪ M> is the disjoint union of Mk ∪ M>
k for k = 1, . . . , h. Since M

does not have either (ui, vj) or (uj , vi) for some i, j ∈ N (otherwise, G satisfies (a) or (b)), Mk ∪M>
k

consists of circuits. If |Mk|(≥ 3) is odd, then Mk ∪M>
k is a symmetric circuit of length 2|Mk| (see

Fig.1 for the case of |Mk| = 5). If |Mk|(≥ 4) is even, then Mk ∪M>
k consists of an asymmetric circuit

of length |Mk| and its transpose (see Fig.2 for the case of |Mk| = 4).
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Figure 1: The union Mk ∪M>
k (|Mk| = 5).
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Figure 2: The union Mk ∪M>
k (|Mk| = 4).

Suppose that there exists an asymmetric circuit Ck and its transposed circuit C>
k (6= Ck) in M∪M>.

Then M ′ := M4C>
k is also a perfect matching in G, and M ′ has both (uj , vi) and (ui, vj) for each

(ui, vj) ∈ Ck ∩M . This implies G satisfies the condition (b).
Hence we may suppose there exist only symmetric circuits in M ∪M>. Since G is not a disjoint

union of some chordless circuits, (i) there exists (ui, vj) ∈ E \ (M ∪ M>), ui ∈ ∂Ck, vj ∈ ∂Cl for
some distinct 1 ≤ k, l ≤ h, or (ii) there exists (ui, vj) ∈ E \ (M ∪M>), ui ∈ ∂Ck, vj ∈ ∂Ck for some
1 ≤ k ≤ h.

Suppose G satisfies (i). Then there also exists (uj , vi) ∈ E \ (M ∪ M>), uj ∈ ∂Cl, vi ∈ ∂Ck,
because of symmetry of G(A). Let Pk ⊆ Ck be a path from ui ∈ U ∩ ∂Ck to vi ∈ V ∩ ∂Ck such
that both end-vertices of Pk are incident with an edge of M ∩ Pk. Let Pl ⊆ Cl be a path in a similar
way. Then C ′ := (Pk ∪ Pl) ∪ {(ui, vj), (uj , vi)} is a circuit in G. Furthermore, M ′ := M4C ′ is also
a perfect matching in G, and M ′ has both (ui, vj) and (uj , vi). Moreover, it shows that there exists
(uj′ , vi′) ∈ (P>

k ∪P>
l )∩M ′ for each (ui′ , vj′) ∈ (Pk ∪Pl)∩M ′ because Ck and Cl are symmetric. Thus

G satisfies the condition (b).
Suppose G satisfies (ii). Then let Pk ⊆ Ck be a path from ui ∈ U ∩ ∂Ck to vj ∈ V ∩ ∂Ck such that

both end-vertices of Pk are incident with an edge of M ∩Pk. Then C ′ := Pk ∪ {(ui, vj)} is a circuit in
G. Furthermore, M ′ := M4C ′ is also a perfect matching in G, and there exists (uj′ , vi′) ∈ Ck ∩M ′

for each (ui′ , vj′) ∈ (Pk4P>
k ) ∩M ′. Thus G satisfies the condition (b).

Consequently, if G does not satisfy the condition (a) or (c), G satisfies the condition (b).

5 Uniqueness of the Inertia

In this section, we discuss the uniqueness of the inertia of a sign-nonsingular symmetric matrix A. For
convenience, we denote by A[J ] the principal submatrix A[J, J ] for J ⊆ N . Since sign-nonsingularity
implies nonsingularity, it is clear that z(A) = 0.

A nested sequence {Ak}n
k=1 of principal submatrices is called sign-admissible if at least one of

Ak−1 and Ak is sign-nonsingular for any k = 2, . . . , n. It follows from (3.7) and (3.8) that if A has a
sign-admissible sequence, the inertia of A is determined uniquely by the sign pattern.

However, it is not easy to find such a sequence. Even if a symmetric matrix A has an equisignum
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determinant, a principal submatrix of A may not be sign-nonsingular. For example,

A =




+1 +1 +1 −1
+1 +1 +1 +1
+1 +1 −1 0
−1 +1 0 0




has an equisignum determinant, and hence A is sign-nonsingular, while a nested sequence of the lead-
ing principal submatrices is not sign-admissible (A[{1, 2}] and A[{1, 2, 3}] are not sign-nonsingular).
However, the inertia is determined independently of the magnitude of the entries, In(A) = (2, 1, 0).
This is because each of A[{2}], A[{2, 3}] and A[{1, 2, 3, 4}] has an equisignum determinant.

