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Analysis on Optimal Quantization of Signals for System
|dentification and the Effect of Noise*

Koji Tsumurdand Jan Maciejowski

METR 2005-04 January 31, 2005

Abstract: In this paper, we analyse the property of the optimal quantization of signals used for system
identification. We deal with memoryless quantization for output signals and consider to derive optimal
guantization schemes for minimizing the errors of parameter estimation given by least squares method under
a constraint on the number of subsections of the quantized signals or the expectation of the optimal code
length in general resolution case or high resolution case. In the case of general resulution of quantizer and a
kind of uniform distribution of input signals, the optimal quantizer can be given by solving a minimization of

a special 1-dimensional rational function recursively. This quantizer has the property that it is coarse around
the origin of its input and goes to be dense apart from the origin. On the other hand, the optimal quantizer
of high resolution can be given by solving Eular-Lagrange’s equations and the solutions are represented
as a simple function of the distribution density of the regressor vector. We show examples of solutions for
several cases of the distribution density of the regressor vectors and discuss their meanings with respect to
the feasibility of parameter estimations. Moreover, in the case of the constraint of code length, the necessary
information to attain the optimal identification errors is given as a function of the entropy of the regressor
vector.

Keywords: system identification, quantization, least squares method, MA model, entropy

1 Introduction

The recent rapid improvement in the transmission capacity of computer networks makes long-distance auto-
matic control to be more realistic and the necessity of understanding the effects of transmission limitations
on information in control systems has become more widely accepted. In particular, quantization problem of
signals in order to reduce the information of the transmitted signals in control systems has been discussed
actively by several control research groups in the last few years and interesting results have been achieved.

The problem of quantization of signals itself has a long history from the 1940s and one of main themes in
the area of information theory (e.g. see [11]). The purpose of the problem is to attain low distortion between
the original signals and the quantized ones under constraints on the amount of information. Of course, the
situations and the objective for data transmission and for control systems are essentially different and the
necessity of the research for the latter case has been recognized for a long time. However, although we can
see elementary discussion in the control community from the 70s (e.g. see [5]), the strict analysis began at
the late 80s. The main difficulty of quantization problem in control systems should be in their dynamics and
the result by [6, 7] is recognized as a break through, in which papers the behaviour of control systems, and
their stability or state estimation, are analysed in detail. Then, in the last few years, stabilization problems
of quantized systems have been actively investigated for several different situations, e.g., [21, 22, 3, 14, 8,
15, 19]. Among them, a logarithmic quantizer was shown to be coarsest in some sense to attain a kind of

*This paper is the revised version of the technical reports/conference paper [18, 17] including new results.
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asymptotic stability [8] and it reveals the difference of importance on signals depending on its magnitudes
and the directions in the signal space from the view point of controlling systems.

With this background, our interests naturally grow into system identification problem; that is, a question:
what quantizer ioptimal for system identification? We expect the answer to this question will clarify
the relationship between system identification and stabilization from the point of view of the information of
signals. However, compared to the research activity in the stabilization or estimation problem, unfortunately,
the quantization problem for system identification [9] has not been adequately considered. From such point
of view, we dealt with this problem.

In this paper, we consider optimal quantization problem of output signals which are used for parameter
estimation. The identified system is a simple SISO MA model in order to reveal the essential property of
the optimal quantization in system identification and assist intuitive understanding of iaplihelitywe
mean in this paper is to minimize the variance of the error of the parameter estimation given by least squares
method under a constraint of the number of quantization steps or the expectation of the code length when
the quantized signals are coded by an optimal coder. We consider this problem for the cases of general
resolution and high resulution of quantization. The difficulty of the problem is in the complex correlation
between the input signals and the quantization errors and managing it is a key for solving the optimization
problem.

In the general resolution case (Section 3), we give the optimal quantizer under a problem settings of a
kind of uniform distribution of input signals. The optimal quantizer is given by solving a minimization of
some special 1-dimensional rational function recursively. The optimal quantization is not uniform and it is
coarse around the origin of the quantized signals and goes to be dense apart from it. This result shows an
opposite property against stabilization given in [8] and reveals a kind of duality of system identification and
stabilization.

