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Abstract

In this article we study the simultaneous estimation of the means in J-way multi-
plicative models and a decomposable model for three-way layouts. The estimators which
improve on the maximum likelihood estimators under the normalized squared error losses
are provided for each model. The proposed estimators correspond to the ones by Cleven-
son and Zidek[2], Tsui and Press[11] and Chou[l].

Keywords and phrases : multiplicative Poisson model, decomposable Poisson model, shrinkage
estimation, Bayes estimation, unbiased estimation of risk difference.

1 Introduction

Consider a two-way contingency table x;;,, i1 = 1,..., 11, 1o = 1,...,I5, where xz;;, are
independent Poisson random variables with means )\;,;,. The conditional distribution of z;,;,
given z, ; is the multinomial distribution Mn(z, 1, p11, ..., pn1) With pii, = Ao /A A = Ay,

where + denotes summation over index. The independent model is described as

_ A _ )‘i1+)‘+i2
Pivios = Piy+P+is  OT ivig = Ty

This is equivalent to
Niyiy, = Ay Qg (1)

Iy
Zozjijzl fOI'jzl,Z.

ij=1
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The model (1) is generally known as the multiplicative Poisson model. In this article we first
address the simultaneous estimation of X = (Aj1,..., A7) in this model from the decision
theoretic viewpoint.

A series of results on the shrinkage estimation of multivariate Poisson means which has its
origin in Clevenson and Zidek[2] corresponds to the estimation of A in the saturated model in
which there are no constraints on \;,;,. Clevenson and Zidek[2] proved the inadmissibility of
the maximum likelihood estimator(MLE) when I; - I > 2 and provided a class of estimators
which dominate the MLE under the normalized squared loss

LA = 3 (R — ) 2)

11,42 71102

Their class includes proper Bayes, i.e. admissible estimators. Since then, considerable research
has been devoted to this problem.

Tsui and Press[11] enlarged the class of Clevenson and Zidek and also derived improved es-
timators under k-normalized squared error loss, Ly(A, A) = Zil’h(j\im — Niyiy)2 /A . Hwang[7]
extended their results to the estimation of the mean parameters of a subclass of discrete expo-
nential families. He generalized the identity of Hudson[6] and derived an unbiased estimator of
the difference of two risk functions. Chou[l] gave a class of improved estimators for a wider class
of discrete exponential families. In the setting of simultaneous prediction of Poisson random
variables, Komaki[9] derived fundamental results on admissibility under the Kullback-Leibler
loss. Other important results in this field may be found, for example, in Ghosh and Parsian[4],
Ghosh, Hwang and Tsui[3], Ghosh and Yang[4], Johnstone[8], Tsui[10].

We consider to apply these arguments to the estimation of A for the multiplicative Poisson
model (1). In section 2 we provide two classes of estimators which dominate the MLE under
the loss (2). The one corresponds exactly to the class of Chou[l]. The other is an extension of
the Bayes estimator of Clevenson and Zidek. In section 3 we extend the results in section 2 to
the multiplicative Poisson models for multi-way contingency tables and prove that Chou-type
estimators dominate the MLE.

These results suggest that we may apply the argument in section 2 and 3 to the estimation of
the means of more general Poisson log linear models. In section 4 we take up the decomposable
Poisson model for three-way layouts,

Liyigig ™ Po ()‘ilizis) ) /\i1i2i3 = )\O‘n:ﬁlm’
i

ij=1,....1;, I;>2, j=1,23,

Zam‘z = Zﬁigig = Yig> Z%Q =1.
21 23 i

We provide three classes of improved estimators also in this model.
Section 5 gives some Monte Carlo studies which confirm these theoretical results of the
dominance relationship. In section 6 we give some concluding remarks.



2 Estimation of the means in the multiplicative Poisson
model for two-way contingency tables

In this section we consider the simultaneous estimation of A = (Ajq,...,Arp,)" in two-way
multiplicative model (1) under the loss function (2). In this model &1 = (x14,...,2,4) and
Ts = (T41,...,2.5,) are the complete sufficient statistics. The joint probability function of a;
and x, is easily obtained by

Pr(zq, ) = exp(—A)A"* H Offlelﬁ H 0492?;2 (z1, x2), (3)

where |
Lyg-

H 1’114_' H x+22

t(xy, x2) =

From (3) the MLE of A;;, is

LTig4Ltiz .
TR g A0,

X
ML ML ML ML ++
6 (511 ). 511]2) ) 5%112 -

0 if x,, =0.
The following lemma corresponds to the identity of Hudson[6] and Hwang]7].

Lemma 2.1 Let 1 and x5 have the probability function (3). If g is a real valued function with
Elg(x1,x5)| < 00 and g(x1,x2) = 0 whenever x;,y < m or x;, < m, then

)\m

1112

1
E [ - g(x1 + me;,, Xy + mey,)

-g(x1 + me;,, s + me;,)| , (4)

B E |ff(iL‘1 + meil, ) + mei2)
t(azl, wg)

where e;; are the I; X 1 vectors with 1 as the i;-th component and 0 for others.