Thus, it is sufficient to find one sign-admissible nested sequence of principal submatrices for de-
termining the inertia uniquely from the sign pattern. To find a sign-admissible nested sequence of
principal submatrices, we will use the characterization of a symmetric bipartite graph described in
Section 4.

The main result in this section is the following theorem.

Theorem 5.1 Let A be a sign-nonsingular symmetric matrix. Then there exists a sign-admissible
nested sequence of principal submatrices. Hence Ã has the same inertia for any Ã ∈ Q∗(A).

We first provide the following three lemmas to prove Theorem 5.1.

Lemma 5.2 Let A be a sign-nonsingular symmetric matrix such that G(A) satisfies the condition (a)
of Theorem 4.1, that is, there exists a perfect matching M in G(A) containing (ui, vi) for some i ∈ N .
Then the principal submatrix A′ := A[N \{i}] is a sign-nonsingular symmetric matrix, and the inertia
of A is obtained by

In(A) =
{

In(A′) + (1, 0, 0) (if aii > 0)
In(A′) + (0, 1, 0) (if aii < 0).

(5.1)

Proof. The determinant of A is expanded as

detA = aii detA′ +
∑

j 6=i

(−1)i+jaij detA[N \ {i}, N \ {j}].

Since G(A′) has a perfect matching M \ {(ui, vi)}, A′ is term-nonsingular. It then follows from the
sign-nonsingularity of A that A′ is a sign-nonsingular symmetric matrix (otherwise, the sign of the
determinant of A can change by the magnitude of aii). Therefore, by (3.4), we have

sgn detA = (−1)q(A) = sgn(aii)(−1)q(A′),

which implies that the parity of q(A) depends on that of q(A′) and the sign of aii. Therefore, by (3.7),
we have

(p(A), q(A)) =
{

(p(A′) + 1, q(A′)) (if aii > 0)
(p(A′), q(A′) + 1) (if aii < 0).

Lemma 5.3 Let A be a sign-nonsingular symmetric matrix such that G(A) does not satisfy the con-
dition (a) of Theorem 4.1. Suppose G(A) satisfies the condition (b), that is, there exists a perfect
matching M in G(A) such that (ui, vj) ∈ M and (uj , vi) ∈ M for some distinct i, j ∈ N . Then the
principal submatrix A′ = A[N \ {i, j}] is a sign-nonsingular symmetric matrix, and the inertia of A is
obtained by

In(A) = In(A′) + (1, 1, 0). (5.2)

6



Proof. In the same way as Lemma 5.2, the determinant of A is expanded as

det A = −(aij)2 det A′ +
∑

(k,l) 6=(i,j),
k 6=l

±det A[{k, l}, {i, j}] detA[N \ {k, l}, N \ {i, j}].

Notice that detA[{i, j}] = −(aij)2, because G(A) has no perfect matching containing any diagonal
edge by the assumption. Since A is a sign-nonsingular symmetric matrix and G(A′) has a perfect
matching M \ {(ui, vj), (uj , vi)}, the principal submatrix A′ is sign-nonsingular. Then, by (3.4), we
have

sgn det A = (−1)q(A) = (−1)q(A′)+1,

which implies that the parity of q(A) is different from that of q(A′). Therefore, by (3.8), we have

(p(A), q(A)) = (p(A′) + 1, q(A′) + 1).

Notice that it is not necessary that the principal submatrix A[N \ {i}] or A[N \ {j}] is sign-
nonsingular.

Lemma 5.4 Let A be a sign-nonsingular symmetric matrix of order n = 2s + 1 such that G(A) is a
chordless symmetric circuit. Let 2t be the number of the negative entries of A. Then the inertia of A
is obtained by

In(A) =
{

(s + 1, s, 0) (if t ≡ s mod 2)
(s, s + 1, 0) (if t 6≡ s mod 2).

(5.3)

Proof. Since G(A) is a chordless symmetric circuit, the matrix size n is odd. Since detA has only two
nonvanishing terms, we have

sgn detA = (−1)t. (5.4)

Let A′ be the principal submatrix obtained by deleting the ith row and the ith column from A for
any i ∈ N . Then G(A′) consists of two paths. Since G(A′) has only one perfect matching, A′ has an
equisignum determinant. Hence A′ is a sign-nonsingular symmetric matrix. Then, by (3.4), we have

sgn detA′ = (−1)q(A′). (5.5)

Since G(A′) consists of two paths and G(A′) has no diagonal edge, G(A′) satisfies the condition (b)
of Theorem 4.1. By applying (5.2) repeatedly, we have p(A′) = q(A′) = s. Hence, by (3.7), we have

(p(A), q(A)) =
{

(s + 1, s) (if sign detA = sign detA′)
(s, s + 1) (if sign detA 6= sign detA′),

which together with (5.4) and (5.5) implies (5.3).
A sign-nonsingular symmetric matrix A such that G(A) is a chordless circuit has a sign-admissible

sequence. Indeed, by row and column permutations, A is represented as

A =




0 ∗ 0 · · · 0 ∗
∗ 0 ∗ . . . 0

0 ∗ . . . . . . . . .
...

