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Abstract

This paper proposes a new class of subdivision schemes. Previous subdi-
vision processes are described by the movement and generation of vertices,
and the faces are specified indirectly as polygons defined by those vertices.
In the proposed scheme, on the other hand, the subdivision process is de-
scribed by the generation of faces, and the vertices are specified indirectly as
the intersections of these faces. In this sense, this paper gives a framework
for a wide class of new subdivision methods. Moreover, the new subdivision
is a dual framework of an ordinary subdivision based on the principle of du-
ality in projective geometry. So, the new subdivision scheme inherits various
properties of the ordinary subdivision schemes.

In this paper, we define the dual subdivision and derive its basic proper-
ties. Next, we derive properties on surfaces in general based on the duality
independently of the subdivision. In particular, we derive the duality between
the star-shapedness of a surface and the boundedness of its dual. Then, we
define an “inflection plane” in order to represent surfaces which have inflec-
tion points in the dual space.

Moreover, we derive two main theorems. The first theorem gives a suffi-
cient condition and a necessary condition for the dual subdivision surfaces to
be Ck-continuous. Second, using an idea called the “subdivision kernel”, we
derive a sufficient condition for the dual subdivision surfaces to be bounded.

1 Introduction

Subdivision [11, 13, 3, 20, 18] is a well-known method for geometric design and for
computer graphics, because the subdivision makes smooth surfaces with arbitrary
topology. A subdivision scheme is defined by subdivision matrices and a rule of
change of connectivity. So, many researchers study the condition of continuity of
subdivision surfaces depending on subdivision matrices [20, 22, 16, 15, 1, 7, 21, 17,
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4]. Moreover, multiresolution analysis [14, 5, 19, 10, 9, 8] derived by subdivision
theory is extremely useful on mesh editing.

Subdivisions on rectangular or triangular meshes were studied extensively. For
example, the most popular subdivisions are the Catmull-Clark subdivision and the
Loop subdivision [13]. These subdivisions are designed for irregular rectangular
or triangular meshes. Most subdivision methods are for triangular or rectangular
meshes; there are only a few methods for the other type of meshes. Some subdi-
visions on hexangular meshes were developed [2, 6]. However, faces generated by
these subdivisions are not “flat”.

In this paper, we derive a new subdivision scheme. This is the dual framework
of an ordinary subdivision based on the principle of duality in projective geometry.
The proposed dual subdivision can generate meshes, composed of non-triangular
“flat” faces.

In an ordinary subdivision, we compute new positions of the vertices using old
positions of vertices and matrices called subdivision matrices. On the other hand,
in the dual subdivision, we compute new equations of faces using old equations
of faces and subdivision matrices. Moreover, a mesh which has the subdivision
connectivity is the dual of a mesh which has the dual subdivision connectivity. In
short, a mesh made by the dual subdivision is the dual mesh of a mesh made by
ordinary subdivision. In this sense, the dual subdivision method can be made by
an ordinary subdivision method. Conversely, an ordinary subdivision method can
be made by the dual subdivision method.

The dual subdivision is a wide class of new subdivisions. The dual subdivision
generates faces by subdivision matrices. The subdivision matrices are shared be-
tween an ordinary subdivision and the dual subdivision. So, the dual subdivision
has properties similar to the ordinary subdivision. In this paper, we explain such
properties.

Levin and Wartenbarg [12] already proposed some dual schemes. However,
their schemes are convexity-preserving interpolations. Dual subdivision can natu-
rally represent surfaces with arbitrary topology. We achieved that using “Inflection
plane”.

2 Polar Transformation

In this section, we explain a well-known duality, called polar transformation.
A hyperplane in a d dimensional space is represented as a1x1 + a2x2 + · · · +

adxd + ad+1 = 0. A quadratic surface in the d dimensional space is repre-
sented as xAx� = 0, where A is a (d + 1) × (d + 1) symmetric matrix, x =
(x1, x2, · · · , xd, 1) is a d+ 1 dimensional vector.

We associate a point p = (p1, p2, · · · , pd) with a hyperplaneD(p) : xA(p, 1)� =
0, where (p, 1) = (p1, p2, · · · , pd, 1). Conversely, we associate a hyperplane
h : xA(p, 1)� = 0 with a point D(h) = p. Here, D(D(p)) = p, D(D(h)) = h.
Therefore, transformation D is a dual transformation based on the quadratic sur-
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face xAx� = 0, called polar transformation. The point p and the hyperplaneD(p)
(the pointD(h) and the hyperplane h) are a pole and a polar surface of xAx� = 0.
Usually, we use a parabola or a sphere for the quadratic surface xAx� = 0.

In this paper, we use a unit sphere for the quadratic surface. Then, we have
following properties:

• When a point p is on a hyperplane h, and only then, a point D(h) is on a
hyperplane D(p).

• When a point p exists in upper (lower) half-space partitioned by a hyper-
plane h, the point D(h) exists in upper (lower) half-space partitioned by the
hyperplane D(p). Here, a lower half-space means the half-space which has
the origin and the upper half-space means the other.

Here, the polar transformation using a unit sphere (a, b, c) ↔ ax+by+cz−1 =
0 is a projective duality (px, py, pz, pw) ↔ pxx + pyy + pzz − pww = 0. The
projective duality satisfies above first property.

3 Ordinary Subdivision

In this section, we review ordinary subdivisions in general.

3.1 Subdivision Matrix

A subdivision scheme is defined by subdivision matrices and a rule of connectiv-
ity change. The subdivision scheme, when it is applied to 2-manifold irregular
meshes, generates smooth surfaces at the limit. Fig. 1 is an example of the Loop
subdivision. In this figure, (a) is an original mesh; subdividing (a), we get (b); sub-
dividing (b) once more, we get (c); subdividing infinite times, we get the smooth
surface (d). We call (d) the subdivision surface. Here, a face is divided into four
new faces. This is a change of connectivity. In this paper, the change of connec-
tivity is fixed to this type, but other types of connectivity change can be argued
similarly.