The proof is the same as in Hudson[6] and Hwang[7] and is omitted here. From this lemma
with m = —1 and g(a;, ;) = 1, 8% is found to be the uniformly minimum variance unbiased
estimator(UMVUE) of A.

We address the estimators which dominate
class

ML under the loss function (2) from the following

where W(xy,x2) = (Vyi(x1,x2), ..., VY, n(x1,22)) . By using (4) in Lemma 2.1 with m = 1,
the difference between two risk functions of 6% and §¥ is expressed as
R(X, 6M5) —R(X,8Y)
= E[L(X, 6"") — L(X, 8Y)]
1
=> E T\Ijiu’g(l‘la L) (20050 — Wi, (@1, 2)) — 2054, (1, )

11,02 L2



= Z E 1112 wl + €, L2 + 812) - \Ijillé(wl? wQ))]

11,02

1
—ZE[ -T+++ \112 (m1+ei1,m2+ei2)1 .

(xil-i- + 1>(x+i2 + 1) e

11,82
The last term implies that

Rd 6w - 2 Z 1112 m1 + ella 1) + ezg) - \Ij’hiz(wh mQ))

11,82

ri+1 ) )
) \I]“Q T+ €, T + € 5)
l;iz <($z‘1+ + 1) (244, +1) (x4 5 ) 5)

is the UMVUE of R(X, 6™%) — R(A, 6¥). In what follows we derive a sufficient condition on ¥
to satisfy Rd(6Y) > 0 for two classes of .
We begin with the following class of Chou[l]-type estimators,

87 = (67,000,

607 = ML (1 - W) , (6)

1112 +1
Tyy +c)

where ¢(-) is a nondecreasing function which is not identically zero and ¢ > 0 and v > 0 are
constants. In the next theorem a sufficient condition on ¢ to improve on 8% is presented.

Theorem 2.1 If ¢(-) is nondecreasing and satisfies
0<¢() < min( 20 + 1) — 2y —4, 2c—2v, (v, +c)*! ) :
then 6%7 dominates 6™ under the loss function (2).

(Proof)
We can prove this theorem by using the procedure in the proof of Theorem 2.1 in Choul1].
From (5) Rd(6%7) is

Rd(6%7) = 2 3 {¢(I++ +1) @i+ + (@ +1)  dzyy) Ii1+$+z’2}

i1,iz Bt Ty +1 (B — 1)+ Lyt
N Z ¢2($++ + 1) . (Iiﬁ- + 1)(I+i2 + 1)
11,12 B2’Y+2 Ty + 1
9 P(ry +1) ) (o + L) (g + 1o) _ (i)
B+l T+ 1 (B — 1)+t
_ ¢* (v, + 1) ) (o + L)z + 1) (7)
B2v+2 ro,+1 ’

where B = x,, + ¢+ 1. Since ¢(-) is nondecreasing and B > 1,

2 $(zys +1) . (@ + L)y + 1) _ P(@y) Ty
Bt Ty +1 (B — 1)1
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¢* (v, +1) ) (T + L) (wey + 1)
B>r+2 T+ 1

¢(x++ + 1) QB(B _ 1)’y+1 <x++ + [1)(x++ + 12)
- B 2(B—-1)H! ro, +1

v+2
— 2Bz, ,

b, +1)(B — 1y Eee @ Iz)}

Tpp+1
T {QB”“(B —(y+1)) @4y * D)(@es £ 1) 2B 2

= (B 1yt Ty 1
(T + L)(zy + 12)
— ¢(xy, +1)B7H }
Ty +1
1
- M{@(h 1) =2y —d =gl + 1)y

+2c=2y =@z + )L+ L—1)
(L — 1> — 1)}

2 — 2y — 1
+(2(c+zyy) v =z + 1)) T 1
The second inequality follows from the fact that (B — 1)7*! > B! — (y + 1)B" for v > 0.
The right hand side is always nonnegative if ¢(-) < min(2(/; + Iy) — 2y — 4,2¢ — 27), which
completes the proof. 1

590 corresponds to the estimators by Tsui and Press[11]. If ¢ > I + I, — 1, §° corresponds
to the estimator by Clevenson and Zidek][2].
Next we consider the following class,

0" = (811, 0%L)
Liy + Lty T+ L+ 1L —2

e @+ h -y +L-1) o, +v+h+1L—2 o (®)

where v > 0 is a constant. We note that for v > 0 this class is not included in (6). 8" is the
Bayes estimator with respect to the prior measure 7(\, oy, as|v),

I1—-1 I>—1 I1—-1 I>—1

W(A,al,aglu)d)\ H dalil H dagig = m()\)d)\ H dalil H dOéQZ'Q,

i1=1 io=1 i1=1 io=1
m) = [T A e~ dt,
0

o) = (0411, cee 704111)7 O = (0é2h e 704212)-

For v > 1, m(\, a1, g, V) is proper and therefore 8" is admissible. This estimator is a natural
extension of the Bayes estimator discussed in Clevenson and Zidek|[2].
The following theorem gives the condition on v to dominate 6%

Theorem 2.2 Suppose that I > 2 and I, > 2. If0 <v < I} + I, — 2, 8" improves on SME
under the loss function(2). If v > 1, 6" is admissible.