...
. . . . . . . . . ∗ 0

0
. . . ∗ 0 ∗

∗ 0 · · · 0 ∗ 0




,
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where ∗ designates a nonzero entry of A. Hence any nested sequence of principal submatrices in A is
sign-admissible.

We are now ready to prove Theorem 5.1.
Proof of Theorem 5.1. By Lemmas 5.2–5.4 and Theorem 4.1, if A is a sign-nonsingular symmetric
matrix, then there is a sign-admissible nested sequence of principal submatrices in A. Therefore, the
inertia of A is uniquely determined by the sign pattern.

6 Algorithm for Sign-Nonsingular Symmetric Matrices

In this section, we present a polynomial time algorithm for computing the inertia of a given sign-
nonsingular symmetric matrix.

Let A be a sign-nonsingular symmetric matrix of order n. Then z(A) = 0. It is easy to see from
Lemmas 5.2–5.4 that the inertia is obtained by computing the inertia of a sign-nonsingular symmetric
matrix smaller than A, if we find a perfect matching M in G(A) which satisfies the condition (a) or (b)
of Theorem 4.1. Thus we can compute the inertia of A recursively. However, we present a practically
more efficient algorithm that computes the inertia by finding circuits in M ∪M> in the same way as
the proof of Theorem 4.1.

The algorithm starts with finding a perfect matching Md in G(A) with maximum number of
diagonal edges. The index set N of the row and column set is partitioned into J+ := {j | (uj , vj) ∈
Md, ajj > 0}, J− := {j | (uj , vj) ∈ Md, ajj < 0} and J∗ := {j | (uj , vj) 6∈ Md}. We can find Md

efficiently by the maximum weight perfect matching algorithm. Indeed, define the weight function
w : E → {0, 1} on the bipartite graph G(A) by we = 1 for each diagonal edge e and we = 0 for the
other edges. Then a maximum weight perfect matching with respect to w corresponds to Md. The
maximum weight perfect matching algorithm runs in O(n(m+nW )) time with Dial’s implementation
of Dijkstra’s shortest path algorithm[1], where W is the largest weight in the graph and m is the
number of edges. In this case, W is equal to 1. Hence it requires O(nm) time.

Let C be the set of all symmetric circuits in Md ∪M>
d . If there exist a pair of symmetric circuits

C,C ′ ∈ C connected by an edge in E \ (Md ∪M>
d ), then delete C and C ′ from C. We repeat this until

there are no such pair of symmetric circuits.
We denote by C1, . . . , Ch the remaining symmetric circuits in C. Let Jk be the indices corresponding

to Ck for each k = 1, . . . , h, that is, Jk := {i | (ui, vj) ∈ Ck}. Let J0 be the remaining indices, that is,
J0 := J∗ \

⋃h
k=1 Jk. Then it follows from Lemmas 5.2 and 5.3 that the inertia of A is obtained by

p(A) = |J+|+ 1
2
|J0|+

h∑

k=1

p(A[Jk]),

q(A) = |J−|+ 1
2
|J0|+

h∑

k=1

q(A[Jk]).

(6.1)

The first term in the right-hand side of (6.1) is obtained by applying (5.1) repeatedly to each i ∈
J+ ∪ J−, and the second term by applying (5.2) repeatedly to each i, j ∈ J0.

The inertia of A[Jk] for k = 1, . . . , h is obtained by Lemmas 5.3 and 5.4. Indeed, if Ck has a
chord, then find a chordless symmetric circuit C ′

k in G(A[Jk]) (otherwise C ′
k := Ck). Let J ′k be the

indices corresponding to C ′
k. Let 2t′k be the number of the negative entries of A[J ′k]. Comparing

s′k = (|J ′k| − 1)/2 with t′k, we have, by (5.2) and (5.3), that

(p(A[Jk]), q(A[Jk])) =
{

(sk + 1, sk) (if t′k ≡ s′k mod 2)
(sk, sk + 1) (if t′k 6≡ s′k mod 2),

(6.2)

where sk := (|Jk| − 1)/2. Thus the inertia of A can be computed from (6.1) and (6.2).
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¶ ³
1. Find a perfect matching Md in G(A) with maximum number of diagonal edges.