Figure 1: Loop subdivision [19].

Next, let us consider how to change the positions of the old vertices, and how
to decide the positions of the new vertices. They are specified by matrices called
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“subdivision matrices”. The subdivision matrices are defined at vertices and they
depend on degree k of the vertex (the degree is the number of edges connected
to the vertex). For example, Fig. 2 denotes a vertex vj

0 which has five edges.
Let vj

1, v
j
2, · · · , vj

5 be the vertices at the other terminal of the five edges. Then,
subdivision matrix S5 is defined as follows:⎛

⎜⎜⎜⎝
vj+1
0

vj+1
1
...

vj+1
5

⎞
⎟⎟⎟⎠ = Sj

5

⎛
⎜⎜⎜⎝

vj
0

vj
1
...
vj
5

⎞
⎟⎟⎟⎠ .

Figure 2: subdivision matrix.

Here, the subdivision matrix Sj
5 is a square matrix. j means j-th step of the

subdivision. Here, neighbor vertices of a vertex v are called vertices on the 1-disc
of v. The subdivision matrix is generally defined not only on vertices in the 1-disc,
but also on other vertices around, · · · . Here, we argue only subdivision matrices
that depend on vertices in the 1-disc. However, we can argue other subdivision
matrices, similarly. In this paper, we assume that the subdivision matrix is inde-
pendent on j. A subdivision scheme of this type is called “stationary”.

In this way, subdivision matrix is written for a vertex. However, since a newly
generated vertex is computed by two subdivision matrices at the ends of the edge,
the two subdivision matrices must generate the same location of the vertex. So, the
subdivision matrices have this kind of restriction.
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For example, subdivision matrices Sk (k ≥ 3) for the Loop subdivision are

Sk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − kβ β β β β β · · · β
3
8

3
8

1
8 0 0 · · · 0 1

8
3
8

1
8

3
8

1
8 0 0 · · · 0

3
8 0 1

8
3
8

1
8 0 · · · 0

...
. . .

3
8

1
8 0 0 · · · 0 1

8
3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where k is the degree of the associated vertex, and

β =
1
k

(
5
8
−
(

3
8

+
1
4

cos
(

2π
k

))2
)
.

The degree k of a vertex is at least two. A vertex whose degree is two is a
boundary vertex. The degree of a vertex of 2-manifold meshes is at least three. In
this paper, we do not argue boundaries of meshes. So, we assume that the degree
is at least three.

As seen above, a stationary subdivision scheme is defined by subdivision ma-
trices Sk (k ≥ 3). Then, by the theorem 2.1 in [1], the limit surface of subdivision
f : |K| → R3 is the following parametric surface:

f [p](y) =
∑

i

viφi(y),

vi ∈ R3, φi(y) ∈ R, y ∈ |K|, p = (v0, v1, · · · ),

where K is a complex, |K| is a topological space, that is, the mesh, i is an index of
a vertex, vi is the position of the i-th vertex, p = (v0, v1, · · · ), φi(y) is the weight
function with the i-th vertex. Moreover, the weight function φi(y) is dependent
only on the subdivision matrices. If the sum of each row of the subdivision matrix
is 1, vertices at each stage of subdivision is affine combinations of original vertices.
Therefore,

∀y ∈ |K|,
∑

i

φi(y) = 1.

So, weight functions make affine combinations, too. If the combination is not
affine, it is not invariant under the translation of the coordinates systems, and hence
we usually consider only affine combinations. Therefore, in what follows we as-
sume that the sum of element in each row of the subdivision matrix is equal to
1.

Here, we denote φ(y) = (φ0(y), φ1(y), · · · ). Then, φ(y) decides a set of
representable surfaces. Then, the set is spanned by φ(y). So, we call the weight
functions basis functions. The limit surface of the subdivision is a point in such a
functional space.
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3.2 Nested Functional Spaces

In this subsection, we explain nested functional spaces. This is an essence of the
subdivision. The limit surface of subdivision is

f [p](y) = (p, φ(y)),

where p is a column vector whose elements are vi, φ(y) is a row vector whose
elements are φi(y). If the subdivision surface converges,

f [p](y) = (p, φ(y/2))
= (Sp, φ(y))
= (p, S�φ(y)).

So,

φ(y/2) = S�φ(y),

where S is a global subdivision matrix. A global subdivision matrix is made by
the local subdivision matrices Sk (k ≥ 3). Here, we denote a space spanned by
the basis functions φj(y) at the j-th step of subdivision as V j . Then, this equation
means

V 0 ⊂ V 1 ⊂ V 2 ⊂ · · · .

This is a family of nested functional spaces. All sets of basis functions of subdivi-
sion have this structure.

Fig. 3 denotes a filter bank of a mesh. Using the nested functional spaces,
we can apply wavelet transformations on meshes. We call this multiresolution
analysis.

Figure 3: a filter bank of a mesh [19]

Multiresolution analysis greatly contributes to the mesh editing. So, many re-
searchers study MRA and its applications.
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4 Dual Subdivision

Here, we propose a dual subdivision method.

4.1 Definition of Dual Subdivision

The ordinary subdivision is specified by how the vertices are generated and located.
On the other hand, the dual subdivision, which we will define here, is specified by
how the faces are generated and located.

We assumed that the sum of each row of subdivision matrix is 1.
Here, pj is a column vector of vertices at the j-th subdivision step. Using a

subdivision matrix S, pj+1 is written as:

pj+1 = Spj,

where

pj =

⎛
⎜⎝

pj
0x pj

0y pj
0z

pj
1x pj

1y pj
1z

...