This result is consistent to the one of Clevenson and Zidek[2]. The proof is complicated. See
the Appendix for the details.



3 Extension to the Poisson multiplicative model for multi-
way contingency tables

We can extend the results of Theorem 2.1 to multi-way multiplicative models. Extension of
Theorem 2.2 seems to be technically difficult. J-way multiplicative model is expressed as

Tirigiy ~ PO(Aijigeiy )y Aijigeiy = AL, Qogy - Qi 9)
=10, [[>2 j=1,...,J,
Doy, =1, 5=1,....J,

where ;,;,..;, are assumed to be independently distributed. The problem is to estimate A =
{Niyip-i, } simultaneously under the loss function

R J I 1

LA =3

j=1i;=1 )‘i1i2~~~i.7

(Niviziy = Aiyiziy)- (10)

Denote the j-th one-dimensional marginal frequencies and the total frequency by
] (7 Z Liyigiys er = Z l’;tz]
is:87£] i

Then the set of one-dimensional marginal frequencies :18;r = (x;fl, e x;f[j)’ ,j=1,...,J,1is the
complete sufficient statistic. Its joint probability function is given by

Pr(xf, ..., ) = exp(=A\)A"" HH a; -t xy), (11)
where ( +|>
t(xf,...,xt ’
( 1 J) HHI] !
From (11) the MLE is
_l’_
i%ii; .
Loifaxt #£0
ML 1)1 ’
- {51112 ZJ} 51112 BN = ( )
0 if zT = 0.

The following lemma is the identity which corresponds to (4).

Lemma 3.1 Let (xz],...,xF) have the probability function (11) If g is a real valued function
with Blg(xy,...,z;)| < oo and g(z7,...,x)) = 0 whenever x}, < m for some (j,i;), then

1

111217

+ . + ;
:E[ (wl +m€zl,...,$J +meZJ>g(w1F_'_mell"w:";_'_mezJ) s (12)

tlxl,...,x})

where e;; are given as in Lemma 2.1.



The proof is omitted here. In the same way as the previous section "% is found to be the
UMVUE of A also for J-way multiplicative model.
We consider the following class of Chou-type estimators,

60 = {00

5o — §ML (1 _ (‘b(er)) 7

11921y 11121 xt -+ C)'erl

where ¢(+), ¢, and v are given as in the previous section. The following theorem generalizes
Theorem 2.1 to J-way layouts.

Theorem 3.1 Suppose that 1; > 2, j=1,...,J. If ¢(-) is nondecreasing and satisfies
0<¢() <min( 257, [;—2y—2J, 2c-2y, (2" +o)* ),

then 8% dominates 8™ under the loss function (10).

We use the following lemma to prove this theorem.

Lemma 3.2

S S - U D), (13)

where &;5(+) is a positive function.

(Proof)
We prove this lemma by induction. When J = 2, &(at) is

(L —1)(I2—1)

)= > 0.
&(r7) xt+1
Suppose that (13) holds for J = Jy. Then
Jo+1
II "+ 1) " ; .
I (e — + Lo =1
Tt (Ljpr1 — 1) I = o) Ljgr1 + 2™
J:
Since I; > 2 for j=1,...,J,
L1 — V(SR L — o) Ljpp1 + 2t
+\ ( Jo+1 j=171j 0 +y 2 Jo+1
Erpr1(a™) = o+ 1 + & (@ )W >0,
which completes the proof. 1

(Proof of Theorem 3.1)



By using Lemma 3.1 with m = 1, the UMVUE of the difference between the risk functions of

0ME and 6% is expressed by
) J S| (zF. +1 + q}+
Rd(édw) = 22 Z {gb(x J—: ) ' H]J(r - J—l) - Ha )+1 T ﬁzjl}
j:1ij:1 By (z+ +1) (B—1) ()

B Z LGt 1) T, + 1)
BZ’y+2 (ZL‘+ + 1)]—1

j=1li;=1

, {¢<x+ c1) Lt + L) st }

Br+1 (x—i- + 1)]—1 (B _ 1)’y+1
Pt I+ 1)
B27+2 (x+ + 1)J—1 ’

where B = 21 4+ ¢+ 1. By using (13), we can show the following in the same way as (8),

5 {¢($+ +1) ILET+L) )t }

Br+1 (ZL’+ + 1)J71 (B _ 1)’y+1
et ) DL+
BHv2 (a4 1)

p(r" +1 T+
> BV+2(ECB — 1))7“ {2B7+1(B - (v+ 1))(£::_1)1) 9B +2 T
— oz + UBWHW}
Pzt +1) 3
Bp 1| (25 =2 2 ol D)
+(2c =2y — gzt + 1)L+, —1)
+2(c+ah) = 29— ot + )&M),
which completes the proof. .