In the high resolution case (Section 4), we consider the generalization of the previous results under con-
siderably weak conditions. The straight forward extension of the approach in the previous result is hard to
deal with because of the complexity of the calculation for quantization error. In order to solve this difficulty,
we introduce a key notion; density of the number of the optimally quantized subsections, and by using cal-
culus of variations, analytic solutions are derived under the constraint on the number of quantization steps or
the optimal code length. The solutions are functions of the distribution density of input signals and we can
strictly figure out the profile of the density of the number of quantized subsections. Moreover, these results
suggest several insights on system identification under the condition of finite information. We illustrate such
facts for some cases and discuss on the complexity of the problem of system identification.

In Section 5, we analyse the effect of noise which is added at the input of quantizers. We show that such
noise equivalently twices the magnitude of quantization error compared with the case of noise which is added
at the output of quantizers. Finally, in Section 6, we compare the effect of the resolution of quantizations
and that of the 1/O data length. The former is more effective for decreasing quantization error in estimated
system parameters, however, the latter is effective for noise error. This fact shows that there exists a trade-off
between these two errors.

The main purpose of this paper is to reveal the essential properties of the optimal quantization for system
identification, therefore, the argument of this paper is much analytic. Read the followings with this in mind.

In the following of this paper, except for some cases, all the proofs of theorems, lemmas, or propositions
are collected in the appendix for easy understanding of the main theme and the outline of this paper. Refer
them in Appendix A if necessary.

Notations: E[-]: expectation, V|: variance,f(x): probability density ofc

2 Preliminaries

The objective of this paper is to show the effect of quantizers of I/O signals for system identification on its
performance in analytic and intuitive form as possible. In general, the quantization error behaves as a random
signal when the quantizer has enough high resolution, and such condition has been often assumed in the



area of signal processing. However, of course, the quantization error has strong correlation with the original
signal and it should be analyzed strictly, because in system identification, several kinds of correlation are
used for calculating the estimation parameters. Therefore, such assumptions are not appropriate in order to
understand the essence of the quantization probelm and the strict analysis is desirable. On the other hand, we
should also note that it is not easy to derive analytic and intuitive understanding results for general models.

From above observations, in this paper, we deal with the system identification by least square criterion for
a simple discrete time SISO MA model. The plant is:

Yo(i) = a(y (i) +w(i), y(i) = ¢(i)¢ @
¢(i) == [u(i) wu(@—-1) - wi@—n+1)],
0:=[0, 6, - 6,],

Yoo Yy w, U € R, p € RV 0 € R™,

wherew: noise,q: quantizer of the original analogue outpyty,: observed outputp: regressor vectof:
system parameten, dimension of MA modely: input,i: index of time. The input:, that is, the associate
regressor vectap is a realization of a stochastic process with a joint density funcfien, ¢, . . ., ¢,,) of
®1, ¢2, ..., On, Whereg; denotes theé-th elements of. The class off (¢1, ¢, . . ., ¢,,) considered in this
paper is explained in later.

We will also discuss a case of noise as

Yo(1) = q(y(i) + w(i)) (2)

in Section 5. We refer this case (2)f@e-quantizer noisand the case (1) ggst-quantizer noiséHowever,
in order to avoid complicated notations and focus on the effect for system identification by quantization, we
mainly deal with the plant (1) throughout this paper until Section 5.

The quantizer; is a memoryless symmetric type defined by

q(y) :=sgn(y)y;, y € Sj, §; = 0 (3)
So={y=0}, Sj={y:dj-1 <y<d;}, j>0,

Sj={y:dj—1 <y<d;}, j<0 (4)
d0:0<d1<d2-",

d_1=—dy, d_o=—do, ..., (5)

where sgly)y; is the assigned quantized value to the subsediornThe quantizer is symmetrical with
respect to the origin, and hereafter we may omit references on the negative subsectidhs,, . . . if they
are obvious from the context.