⎞
⎟⎠ .

Therefore, if we denote

f j =

⎛
⎜⎝

pj
0x pj

0y pj
0z −1

pj
1x pj

1y pj
1z −1

...

⎞
⎟⎠ ,

we get

f j+1 = Sf j,

where the elements of each row of f j are coefficients of the equation pj
ixx+pj

iyy+
pj

izz − 1 = 0. Therefore, the equations of planes are subdivided. These equations
are the dual of vertices (pj

ix, p
j
iy, p

j
iz). So, this subdivision is a dual framework of

ordinary subdivision. Moreover, dual subdivision can be defined by a projective
duality (px, py, pz, pw) ↔ pxx+ pyy + pzz − pww = 0.

Now, for any triangular mesh M , using the duality, we get a dual mesh D(M).
Here, if the degree of a vertex v of M is k, then v is the intersection of faces
fi, i = 1, 2, · · · , k, so these vertices D(fi), i = 1, 2, · · · , k is on the face D(v).
So, we get following proposition:

Proposition 4.1 (Dual mesh)
If the degree of the vertex v of M is k, the face D(v) of D(M) is a k-gon.
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Figure 4: The duality between ordinary subdivision and dual subdivision. Upper left figure is a
surface which has saddle points. Upper right figure is the dual surface. Middle right figure is a
triangular mesh made by plotting points on upper right surface. Middle left mesh is the dual mesh of
the middle right mesh. we get lower right mesh made by ordinary subdivision for the middle right
mesh. On the other hand, we get lower left mesh made by dual subdivision for the middle left mesh.
Then, the lower left mesh is the dual mesh of the lower right mesh. Dual subdivision is defined as
such. Like this, dual subdivision can represent surfaces which have saddle points.

Here, we define the rule of connectivity change of dual subdivision. The connec-
tivity change of dual subdivision is defined as dual of the connectivity change of
ordinary subdivision. Fig. 4 denotes the definition of dual subdivision. In short,
the mesh made by a dual subdivision in dual space is the dual mesh of a mesh made
by a corresponding ordinary subdivision in primal space.

So, we get following proposition.

Proposition 4.2 (Dual subdivision)
Applying ordinary subdivision to meshes in the primal space is equivalent to

applying dual subdivision to dual meshes in the dual space.

Now, if an ordinary subdivision makes “flat” faces, we get a dual subdivision based
on the projective duality. Then, vertices in dual space is decided by the intersection
of faces. So, we get a dual subdivision. Conversely, if we make a dual subdivision
whose newly generated faces intersect a vertex, we get an ordinary subdivision
which makes “flat” faces. However, an ordinary subdivision does not make “flat”
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faces, we do not get a dual subdivision. Because, the intersection of faces is not
a vertex, in short, the faces do not have a concurrent. If un-flat faces divides into
“flat” faces by adding edges, we get a dual subdivision based on this change of
connectivity.

Here, it shows that if meshes made by ordinary subdivision approximate sur-
faces very well, dual meshes made by dual subdivision approximate dual surfaces
very well, too. This shows that dual subdivision has a useful property that it
can represent surfaces by “flat” polygons on non-triangular meshes, for example,
hexagonal meshes.

4.2 Star-Shape and Boundedness

In this section, we explain important properties. These properties are based on
star-shapedness and dual transformation (a, b, c) ↔ ax + by + cz − 1 = 0 and
2-manifold. So, these properties hold independently of the dual subdivision.

Here, we denote a 2-manifold in the primal space as S, the dual shape of S as
D(S). Points of D(S) are the dual of tangent planes of S. Tangent planes ofD(S)
is the dual of points of S. We can see D(S) as an envelope surface defined by the
dual of points of S.

First, we get following theorems.

Theorem 4.1 (Duality of 2-manifold)
If S is a bounded 2-manifold and if any subset of S is not flat, D(S) is a

2-manifold.

Proof First, we assume that S is smooth (C1). Then any bounded 2-manifold S
in primal space has an open covering which is composed of finite number of open
sets whose topology is equal to that of a disc. Moreover, this dual transform is a
continuous mapping. So, the open sets are mapped to open sets of tangent planes in
dual space. Since any subset of S is not flat, an envelope surface made by an open
set of tangent planes is an open set of points in dual space. Therefore, the dual
surface of the open covering is represent by union of open sets. Since the open
covering is composed of finite number of open sets, the dual surface of the open
covering is an open set. Moreover, there exists an open covering whose union is
equal to S. So, the dual surface of this open covering is equal to D(S). Therefore,
there exists open sets, whose topology is equal to that of a disc, at any point of
D(S). So, D(S) is a 2-manifold.

Second, we assume that S is not smooth (C1). Here, we define tangent plane
at point where tangent planes is discontinuous as convex combinations of tangent
planes at neighborhood of the point. Then, since any subset of S is not flat, tangent
planes on any open set of S is an open set. So, similarly, D(S) is a 2-manifold. �

D(S) is generally not a 2-manifold if S is a 2-manifold. For example, S is a
plane, then D(S) is a point.
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Theorem 4.2 (Duality of smoothness)
We assume that S is a bounded 2-manifold and any subset of S and D(S) is

not flat. Then D(S) is tangent plane continuous if and only if S is tangent plane
continuous. Moreover, if S and D(S) have no inflection points, then D(S) being
C1-continuous is equivalent to S being C1-continuous.

Proof Since S is tangent plane continuous, points ofD(S) are continuous. More-
over, any subset of S is not flat. So, the dual of tangent planes of S is non-
degenerate. Here, points of S are continuous. So, tangent planes of D(S) are
continuous. Therefore, D(S) is tangent plane continuous. Similarly, only if part is
clear.