4 Estimation in Poisson decomposable model for three-
way contingency tables

The results in the previous sections suggest that we may be able to apply the arguments to
more general Poisson log linear models. In this section we take up the following decomposable
model for three-way layouts,

g Bini

Liyigiz ™ Po ()‘i1i2i3)’ )‘i1i2i3 = A 1,;, : 3’ (14)
io

i-:1,...,[j, Ij >2, 7=1273,

Zailiz = Zﬁigig, = Yia>s 2722 =1.
21 23 i



The problem is to estimate A = (Ai11,..., A;, 1) under the loss function

. 1 . )

ﬁ()‘hizis - >‘i1i2i3) : (15)
11,0243 * 117273

Denote the relevant two-dimensional marginal frequencies by

_ / _ /
Llig+ = (x1i2+7 < 7x11i2+) 7 Lgipd = <x+i217 s 7x+i213) )

$12 - ($/11+, N ,m/1[2+)/, ng — (m/_"_lg, P ,m/_~_123)/.

In this model (&9, To3) is the complete sufficient statistic. The joint probability function of
the sufficient statistic is

11, o 2t L ﬁxﬂzlzs
Pr(@1, @a) = exp(—A) A“+ ¢+ iz Lt T (@, 3), (16)
sz 712

+ Topipt!
tH (212, T23) = Ht($1i2+,$+z‘23), H(X1int, Thinz) = ' %

0 [Tiy Tiyigt i @ inis!

The MLE of \;,;,i, is
‘1'4 . :C P .
Zl§+ Tzt if Tqio+ 7& 07
/ ML +i2+
6 (5111 VA 6]112[3) Y 6112213 -

0 if Lhijot+ = 0.
The identity for this model is as follows.

Lemma 4.1 Let 12 and o3 have the probability function (16). Let g(-), e;, and e;, be given
as in Lemma 2.1. Define e;,;, by the I1 I3 X 1 vectors with 1 as the (iy + I3(ia — 1))-th component
and 0 for others. e;,, is defined in the same way as e;,;,. Then

)\m

111213

E [19(51312, 51323)]

_E l (T1iy+ + meiy, iiy3 + MeEG,)

- g(@19 + Mme;,4,, Loz +Me; )| - 17
t(w1i2+,w+i23) g( 12 192y 23 23)] ( )

This lemma can be also proved in the same way as Hudson[6] and Hwang[7]. Specializing
(17) to g which depends only on @14, , 4,3 we obtain the following identity.

1
E [/\m (X155, 334—1’23)1

111213

B [ (T1iy+ + mei,, Tiiy3 + MEG,)

: i i1s Lt is) | - 18
H@1ig+ Tia) 9(@1iys iy, By + M 3)] (18)

From (16) if i, is fixed, the model (14) is reduced to two-way multiplicative model (1). Thus
we first consider the following class,

oY = oML — W (g, Ta3) = (5%117 BN 5?}11213)/ (19)

9



U(x12, To3) = {\I}iligig(wlig—&-a 33+z‘23)}-
By using (18) in Lemma 4.1 P{d(éq’) is expressed by
RdA(6%) = ZRd

Rd(éi) =2 Z( ivinis (T1int T €11y Tying T €55) — Wipigiy (T1ipt, w+i23>)
91,13
Tyig+ +1 )
— U (X1 T €, T3+ ey) |, (20)
ilz,z;) ((:Cilinr + 1)(x+i2i3 + 1) 10213 2t 1y Ltiz 3

where dw (51121, . 51”213) . (20) corresponds to (5). Since RAd(JZé) > 0 for each iy implies
Rd(éd’) > 0, the followmg results on two classes of estimators can be obtained in the same way
as Theorem 2.1 and 2.2.

Theorem 4.1 Suppose that nondecreasing functions ¢;,(+), ia = 1,..., Is, satisfy
0< ¢s() <min( 21+ L) 2y —4, 2—27, (Temp+0) ), >0, 7>0.

o , ¢I Y
Then (S(b 27 = (5%1177 cee a5[1;213),’

5¢127 5ML (1 o ( ¢i2($+i2+) > _ Liyig+Ttigis <1 . ( ¢i2(x+i2+) ) (21)

111213 111213
Tiipt + €)1 N 4y Tigt + €)1

dominates 8™ under the loss function (15).
Theorem 4.2 §"2 = (0114, . .. ,5;{}213)’,

5 Tiyin+ Liis Tyigr + L+ 15— 2

i1igiz T (1‘+i2+ + I — 1)(1'—}—1‘2—&- + I3 — 1) . Tijor + Vi + I + I3 —2

" Lfin (22)
dominates 8™Y under the loss function (15) if v, < I + Iy — 2, iy = 1,..., L. If v, > 1,
ia =1,..., 15, then 6”2 is admissible.

Let Aiy = Miy, Oivis = Qiyiy/Vip a0d Minis = Biyis /Vip- As we mentioned in Section 2, "2 is the
Bayes estimator of A with respect to the prior measure

IQ [2
H 7T(/\i27 0i27 7h2 |Vi2)d/\i2 H deiﬂ'z H dniﬂ's = H m<)‘22 |Vi2)d)‘i2 H deiliQ H dnizim
i9=1 i1 i3 io=1 71 i3
m()\i2|yi2) — / (1 + )\iQt)—Vigt_(h-i—I:s—l) eXp(—t_l)dt,
0
0i2 = (‘911'27 <. 7‘9111'2)/7 N, = (771‘217 v 7771'213)/'

So far we considered shrinkage separately for each iy slice. Next we consider the third class
of estimators

6(1577 = (51117 ° 5]1[2]3) )
5(}57 — 5ML 1 _ ¢<x+++> 23
211223 111213 ( (x+ iy + C)’Y+1 Y ( )

10



where x, , | is the total sample size. Note that in this class the amount of shrinkage depends
only on the total sample size z, ., and hence this class does not belong to (19). We can find
improved estimators also in this class.