2. Find the set of all symmetric circuits C in Md ∪M>
d .

3. Repeat the following.

• If there exists a pair of symmetric circuits C and C ′ in C connected by an edge in
E \ (Md ∪M>

d ), then delete C and C ′ from C.
4. Denote the remaining symmetric circuits in C by C1, . . . , Ch. Let Jk be the indices corre-

sponding to Ck. For each connected component G(A[Jk]) for k = 1, . . . , h, do the following.

• If Ck has a chord, then find a chordless symmetric circuit C ′
k in G(A[Jk]).

• Compute the inertia of A[Jk] by (6.2).

5. Return the inertia of A obtained by (6.1).
µ ´

Figure 3: Algorithm for computing the inertia of a sign-nonsingular symmetric matrix

The algorithm is now summarized in Fig. 3.
The algorithm requires O(mn) time in total. Indeed, it requires O(nm) time to find a perfect

matching Md. In addition, it requires O(m) time to find symmetric circuits C1, . . . , Ch in Md ∪M>
d ,

and O(m) time to find a chordless symmetric circuit in G(A[Jk]) for k = 1, . . . , h.

Theorem 6.1 For a sign-nonsingular symmetric matrix A of order n, the inertia of A can be com-
puted in O(nm) time, where m is the number of nonzero entries of A.

7 Complexity of Testing Sign-Nonsingularity

In this section, we discuss the complexity status of the decision problem whether the inertia of a
given symmetric matrix is uniquely determined by the sign pattern of the matrix entries. Hall, Li and
Wang[3] proved the following theorem.

Theorem 7.1 (Hall, Li and Wang [3]) For a given symmetric matrix A, Ã has the same inertia
for any Ã ∈ Q∗(A) if and only if

max{rankÃ | Ã ∈ Q∗(A)} = min{rankÃ | Ã ∈ Q∗(A)}.

Furthermore, it is known that t-rankA = max{rankÃ | Ã ∈ Q∗(A)} [7]. Hence the inertia of A is
uniquely determined by the sign pattern if and only if A satisfies

t-rankA = min{rankÃ | Ã ∈ Q∗(A)}. (7.1)

However, it is not clear how to discern efficiently if a given matrix satisfies (7.1) or not.
First, we suppose A is a term-nonsingular matrix of order n. Then A satisfies (7.1) if and only

if A is a sign-nonsingular symmetric matrix. As already mentioned in Section 2, it can be done
in polynomial time to discern whether a given symmetric matrix has an equisignum determinant.
However, having an equisignum determinant is not a necessary condition for a symmetric matrix to
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be sign-nonsingular. For example,

A =




+1 0 +1 +1
0 +1 +1 +1

+1 +1 −1 0
+1 +1 0 −1




is a sign-nonsingular symmetric matrix, while it does not have an equisignum determinant[3].
We prove the following theorem.

Theorem 7.2 For a symmetric matrix A, the problem of deciding whether A is not a sign-nonsingular
symmetric matrix is NP-complete.

To prove Theorem 7.2, we use the following result by Klee, Ladner and Manber[5].

Theorem 7.3 (Klee, Ladner and Manber [5]) For each positive integer k, the problem of decid-
ing whether an n× (n + bn1/kc) matrix is not row full-rank only by the sign pattern is NP-complete.

Proof of Theorem 7.2. It is clear that the decision problem whether a given matrix A is not a sign-
nonsingular symmetric matrix is in NP, as it suffices to exhibit a singular symmetric matrix with the
same sign pattern as A.

Suppose we can discern in polynomial time whether A is not a sign-nonsingular symmetric matrix.
Consider

A =
(

O B
B> I

)
,

where B is a rectangular matrix such that |Col(B)| = |Row(B)| and t-rankB = |Row(B)|, and I is
an identity matrix. Then detA = −det B>B holds. Since B>B is a positive semidefinite matrix,
this implies detA ≤ 0. By the assumption, we can discern in polynomial time whether there exists

Ã =
(

O B̃

B̃> Ĩ

)
∈ Q∗(A) such that det Ã = −det B̃>B̃ = 0. This implies that we can test in

polynomial time whether there exists B̃ ∈ Q(B) which is not row full-rank. Hence it is NP-complete
to discern whether A is not a sign-nonsingular symmetric matrix by Theorem 7.3.

It follows from Theorem 7.2 that the decision problem whether the inertia of A is not determined
by the sign pattern is also NP-complete.

Corollary 7.4 For a symmetric matrix A, the problem of deciding whether the inertia of A is not
determined by the sign pattern is NP-complete.
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