If S and D(S) have inflection points, normals of S and D(S) reverse at the
dual inflection points. See the chapter “Inflection plane”. �

If a subset of S is a plane, the dual of tangent planes of the subset of S is a
point of D(S). Since tangent plane of the point of D(S) is not unique, D(S) is not
C1-continuous.

Next we explain duality between star-shape and boundedness. Star-shape is a
class of shapes (Fig. 5 shows examples of two dimensional star-shapes. However,
in this paper, we consider three dimensional star-shape which is a 2-manifold in
R3). Star-shape S has a point from which one can see all the surfaces of S.

Figure 5: Examples of two dimensional star-shapes.

So, we define as follows.

Definition 4.1 (Kernel)
K(S) is the intersection of all lower half-spaces which are divided by tangent

plane of S.

Here, a lower half-space means the half-space which has the origin and the upper
half-space means the other.

If K(S) �= φ, S is called a star-shape and K(S) is called the kernel of S. For
example, if the boundary of K(S) is equal to S, then S is convex. Star-shape is
generally not convex.

Then we get following theorem.
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Theorem 4.3 (Kernel and duality)
If a point k is in the interior of K(S), the plane D(k) has no intersection with

the dual shape D(S). So, all planes which have no intersection with the convex
hull of D(S) form the dual of K(S).

Proof This is obvious, because all tangent planes of S does not intersect the point
k. �

So, we get following corollary.

Corollary 4.1 (Star-shape and boundedness)
If S is a star-shape and if the origin is in the interior ofK(S),D(S) is bounded.

Proof Since the interior of K(S) exists, we can get the origin to be in interior of
K(S). Then, we can get an open sphere, which is in interior ofK(S), whose center
is the origin of primal space. Here, we denote the radius of the sphere r (> 0).
Then dual shape of the sphere is exterior of closed sphere whose radius is 1/r and
center is the origin of dual space. By the second property of the duality, D(S) is in
the closed sphere. Therefore, D(S) is bounded. �

The converse of this corollary is generally false. However, we get the following
theorem.

Theorem 4.4
Assume that S is a bounded and boundaryless closed 2-manifold, and S is

tangent plane continuous. Then, if a bounded D(S) exists, some position of the
origin exists such that S is a star-shape.

Proof Consider the contraposition of this theorem. If S is not a star-shape, since
S is tangent plane continuous and S is a bounded and boundaryless closed 2-
manifold, any point in primal space intersects at least one tangent plane of S. So,
wherever the origin in primal space is, D(S) is not bounded. �

Moreover, we get following theorems.

Theorem 4.5 (Bounded and smooth star-shape)
Assume that D(S) is boundaryless and closed and tangent plane continuous,

and any subset of S is not flat. If S is a bounded star-shape and if the origin is in
the interior of K(S), then D(S) is a bounded star-shape.

Proof Proof of theorem 4.5

D(S) is a 2-manifold from the theorem 4.1. Moreover, since the origin is in interior
of K(S), D(S) is bounded. Here, if D(S) is not a star-shape, the origin in dual
space is not in the kernel of D(S). Then, since D(S) is closed and tangent plane
continuous, S is not bounded. �

11



So, we can see that if we want to consider S and D(S) are bounded and tan-
gent plane continuous and boundaryless closed 2-manifolds, S and D(S) are star-
shapes.

4.3 Properties of dual subdivision

Proposition 4.3 (Expansion of kernel)
If global subdivision matrix S is a nonnegative matrix, in ordinary space, the

mesh made by ordinary subdivision is in the convex hull of the original mesh, and
in dual space, the kernel of the mesh made by dual subdivision includes the kernel
of the dual original mesh.

Proof If global subdivision matrix S is a nonnegative matrix, in primal space the
convex hull of the original mesh includes that of the subdivided mesh. Since the
dual of the kernel is all planes which have no intersection with the convex hull, the
kernel of the dual subdivided mesh includes that of the dual original mesh. �

Next, we derive an important theorem for smoothness of limit surfaces.

Theorem 4.6 (Duality of smoothness)
Assume that there exists local parameterizations, which have Jacobi matrix of

maximal rank 2 except at extraordinary points, on basis functions of ordinary sta-
tionary subdivision, and there exists unique tangent planes at extraordinary points,
and any subset of the limit surface is not flat, and the limit surfaces of ordinary
and dual subdivision have no inflection points. Then, the limit surfaces of the dual
subdivision are C1-continuous if and only if the limit surfaces of the ordinary sub-
division are C1-continuous:

C1
ordinary ⇔ C1

dual.

Proof For any basis function generated by ordinary stationary subdivision, if Ja-
cobi matrix is degenerate at a point on the basis function except the extraordinary
point, then Jacobi matrix is degenerate at any point of the basis function. Then,
Jacobi matrix is degenerate on the part, which corresponds to the basis function,
of the subdivision surface except a finite number of extraordinary points. So, Ja-
cobi matrix of maximal rank 2 except at extraordinary points means that Jacobi
matrix is non-degenerate at any point of the surface generated by ordinary subdi-
vision except extraordinary points. Therefore there exists unique tangent planes of
the limit surface of ordinary subdivision except extraordinary points. Here, there
exists unique tangent planes at extraordinary points. So, there exists unique tan-
gent planes of the surface generated by ordinary subdivision. Thus, any subset of
D(S) is not flat. Moreover, any subset of the limit surface is not flat. Therefore,
by theorem 4.2, we get this theorem. �
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As is the case with the theorem 4.2, generally if the limit surface of ordi-
nary stationary subdivision which has unique tangent planes at any point is C1-
continuous, the limit surface of the dual subdivision is not C1-continuous.

Following proposition is very important from a practical viewpoint.

Proposition 4.4 (MRA for dual subdivision)
Taking the dual meshes of meshes in primal spaces at each stage of multireso-

lution analysis, we get multiresolution analysis for dual subdivision.