Theorem 4.3 If ¢(-) is nondecreasing and satisfies
0<¢() <min( 2h(h+13—1) =2y =2, 2¢, (w, ..+ ), (24)

then 6%7 dominates 8™ under the loss function (15).

(Proof) )
By using (17) in Lemma 4.1, RA(6*7) is

PCd((S‘M) — QZ Z { (@4 ++) (Tirigr + 1) (@iniy + 1) _ O(xs14) xi1i2+x+i2i3}

+1 . _ +1 )
12 11 13 B’Y x+712+ _'_ 1 (B 1)’y $+12+

_ Z Z x+++ (xi1i2+ + 1)($+i2i3 + 1>

— g Trig +1
_ 22 {¢(I+++ +1) ) (@tig+ + 1) (T4in+ + 15) _ ¢(m+++)x+i2+}
B+ Trigr + 1 (B— 1)+
-y (@ sy +1) (@ripr + 1) (Thip4 + 13)
iz B2 Tiipy +1 ’

where where B = x, , , + ¢+ 1. Note that

(@tigs + 11) (@ pins + 13) (L —1)(I3—1)
= 7z + L +13—1)+
g x+7j2+ + 1 + + + 2( 1 3 ) Z x+i2+ —l— 1
(L —-1)(I3—1)
> L(L+13—1)+ 2
o ZL‘++++ 2(1+ K )+ [17+++‘|‘I2
_ (@444 + L) (2, 4 + Lo13) (25)
Tyyqt+ 1
Since ¢(z, , , +1)/B"* < 1 under the condition (24), Rd(6*7) is bounded below by
RA(597) = 2 O@e o +1) @i+ hb)(@ oy + bl Slais)
B+l I+++—|—]2 (B—l)'y""l +++
o ¢2<x++++1) . (37++++IIIZ)($U++++IQI3> (26)
B2 Tyt 1o '

(26) corresponds to (7) in the proof of Theorem 2.1. By using (25), Rd(6%7) > 0 under (24)
can be proved in the same way as Theorem 2.1. 1

11



5 Monte Carlo Study

We study the risk performance of the proposed estimators through Monte Carlo studies. Table
1 and Table 2 present the risks of the MLE and the proposed estimators for some two-way and
three-way multiplicative models obtained from 100,000 replications. ¢ in Table 1 and Table 2

are
P L and 8¢ =oM(1- ¢
.§L’+++C $++++C

respectively. 8¢ is 87 in Theorem 3.1 with ¢ = ¢ and v = 0. We set aji; all equal to 1/1;.
Table 3 and 4 present the risks of the MLE and the proposed estimators for three-way
decomposable models obtained from 100,000 replications. d“* and 6 in Table 3 and Table 4

are
8% = oMk (1—% ) and 6° = M~ (1—0 >,

Tyirt + Ciy Typt tcC

respectively. 82 is %2 in Theorem 4.1 with ¢;, = ¢, and v = 0. §° is 6*7 in Theorem 4.3
with ¢ = c and v = 0. 6,4, and 7;,;, are all set to 1/(I113) and 1/(I513), respectively. In Table
3 all of \;, are set to A/l and Table 4 is the case that not all of \;, are equal.

The summary of these experiments is as follows.

e We can confirm the dominance of the proposed estimators against the MLE. As can be
expected from the fact that the proposed estimators shrink the MLE towards zero, we
see considerable amount of risk reduction when A is small.

e The improvement is in the inverse proportion to .

e We can see from Table 1 and 2 that " shows larger risk reduction than §° when A is
small.

e We can see from Table 3 and 4 that §° shows larger risk reduction when \;, are close
together. On the contrary §“2 and 6”2 seem to be better than §° when )\;, varies widely
and A is large.

6 Some concluding remarks

In this paper we proposed improved estimators in some log linear models for Poisson random
variables. We expect that improvements by Chou-type estimators can be extended to the case
of general decomposable graphical models for J-way layouts. Since the notation and the proofs
for general decomposable models become complicated, we will present our results for general
decomposable models in our subsequent paper.

We also think that similar results as in Theorem 2.2 hold for more general models. However
our present proof of Theorem 2.2 for the two-way case is very complicated and at present it
seems difficult to extend it to more general cases.

In this paper we have considered shrinkage toward the origin assuming that the model is
true. From practical viewpoint it might be more attractive to consider the saturated model
and establish improvements by shrinkage toward some log linear model. Partial results in

12



this direction have been obtained by the first author but at present sufficient conditions for
improvements by shrinkage toward log linear models are rather complicated.