The estimated paramet@using the least squares method with an enough length of /O dafa@é}
and{y, (i)} is given by

6=UTo) U (Y + W), 6)
where
U::[¢(1)T ¢(2)T ¢<N)T}T7
W= [w(1) w@) - wni)]T,
Y :=[g(1) 52 --- g(N)]",

y(i) = q(y(7)), @)
andN is the I/O data length. Define the quantization error betweandy by
e(i) == y(i) — y(0), (8)

then, the estimated parame@eman be written as

A~

6 = W)y \vtwe+E+wW)
0+ AE + AW (9)



E = [e(l) e2) - e,
AE = (U'U)"'UTE,
AW = (UTU)_lUTW (10)

This shows that the estimation erir- 6 can be evaluated from the magnitudes of guantization error
term A E and thenoise error termAW.

The reduction of the noise error terfxil is the main theme of the ordinary system identification and its
characteristics in probabilistic/deterministic sense have been well investigated. On the other hand, although
the quantization error termd ¥ can be reduced in general when the resolution of quantizer goes to high,
there exists a limitation of the reduction under a constraint of the resolution of quantizer, and we should
designgoodquantizers to reducAFE.

In general, the objective of designing quantizers in the field of information theory is reducing the dis-
tortion between the original signals and the quantized signals under constraints on the information of the
transmitted signals [1, 13, 10, 2]. The constraint on the information of signals can be given by the number of
the quantization steps or the mean code length of the associated code. The former is called “fixed-rate quan-
tization” and the latter “variable-rate quantization” respectively. On the other hand, the purpose in system
identification should be the reduction of the estimation error and this point is the definitive difference.

A conventional, and reasonable, method to evaluate the noise erroAfdfnm probabilistic approach is
to show the convergence rate of

o 11 .
NUTU) = NUTW Nz o) (11)
g,

u

wherec? is the covariance ofi, under an assumption of the mutual independence of the input signal
and the noisev. This methodology is also basically applicable to the evaluation bfin probabilistic
approach. However, different from the case of the noise error term, we should noteahde are not
independent in general, and the evaluatio®/dtF is much more complicated. Solving this difficulty and
evaluating the magnitude 6f” E are the key technique of this paper.

Useful notions for dealing with the relationshipw{or ¢) ande are subsections and variable transforma-
tion of ¢ explained as follows. We define subseétsof the regressor vecterassociated with the subsection
Sj by

;= {¢:y =00 € S;}. (12)

We also consider the following variable transformation:

A s 0l - -
y = ¢0=¢T -T'0=¢0, 0:=T7'0= [01] L pi=¢T =:[d1 ¢2 -+ ¢n]  (13)
whereT is an orthogonal matrix. Of course su€talways exits for any. Then,®; is represented as

{¢ : 10y € (dj1, dﬂ}, Jj >0,
®; = ~ {e=0y, j=0, (14)
{o:dbield i, dj)}, j<0.
We also define subsections on the spacg;of

{5’1 L 101 € (dj_1, dj]}> Jj>0,
I = {61=0}, j=0, (15)
{d;l L 161 € [d_jia, d—j)}a J <0,
then, the subsectiorts;, ®;, and/; correspond to each other, and the probability distribution d¢pends

only on that ofp,. Therefore, in order to analyse the probability distributiog ehd the erroe, the variable
¢1 and its subsectiof; are convenient to deal with.



The quantization error terA £ andU are also transformed to

o(1)T
AE: =T 'AE, U:=UT = (M?T (16)
G(N)T
by T and it can be represented as
AE:(TWﬂW*U%:Q7m4WE S
z Ly o1(i)e(d) Zz 1 01(1) (a($1(i)61) — @1@9})
_ (@0 2= 1¢2(1)€( )| _ ) Y da(i)(q(en :(2)91) — ¢1(i)01) an
ity ék(i)e(i) S ok (i) (a(D1(1)01) — d1(i)61)

Note that|| AE||; = | AE||, sinceT is an orthogonal matrix.

In Section 3 and Section 4, which are main results of this paper, we assume the followifigys) aor
f(9).