Proof The j-th dual mesh in dual space is dual of the j-th mesh in primal space.
So, dual subdivision derives the dual multiresolution analysis, similarly. However,
when we use the dual multiresolution analysis, we need the dual subdivision con-
nectivity. �

5 Inflection plane

We talked about the smoothness of the limit surfaces of dual subdivision. However,
even if a dual surface in the dual space is smooth and if any subset of the surface
is not flat, the associated surface in the primal space is not necessarily smooth.
(However, the continuity of tangent planes is guaranteed. So, it is true that the
surface is C1-continuous.) For example, see Fig. 6.

Figure 6: The left object in 2D has inflection points. The right object, which is the dual of the left
object, has reversals of the normal at dual inflection points. In 3D, such thing happens, too.

Although the dual surface in the dual space is smooth, we see that the surface
is not smooth in the primal space. This arises from reversals of the normal at dual
inflection points. So, although the dual surface is C1-continuous, the associated
surface is not necessarily smooth.

Then we get a mesh in primal space as like Fig. 7. Applying smooth subdi-
vision scheme to this mesh, the limit surface in primal space is smooth. So, the
surface is not equal to the right shape in Fig. 6. Moreover, the surface is not a
star-shape. Even if the original mesh in primal space approximate the right shape
very well, similarly, the limit surface in primal space is not a star-shape. So, the
dual limit surface in dual space is not bounded. This is a big issue.
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Figure 7: A dual mesh in primal space.

Here, there is a dual object which we want to represent in dual space. To
represent that by dual subdivision, we represent the associated object in primal
space by ordinary subdivision. So, we want to make such an object which has dual
inflection points in primal space by ordinary subdivision.

Here, we define “inflection plane”. We want to decide tangent planes at dual
inflection points at limit. We call the envelope surface made by the tangent planes
at dual inflection points “inflection surface”. Now, we add two-ply faces as shown
in Fig. 8. These added faces decide inflection surface at the limit of ordinary
subdivision. So, we call the two-ply faces inflection planes.

Figure 8: Adding an inflection plane AB. We conform the position of vertex A′ to that
of vertex A. So, both meshes have the same topology. We call the two-ply face AB
“inflection plane”.

Now, we define these.

Definition 5.1 (Inflection surface)
We denote the boundary of inflection plane Dinf as Dinf,b ⊂ Dinf ⊂ |K|.

We define the inflection surface as the envelope surface made by tangent planes at
y ∈ Dinf,b at limit.

Note that the mesh added inflection planes may not be star-shape. So, we must
consider the position of point B in Fig. 8.
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Then, we subdivide the mesh to which the inflection planes are added. The
mesh is C0-continuous. So, we must check the continuity of tangent planes at
the boundary of the inflection planes. If the tangent planes at the boundary are
continuous, we can get the object in the dual space which has inflection points.

Now, if all supports of the basis functions are 1-disc or 2-disc, clearly, the
tangent planes coincide at its boundary. If all supports of those are over 3-disc, we
add pointsC,D, · · · . Then, we get the continuity of tangent planes at the boundary.
Here, we must consider the positions of points C,D, · · · , similarly.

Indeed, the tangent planes coincide independent of the supports. However, we
want to make reversals of normals. So, we must consider the supports.

Thus, using inflection planes, we can get smooth surfaces which have inflection
points in dual space (see Fig. 9).

Figure 9: The left mesh which is made by dual subdivision is the dual of the right mesh and
not convex and has inflection points. The right mesh which is made by ordinary subdivision
using inflection plane has dual inflection points.

6 Analysis of ordinary subdivision

In this section, we analyze ordinary subdivisions.
Reif [16] already argued a sufficient condition of C1-continuity of the subdivi-

sion surface on irregular meshes. Moreover, Prautzsch [15] derived some necessary
conditions of that.

Zorin [22] derived a sufficient and necessary condition of Ck-continuity of the
subdivision surface on irregular meshes with some assumptions. That is based on
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a fact that the subdivision surface is locally a projection of a higher-dimensional
surface called “universal surface”.

Here, we explain that based on [22]. We assume triangular meshes in this
chapter. However, we can argue following theory similarly on other meshes.

6.1 Universal surface

The limit surface f : |K| → R3 of ordinary stationary subdivision is written by
affine combination of vertices:

f [p](y) =
∑

i

viφi(y),

where φi(y), i = 0, 1, 2, · · · are basis functions, K is a simplicial complex, |K| is
a topological space based on K, that is, a mesh. i is an index of a vertex, vi ∈ R3

is a position of i-th vertex, p = (v0, v1, v2, · · · ). The subscript of φi(y) denotes
that a basis function attaches to a vertex.

On smoothness of ordinary subdivision surface, we may only consider the
neighborhoods of vertices of all connectivity. In short, locally any surface gen-
erated by a stationary subdivision scheme on an arbitrary simplicial complex can
be thought of as a part of a subdivision surface defined on a k-regular complex
with respect to which the scheme is invariant. k-regular complex is a simplicial
complex which consists of a vertex whose degree is k and vertices whose degree is
6.

So, we define ψ as a row vector whose element is a basis function which affects
the subdivision surface in neighborhood U1 of the vertex whose degree is k. The
neighborhood is an area which consists of triangles which have the vertex. We
call the area a region of 1-disc. The region of 2-disc is an area which consists of
triangles which have a vertex in 1-dusc. Like this, we can define a region of k-disc.
Here, we assume that U1 is the region of 1-disc. However, we can argue similarly
on other neighborhood.

Here, p is a column vector whose element is a vertex corresponding to φi(y)
in ψ. Then, f [p](y) = (p, ψ(y)), y ∈ U1. We call ψ : U1 → Rγ “universal
surface”. γ is the number of elements of ψ. For example, if all supports of basis
functions are 1-disc, γ = k + 1. Here, we can see that any subdivision surface is
locally a projection of the universal surface.