Appendix : Proof of Theorem 2.2

In this section we denote # = ., a = I; + I, b = I; - I,. From Lemma 2.1 and (8) Rd(¢")
can be expressed by

Rd (0", )
_ 203 (x + I, + I, — 2) N (x+h)(z+ 1) o
(x+L—-—1)(z+L—D)(z+v+L+1—-2) r+1
(x+1)3x+ 1 + I, —1)?
(x+ L) (z+ L) (x+v+ 1+ [ —1)?
9(x)
(z+hL-1D(z+L-De+h)e+L)(e+v+Lh+L—2)(a+v+L+1—1)%

where g(z) is a polynomial of degree 7. We obtained the explicit form of g(x) using Mathematica
and after some factorization for making the proof easier to see, we have the following expression

of g(z):

o@) = S
o) = (Pr+a-1)—(@-1)°)(b—a+)(v+a—-2)
ci(v) = {2ab(b— a) +b*(a — 4) + 2b(2a — 1)} *
{2b(a(3a — 10) + 11)(b — @) + ab(3a — 7) + 3b*(b — 1) + 8b} 12
{2ab((3a — 2)(a — 4) + 18 + 2) (b — a) + a*b*(3a — 10) + 2b°(a — 4)
+30%(a — 2) + b*(9a — 28) + 6b(Ta — 2) + 3a} v
+{(20°b(a — 4) + a®6*) (b — a) + a**(a — 5)* + 2ab™(a — 4) + a*(3a — 11)
+ab(4a — 9)(a — 4) + ab*(10a — 39) + 3ab(3a — 10) + 3a(4a — 1) + 136> + 7b — 1},
ea(v) = {a’(b—a)+2ab(a—4) +a(3a—2) + b(b+4)} v*
+ {a2 ((3a —1)(a —4) + 14) (b — a) + 4b*(3a — 4) + ab(6a — 5)(a — 4)
+2b(9a — 11) + 8a} v*
+{(a*(3a = 5)(a — 4) + 9a®b + 13a* + 36 (b — a) + 2a°b(3a — 5)(a — 4)
+ab(85a — 112) + 46*(3a — 2)(a — 4) + a(34a — 19) + 86 + 3Tb} v
+{(a*(a—4)(a — 3) + 3a’b + 2% + 5) (b — a) + 2a°b(a — 4) + a**(Ta — 13)(a — 4)

+a®b(41a — 98) + b*(a — 4) + a®(27a — 37) + b*(7a — 26) + b(71la — 22)
+29a — 8},
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cs(v) {a )+2b(a—2)+6a—2} v
+{ (5> + 3b)(b — a) + a*(3a — 2)(a — 4) + ab(10a — 39) + a(35a — 36) + 8} v
+{10ab(b — a) + a*(3a — 8)(a — 4) + 6ab(3a — 4)(a — 4) + a*(4Ta — 98)
+5b%(a — 4) + 2b(15a — 23) + 53a — 10} v
+ {(a4 +5a*b + 13a* + b*> 4+ 6b)(b — a) + a*(a — 5)* + a*(17a — 65)
+a?b(10a — 23)(a — 4) + ab(22a — 86) + b*(7a — 4)(a — 4) + a(47a — 23) + 8},
cu(v) = (&> —b—3a+3)° + {a2(6a —23) + 5b(a — 2) + 35a — 18} v
+{3a%(3a — 5)(a — 4) + ab(2la — 66) + 2a(23a — 44) + 30> + 36b+ 25} v
+{4ab(b — a) + 4a*(a — 3)(a — 4) + 2ab*(a — 4) + 3a*(13a — 32)
+4(3a —5)(a —4) + Tb(a — 4) + 38a — 3},

cs(v) = —av® + (2¢° —5a —b+5)v* + {9@2(a —4)+2b(3a —7) + 48a — 22} v

+{a*(6a — 13)(a — 4) + ab(9a — 34) + 2a(14a — 31) + (b* + 22b+ 13)} ,
c(v) = —1°+(2—2a)* + (a® +2a(a —4) + 4)v + 2b(a — 3) + 4(a — 4)(a — 1) + 4a — 2,
cr(v) = =+ (a—2)%

It suffices to show that ¢;(v) >0,i=1,...,7, forv <a—2and I > 2 and I, > 2.

co(v) and c7(v) obviously satisfy this condition. ¢;(v), i =1,...,6, are polynomials of degree
3. Denote ¢;(v) = ¥7_o &;17. Note that a and b satisfies a > 4 b > 4 and b —a > 0. By using
this fact we can confirm that

ci(v), i= .4, satisfy that ¢;; >0, j =0,...,3, for integers a, b > 4.
2. ¢;(v) and c¢¢(v) satisfy that ¢;3 < 0, ¢ > 0, ¢5(0) > 0 and ¢;(a — 2) > 0 for integers a,
b> 4. .
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Table 1. Risks of the MLE and the proposed estimators for two-way multiplicative models.
(i) 2 x 2 contingency tables
0°¢ oY
AN Mile=4 ¢c=2 c=1|v=2 v= v =
0.1]3.956 | 0.254 0.546 1.101 | 0.190 0.245 0.363
0.5]3.794 | 0.586 0.892 1.431 | 0.545 0.612 0.752
1.0 | 3.640 | 0.932 1.234 1.740 | 0.913 0.985 1.135
2.0 1 3.432 | 1.452 1.708 2.135| 1.462 1.522 1.664
5.0 | 3.196 | 2.261 2.355 2.601 | 2.292 2.290 2.360
10.0 | 3.102 | 2.706 2.675 2.801 | 2.728 2.673 2.684
20.0 | 3.044 | 2.914 2.837 2.894 | 2.923 2.856 2.840
50.0 | 3.023 | 2.997 2942 2.963 | 2.999 2956 2.942
100.0 | 2.996 | 2.989 2.955 2.966 | 2.990 2.964 2.956