Here, we define a condition (Condition A in [22]). Condition A is that parame-
terization of the surface generated by subdivision on k-regular complex except the
vertex whose degree is k is regular, that is C1-continuous and with Jacobi matrix
of maximal rank 2.

Then, following theorem (theorem 2.1 in [22]) is known.

Theorem 6.1
For a subdivision scheme satisfying Condition A to be tangent plane continu-

ous on a k-regular complex, it is necessary and sufficient that the universal surface
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be tangent plane continuous; for the subdivision scheme to be Ck-continuous, it is
necessary and sufficient that the universal surface be Ck-continuous.

In this theorem, we assume Condition A in [22]. Subdivision scheme without
satisfying Condition A is very rare. Most practical subdivision schemes satisfy
Condition A.

6.2 Normals of the subdivision surface

Here, we know a simple formula relating the Jacobian of a mapping U1 → R2

generated by subdivision to the wedge product ∂1ψ ∧ ∂2ψ. Then, the Jacobian of
a mapping f [px, py] = ((px, ψ), (py , ψ)) is

J [f [px, py]] = (px ∧ py, ∂1ψ ∧ ∂2ψ).

So, we can write a normal at any point except the vertex whose degree is k for a
limit surface f [px, py, pz] : U1 → R3 as

N(y)
= [(py ∧ pz, w(y)), (pz ∧ px, w(y)), (px ∧ py, w(y))],

where w(y) = ∂1ψ(y) ∧ ∂2ψ(y).

7 Conditions of Ck-continuity for the limit surface of dual
subdivision

Now, we derive a necessary condition ofCk-continuity for the limit surface of dual
subdivision and a sufficient condition of that.

Now, we can write a tangent plane of the limit surface of ordinary subdivision
on U1:

N(y) · (X − f(y)) = 0.

So,

N(y)
N(y) · f(y)

·X − 1 = 0.

Therefore, we get the limit surface of dual subdivision as

N(y)
N(y) · f(y)

.

Then, we get following theorem.
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Theorem 7.1
Assume that Condition A and any subset of surfaces generated by ordinary and

dual subdivision is not flat and the limit surfaces of ordinary and dual subdivision
have no inflection points. Then,

Ck+1
ordinary ⇒ Ck

dual ⇒ Ck
ordinary.

Proof If an ordinary subdivision scheme is Ck+1-continuous, by theorem 6.1, the
universal surface ψ is Ck+1-continuous. So, w(y) is Ck-continuous. Moreover,
N(y) is Ck-continuous, because N(y) is a projection of w(y). Moreover, any
subset of the surface generated by ordinary subdivision is not flat. So, the parame-
terization of dual subdivision surface is non-degenerate. Therefore, we see that the
limit surface N(y)

N(y)·f(y) of dual subdivision is Ck-continuous. Similarly, the right
arrow is clear. �

Note that, as is shown in theorem 4.6, we have C1
ordinary ⇔ C1

dual.

8 Boundedness of the limit surface of dual subdivision

In this section, we derive a sufficient condition of boundedness for the limit surface
of dual subdivision using an idea called “subdivision kernel”.

We want to make a monotone region in kernel of star-shape for ordinary sub-
division. By corollary 4.1, the limit surface of dual subdivision is bounded if the
limit surface of ordinary subdivision is a star-shape and if the origin is in interior
of the kernel of the limit surface of ordinary subdivision.

So, we want to know a sufficient condition for the limit surface of ordinary
subdivision to be star-shape. Moreover, we want to know the position of the origin,
subject to the origin is in the kernel of the limit surface of ordinary subdivision.

Whether the limit surface of ordinary subdivision is star-shape can be checked
using following equation:

N(y) · (X − f(y)) = 0,

where N(y) is the normal at y ∈ |K|, f(y) is the limit surface of ordinary sub-
division. Here, we define the direction of N(y) such that the origin is in lower
half-space. In short, we must check the existence of the point X subject to

∀y ∈ |K|, N(y) · (X − f(y)) < 0.

However, generally, it is not easy to write basis functions analytically. So, the
above check is difficult. We can approximately check that using approximating
basis functions by well-known functions, for example, Bezier surfaces or B-spline
surfaces. However, using the approximation, it is difficult to get the intersection of
infinite half-spaces (however, at specific surfaces, we may check only the intersec-
tion of finite half-spaces.).
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So, we derive a sufficient condition for the mesh subdivided by ordinary sub-
division to be a star-shape, where the initial mesh is a star-shape.

Our target is to construct a monotone region in the kernel of star-shape for
ordinary subdivision. We call the region “subdivision kernel”.

8.1 Normal subdivision matrix

We compute new vertices by subdivision matrix Sk:⎛
⎜⎜⎜⎝

vj+1
0

vj+1
1
...

vj+1
k

⎞
⎟⎟⎟⎠ = Sk

⎛
⎜⎜⎜⎝

vj
0

vj
1
...
vj
k

⎞
⎟⎟⎟⎠ .

Then, we define a matrix ∆ as

∆ =

⎛
⎜⎜⎜⎝

1 0 · · ·
−1 1 0 · · ·
−1 0 1 0 · · ·

...
. . .

⎞
⎟⎟⎟⎠

Using a matrix D′
k = ∆Sk∆−1, we get⎛
⎜⎜⎜⎝

vj+1
0

vj+1
1 − vj+1

0
...

vj+1
k − vj+1

0

⎞
⎟⎟⎟⎠ = D′

k

⎛
⎜⎜⎜⎝

vj
0

vj
1 − vj

0
...

vj
k − vj

0

⎞
⎟⎟⎟⎠ .