(ii) 3 x 3 contingency tables
0° oY

AN METc=8 ¢c=4 c=2|v=4 v=2 v=0
0.1 |8.824|0.210 0475 1.136 | 0.137 0.164 0.229
0.5 | 8169 | 0.575 0.881 1.599 | 0.518 0.558 0.655
1.0 | 7.525 | 0.979 1.308 2.058 | 0.944 0.991 1.114
2.0 1 6.732 | 1.653 1.981 2.731 | 1.656 1.702 1.845
5.0 | 5.785 | 2.942 3.121 3.710 | 3.004 2.985 3.088
10.0 | 5.388 | 3.933 3.895 4.271 | 4.000 3.884 3.901
20.0 | 5.214 | 4.614 4.428 4.633 | 4.653 4.477 4.436
50.0 | 5.085 | 4.944 4.764 4.847 | 4955 4.811 4.766
100.0 | 5.038 | 4.997 4.877 4.918 | 5.000 4.908 4.878

(iii) 5 x 5 contingency tables
5¢ 6"

A MLTc=16 ¢c=8 c=4|v=8 v=4 v=
0.1 24234 | 0.188 0.428 1.161 | 0.112 0.123 0.150
0.5 |21.619 | 0.577 0.873 1.743 | 0.506 0.524 0.575
1.0 | 19.098 | 1.029 1.373 2.364 | 0.972 0.996 1.069
2.0]15.934 | 1.841 2.236 3.379| 1.820 1.846 1.951
5.0 | 12.173 | 3.685 4.017 5.210 | 3.770 3.743 3.855

10.0 | 10.609 | 5.550 5.610 6.594 | 5.700 5.532 5.562
20.0 | 9.802 | 7.278 6.970 7.618 | 7.410 7.062 6.972
50.0 | 9.316 | 8.590 8.095 8.394 | 8.644 8.240 8.100
100.0 | 9.118 | 8.889 8.494 8.649 | 8.908 8.602 8.496
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Table 2. Risks of the MLE and the proposed estimators for three-way multiplicative models.
(i) 2 x 2 x 2 contingency tables
50

AN MElc=6 c¢c=3 c=15
0.1]7.830 | 0.262 0.612 1.402
0.5 ] 7.056 | 0.614 0.987 1.772
1.0 | 6.386 | 0.998 1.380 2.145
2.0 | 5.549 | 1.608 1.959 2.647
5.0 | 4.640 | 2.681 2.851 3.306
10.0 | 4.305 | 3.402 3.377  3.632
20.0 | 4.158 | 3.819 3.693 3.820
50.0 | 4.059 | 3.987 3.876 3.924
100.0 | 4.028 | 4.008 3.937  3.960

(i) 3 x 3 x 3 contingency tables
5C

A ML T c=12 ¢=6 c=3
0.1 ]25.726 | 0.261 0.668 1.826
0.5 ]21.948 | 0.643 1.094 2.309
1.0 | 18.498 | 1.081 1.568 2.826
2.0 | 14.227 | 1.843 2.350 3.618
5.0 9.795 | 3.461 3.826 4.897
10.0 | 8.275 | 4.925 4.989 5.737
20.0 | 7.592 | 6.095 b5.858 6.289
50.0 | 7.238 | 6.848 6.522 6.705
100.0 | 7.113 | 6.991 6.751 6.843

(iii) 5 x 5 x 5 contingency tables
5C

A ML c=24 ¢c=12 ¢=6
0.1 | 117471 | 0.303 0.858  2.698
0.5 | 94579 | 0.703 1.309 3.241
1.0 | 74247 | 1.183 1.848 3.895
2.0 | 49.779 | 2.067 2.798 4971
5.0 | 25.797 | 4.238 4.943 T7.125
10.0 | 18496 | 6.723 7.129  9.007
20.0 | 15.544 | 9.376  9.221 10.565
50.0 | 13.967 | 11.936 11.216 11.880
100.0 | 13.499 | 12.787 12.084 12.435
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Table 3. Risks of the MLE and the proposed estimators for the decomposable models for
three-way contingency tables when all of \;, are equal to \/Is
(i) 2 x 2 x 2 contingency tables
)iz 0°¢ oY
AN MElc,=4 ¢,=2|c=10 c=5|v=2 v=
0.1]7981| 0416 0.996 | 0.165 0.337 | 0.282 0.389
0.5 | 7772 | 0.768 1.366 | 0.535 0.752 | 0.659 0.780
1.0 | 7.575 | 1.171  1.781 | 0.954 1.206 | 1.089 1.223
2.0 7265 | 1.863 2463 | 1.670 1.941 | 1.825 1.967
5.06.732 | 3.299 3.754 | 3.131 3.291 | 3.334 3.435
10.0 | 6.397 | 4.525  4.716 | 4.373 4.308 | 4.587 4.584
20.0 | 6.209 | 5.419 5358 | 5.307 5.056 | 5.463 5.354
50.0 | 6.070 | 5.893  5.740 | 5.850 5.586 | 5.906 5.778
100.0 | 6.040 | 5.990 5877 | 5975 5.793 | 5.994 5.906