Here, the sum of each row of Sk is 1. So, the subdivision scheme is affine invari-
ant. Therefore, the first element vj

0 does not affect elements vj+1
1 − vj+1

0 , vj+1
2 −

vj+1
0 , · · · , vj+1

k − vj+1
0 . So, we denote elements vj

1 − vj
0, v

j
2 − vj

0, · · · , vj
k − vj

0 as
dj and the associated submatrix of D′

k as Dk. Then, dj+1 = Dkd
j . We call this

different scheme.
Moreover, we denote the column vector in Rk which is a set of x elements of

dj as dj
x. Similarly, we denote the column vectors corresponding to y elements, z

elements as dj
y, d

j
z . Here, using u1, u2 ∈ Rk, we define a matrix ΛDk as

ΛDk(u1 ∧ u2) = Dku1 ∧Dku2,

where ∧ is wedge product. Then,

ΛDk(dj
y ∧ dj

z) = Dkd
j
y ∧Dkd

j
z.

Now, we define N j = (dj
y ∧ dj

z , d
j
z ∧ dj

x, d
j
x ∧ dj

y). Then,

N j+1 = ΛDk N
j ,
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where the element of N j is a cross product of between vj
i − vj

0 and vj
l − vj

0, that
is, normal on the neighborhood of vj

0. So, we see that the matrix ΛDk subdivides
normals of faces which connects a vertex whose degree is k. Note thatN j contains
normals of unreal faces in the mesh.

Therefore, we call this matrix “normal subdivision matrix”.

8.2 Subdivision kernel

Here, we consider k(k−1)
2 equations of planes:

N j(X − vj
0) = 0,

where X = (x, y, z)�, N j is a k(k−1)
2 × 3 matrix, vj

0 = (vj
0x, v

j
0y, v

j
0z)

�. Now, we
subdivide faces such as Fig. 2. Then, the equations of plane are

N j+1(X − vj+1
0 ) = 0.

So, we get

ΛDk N
j(X − vj+1

0 ) = 0.

Therefore, if

N j(X − vj
0) < 0,

N j(X − vj
1) < 0,

...

N j(X − vj
p) < 0

and matrices Sk, ΛDk are nonnegative matrix, we get

N j+1(X − vj+1
0 ) < 0.

Here, we can see that N j is a cone with translation.
Next, we consider normals of faces which have a vertex which is generated at

j + 1st step. In Fig. 10, normals of faces which have the vertex vj
1 depend on

vertices in 1-disc of vertices in j − 1st mesh which decide the position of vj
1.

Here, we denote normals which are cross products between vj
i −vj

1 and vj
l −vj

1

asN j
m, where vj

i , v
j
l are vertices in 2-disc of vj

1. Then, using matrix ΛDm1, normal
N j+1

m1 which is made by vertices in 2-disc of vj+1
1,m1 which is generated at j + 1st is

computed:

N j+1
m1 = ΛDm1 N

j
m.

Similarly, N j+1
mi is computed using ΛDmi:

N j+1
mi = ΛDmi N

j
m, 1 ≤ i ≤ 6.
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Figure 10: vertices which affect the positions of vertices vj+1
1,m1, · · · , vj+1

1,m6. For exam-

ple, the top vertex partitioned by chain lines does not affect the positions of vertices vj
1 and

vj+1
1 , vj+1

1,m1, · · · , vj+1
1,m6. Moreover, positions of vertices except the top vertex decide normals of

faces which connect vj+1
1,m1, · · · , vj+1

1,m6.

Here, ΛDmi, 1 ≤ i ≤ 6 are essentially the same. On irregular mesh, ΛDmi, 1 ≤
i ≤ 6 are different. When we consider all connectivities, it is sufficient that we
consider only ΛDm1. So, we denote this matrix as ΛDm.

So, we can derive following lemma.

Lemma 8.1 (Monotone region SKj)
At j(�= 0)th mesh, on vertices which exist at j − 1st mesh, a cone N j made

from 1-disc of a vertex attaches to vertices in 1-disc of the vertex. On the other
hand, on vertices which do not exist at j − 1st mesh, a cone N j

m made from 2-
disc of a vertex attaches to vertices in 2-disc of the vertex. If there exists a region
SKj which is the intersection of all the cones, then there exists a similar region
SKj+1 at j + 1st mesh (SKj ⊆ SKj+1). Here, matrices Sk, ΛDk, ΛDm with
all connectivities are nonnegative matrices.

Proof Clearly, on vertices which exist at j − 1st mesh, the intersection made by
cones corresponding to N j+1 includes the intersection made by cones correspond-
ing to N j . On vertices which do not exist at j − 1st mesh, the intersection made
by cones corresponding to N j+1 includes the intersection made by cones corre-
sponding to N j+1

m . So, the cone at j + 1st mesh, made by cones which are linked
to vertices which exist at jth mesh, includes SKj .

Next, we must prove that on vertices which do not exist jth mesh the cone
N j+1

m includes SKj . This is clear if matrices Sk, ΛDm are nonnegative matrices.
Therefore, all cones which compose SKj+1 includeSKj . So, SKj ⊆ SKj+1.

�
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Here, we translate this lemma into following theorem.

Theorem 8.1 (Monotone region SKj)
If the region SKj (j �= 0) exists and if matrices Sk, ΛDk, ΛDm with all

connectivities are nonnegative matrices, then the region SKj+1 exists (SKj ⊆
SKj+1).

Moreover, we see following theorem.

Theorem 8.2 (Kernel and monotone region)
The kernel of j-th mesh includes the monotone region SKj .

This is obvious. Of course, if the kernel does not exist, SKj does not exist.
So, we call SKj subdivision kernel of j-th mesh. Then, we easily get following

theorem.

Theorem 8.3 (Subdivision kernel)
If subdivision kernel SKj of j(�= 0)th mesh exists and if matrices Sk, ΛDk, ΛDm

with all connectivities are nonnegative matrices, then the limit surface of ordinary
subdivision has the subdivision kernel SK∞ (SKj ⊆ SK∞).