(ii) 3 x 3 x 3 contingency tables
§Ciz J¢ 0”

A ML T e, =8 ¢,=4]c=28 c=14| v=4 v=
0.1]26.787 | 0.433 1196 | 0.134 0.237| 0.206 0.278
0.5]26.003 | 0.817 1.628 | 0.529 0.681 | 0.605 0.692
1.0 | 25.161 1.277 2142 | 1.003 1.207 | 1.086 1.190
2.0 23773 2146  3.091 | 1.892 2176 | 1.995 2125
5.0 120835 | 4.339 5343 | 4.131 4468 | 4.312 4.458

10.0 | 18459 | 6.996  7.815| 6.810 6.949| 7.113 7.180
20.0 | 16.790 | 10.136 10.418 | 9.935 9.567 | 10.344 10.175
50.0 | 15.722 | 13.399 12.918 | 13.228 12.286 | 13.539 13.037

100.0 | 15.371 | 14.540 13.933 | 14.445 13.530 | 14.600 14.095

(iii) 5 x 5 x 5 contingency tables
¢z 5¢ &

A ML T e, =16 ¢, =8|c=88 c=44| v=8 v=4
0.1 | 123.509 0.533  1.657 | 0.118 0.173 | 0.158  0.200
0.5 | 119.929 0.932 2109 | 0522 0.615| 0.560 0.610
1.0 | 116.596 1.432 2,695 | 1.023 1.165| 1.061 1.123
2.0 | 110.322 2404 3805 | 2.006 2.250 | 2.044 2.125
5.0 | 95.103 5.146  6.849 | 4.800 5.298 | 4.860  4.980

10.0 | 79.457 9.208 11.159 | 8.938 9.651 | 9.109  9.236
20.0 | 64.717 | 15.744 17.615 | 15.529 16.056 | 16.022 16.007
50.0 | 52.984 | 27.695 27.992 | 27.428 26.285 | 28.445 27.604

100.0 | 49.033 | 36.386 34.864 | 36.059 33.320 | 37.049 35.316
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Table 4. Risks of the MLE and the proposed estimators for the decomposable models for
three-way contingency tables when not all of \;, are equal.
(iv) 2 x 2 x 2 contingency tables

¢z o€ ¢”
(A1, Ao ML T e, =4 ¢,=2|c=10 ¢c=5|v=2 v=
0.1,0.9) | 7.580 | 1.116  1.705| 0.955 1.209 | 1.030 1.155
0.2,0.8) | 7.585 1.141 1.741 | 0.955 1.209 | 1.057 1.186
0.3,0.7) | 7.572 1.157  1.762 | 0.954 1.207 | 1.074 1.206

6.736 | 3.586  3.867 | 4.462 4.463 | 3.591 3.612

6.548 | 4.044  4.299 | 4413 4.377 | 4.080 4.098
3.0,7.0) | 6.461 | 4.323  4.547 | 4.384 4.333 | 4.375 4.383
4.0,6.0) | 6.417 | 4477  4.679 | 4.374 4.314 | 4537 4.538

)
)
)
)
0.4,0.6) | 7.570 | 1.166  1.774 | 0.954 1.206 | 1.084 1.217
)
)
)
)

(v) 3 x 3 x 3 contingency tables

iz o° 67
) ML T e, =8 ¢,=4|c=28 c=14|v=4 v=2

( ) | 25.427 | 1.247  2.101 | 1.007 1.219 | 1.054 1.155

( )| 25.339 | 1.258  2.118 | 1.005 1.215| 1.066 1.168

(0.1,0.3,0,6) | 25.314 | 1.266 ~ 2.128 | 1.004 1.212 | 1.074 1.177

(0.2,0.3,0.5) | 25.250 | 1.272  2.135| 1.004 1.210 | 1.081 1.184

(0.3,0.3,04) | 25.177 | 1.276  2.139 | 1.003 1.207 | 1.085 1.189

( )

( )

( )

( )

( )

()\17 )\27)\3
01,0108
0.1,0.2,0.7

1.0,1.0,8.0) | 20.559 | 5.601  6.291 | 6.982  7.357 | 5.600 5.611
1.0,2.0,7.0) | 19.827 | 6.076  6.809 | 6.919 7.211 | 6.113 6.141
1.0,3.0,6.0) | 19.456 | 6.380  7.120 | 6.893  7.144 | 6.444 6.478
2.0,3.0,50.0) | 18791 | 6.780  7.578 | 6.839 7.014 | 6.877 6.934
3.0,3.0,4.0) | 18492 | 6.966  7.779 | 6.814 6.955 | 7.080 7.145
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