So, using this theorem and corollary 4.1 and theorem 8.2, we get following impor-
tant corollary.

Corollary 8.1 (Boundedness of dual subdivision)
On the primal space, if subdivision kernel SKj of j(�= 0)th mesh exists and

if matrices Sk, ΛDk, ΛDm with all connectivities are nonnegative matrices and
if the origin is in the interior of SKj , then the limit surface of dual subdivision is
bounded.

This is obvious.
We defined subdivision kernel SKj, j �= 0. However, whether the limit sur-

face of ordinary subdivision is star-shape only depends on the initial mesh and the
subdivision scheme. So, we can derive subdivision kernel SK0. Here, we easily
see that having SK0 is a strongly condition than having SK1. Moreover, we see
that the effort of the check of having SK0 is less than that of SK1.

In this section, we assumed that subdivision matrices depends on vertices in
1-disc. However, on other subdivision matrices, we can define subdivision kernel
similarly.

Here, we consider strength of this condition. The computation of the subdi-
vision kernel requires O(n4j log(n4j)) time, where n is a number of faces of the
original mesh. Here, we assume that the subdivision scheme is C1-continuous.
Then, at j → ∞, the cone converges to half-space. The plane which divides this
half-space is a tangent plane. So, we can see that, at j → ∞, SK∞ is equal to the
kernel of the limit surface. Therefore, if the limit surface of ordinary subdivision
is boundaryless and closed and tangent plane continuous, the sufficient condition
converges to the necessary and sufficient condition.
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However, at j → ∞, the number n4j of faces of j-th mesh diverges. This
means SK∞ is the intersection of infinite number of half-space. To compute the
subdivision kernel in finite time, we approximate the necessary and sufficient con-
dition to the sufficient condition. So, the speed of convergence of the subdivi-
sion scheme determines the quality of the approximation. On most subdivision
schemes, the speed depends on second eigenvalues of subdivision matrices.

9 Arbitrary topology

In previous section, we explain that the smooth limit surface of dual subdivision
surface is bounded if and only if the smooth limit surface of ordinary subdivision is
a star-shape. Similarly, the smooth limit surface of ordinary subdivision surface is
bounded if and only if the smooth limit surface of dual subdivision is a star-shape.

Here, we consider ordinary subdivision. If ordinary subdivision surface is
smooth, ordinary subdivision can represent only bounded surfaces with arbitrary
topology. Therefore, we can see that if the dual subdivision surface is smooth, the
dual subdivision can represent only star-shape.

Therefore, we must extend the dual subdivision scheme to represent smooth
surfaces with arbitrary topology.

9.1 Projective duality

Now, we consider subdivision schemes on projective space. In the 3-dimensional
real projective space P 3, points are represented by homogeneous coordinate vec-
tors p = (px, py, pz, pw). So, we subdivide the points: pj+1 = Spj, where

pj =

⎛
⎜⎝

pj
0x pj

0y pj
0z pj

0w

pj
1x pj

1y pj
1z pj

1w
...

⎞
⎟⎠ .

Therefore, we get subdivision schemes on P 3. Then, the subdivision scheme
can represent smooth surfaces with arbitrary topology which are not necessarily
bounded. For, example, if p0

i is bounded, then p0
iw = 1, if p0

i is a point at in-
finity, then p0

iw = 0. Then, if all supports of basis functions are 1-disc, we get
a smooth subdivision surface which is not bounded. Here, using the projective
duality (px, py, pz, pw) ↔ pxx + pyy + pzz − pww = 0, we get dual subdivi-
sion schemes. Then, the subdivision schemes can represent smooth surfaces with
arbitrary topology.

Now, we consider properties of the dual subdivision schemes using the projec-
tive duality. If pw is in R+∪{0}, then the projective duality satisfies the properties
of polar transformation. So, we get proposition 4.1, 4.2, similarly. Therefore, this
dual subdivision can represent surfaces by non-triangular “flat” faces. Moreover,
the subdivision scheme and the dual subdivision scheme on P 3 have the nested
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functional spaces, so we use multiresolution analysis. Moreover, on smoothness,
we easily get theorem 4.6, 7.1, similarly.

10 Conclusion

In this paper, we proposed a new subdivision method. This is a dual framework
of ordinary subdivision based on polar transformation which is a type of projective
duality. Because of the duality, dual subdivision admits many useful properties that
ordinary subdivision has.

First, we derived the duality of smoothness, nested functional spaces, and ker-
nel expansion. The duality of smoothness enables us to represent smooth surface
by “flat” non-trigonal polygons. It is useful for the mesh editing that the duality
of nested functional spaces derives the multiresolution analysis of dual subdivision
schemes.

Second, we derived important properties based on star-shape and polar trans-
formation and 2-manifold. These properties hold independently of the dual subdi-
vision.

Third, we defined inflection plane. Using this, we can represent smooth sur-
faces by dual subdivision even if they have inflection points.

Fourth, we derived conditions for the limit surface of dual subdivision sur-
faces to be Ck-continuous. Using “universal surface” [22], we derived relations of
smoothness between ordinary subdivision and dual subdivision.

Fifth, we proposed an idea called “subdivision kernel”. Subdivision kernel is
an monotone open set for ordinary subdivision. Moreover, subdivision kernel is in
the kernel of star-shape. Using subdivision kernel, we derived a sufficient condition
for the limit surface of dual subdivision to be bounded.

Finally, we extended the dual subdivision to make smooth surfaces with ar-
bitrary topology using projective duality. This dual subdivision scheme inherits
similar properties. So, dual subdivision schemes on P 3 can represent smooth sur-
faces with arbitrary topology by non-triangular “flat” faces.
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