Assumptions in Section 3:
3-1) f(¢) is a uniform distribution
Assumptions in Section 4:

4-1) u(i) = ¢1(i),i = ...,1,2,... are mutually independent
4-2) the resolution of quantizer is enough high

4-3) f(¢) is symmetric about each-axis

4-4) f(¢) satisfies:

n

F(@) = [[(H; + Ki(¢i — dio) + O((di — i0)?)) (18)

1=1
|Hil, K] < oo
in the neighborhood of an arbitragy, = [$1o d2o - -+ dno] € {0}
4-5)

(o (61)1 (1)) (19)

When assumption 3-1) or 4-1) is satisfi&t. U or UTU converges taVI, then it is reasonable to find an
optimal quantizer which minimizeg {UTE} orvV {UTE} under constraints on the resolution of quantizer,

bias-free of the quantization error term such]i’a%UTE] =0orE [UTE} = 0 and so on. In order to

evaluate these quantities, we prepare further notations. The marginal distribution dénpsjtgn the space
of ¢4 is defined by

:/f([(lgl by - Gn))ddy - dy.

The notationg (é;, ¢;), (¢, 45, ¢x), - - - are also defined similarly. Then, a bias-free condiEb[WTE} =
0, thatis

[ o]



for eachk, can be written as

N
E [Z J’k(i)e(i)] = NE [(Z)k : 6(&1)] = N/(Z;ke(dsl)f(éla or)dprddy = 0 (20)
i=1

for eachk # 1 and
N
£ [0 = NE[or (0] = ¥ [ i@ sa =0 @)
=1

for k = 1 because o/ TE = TTUTE, whereT is orthogonal, that is, nonsingular. Of course, another
bias-free conditiori: [UTE} = 0O is directly reduced to (20) and (21). If assumption 3-1) or 4-3) is satisfied,

/ St (D1, dr)ddy, = 0 (22)

is held fork # 1, then, (20) is automatically satisfied. Therefore, the bias-free condition is reduced to (21)
under such assumption. A sufficient condition of (21) is

= [@316(5)1)} ;:/ dre(¢1) f(d1)dg1 = 0, Vj. (23)
¢1€1;

This condition shows a propernessigfwhich represents the subsectibnand it is enough reasonable to
be satisfied.

On the other hand, the objective variancdg/V E] (= V[UTE)) is written as

n N 2
VIUTEI(=V[UTE) =} _E [(Z %(U@(Zﬁ)
k=1 i=1

n N 2
=) E [(Z ¢k(i)e(¢1(i))) ] : (24)
k=1 i=1
With respect to this formula, we can derive the following two key lemmas.

Lemma 2.1 Under a condition:

/qghf((l;b"')ggha"-7Q~$n)d¢§h :07 (25)
N : 2 N [ ¢2e(d1) f(¢1)d for k=1

E [(Z ¢k(1)€(¢1(i))> ] = S (26)
= N [ 326 [(b1.dp)ddrddy for k£ 1

is satisfied.

The proof of this lemma is given in Appendix A as mentioned in Section 1. Note that the condition in the
lemma is satisfied under the assumption 3-1).

Lemma 2.2 Assume thaf (¢) satisfies (18), then,
N 2
E [(Z; ¢k(i)e(i)> ] Ao VB[R] (27)

whereAyn,.x is the maximum width of the subsectidfjsof quantizer defined bAyax := max; |dj11 —
d;|.



This lemma is for high resolution case discussed in Section 4. See Appendix A for the proof.

When Lemma 2.1 is applicable, (24) is represented by
Vo] = [ (30) 0 bt
’ k=1
= N [ 6000 £(@)dn, (28)

whereo (¢) is a kind of variance of (¢) at ¢; defined by

o6 = (16807 [ (3208) $n Bt -] @)
k=1
And also in the case that Lemma 2.2 is applicable, we get
v [UTE] (= V[07E]) a0 N o*(¢1)e(dr) f(1)dér. (30)

Another possible objective function1s [(UTE)J , that is the variance of the first elementléf E, which

focuses on the quantization error in the unique nonzero elethenit §. Under the condition (21), this
formula is also represented by

Vv {(UTE)l} ¢1€ ¢1 N/¢ f(d1)dér. (31)

Based on these observations, the original optimization problem is reduced to the feasible forms and the
main result in the following of this paper is summarized as deriving the optimal quantizer for minimizing:

1) (31) wheny satisfies assumption 3-1) (Sectiod@y resolution casg,

2) (28) wheny satisfies assumptions 4-4)4-5) (Section 4high resolution case.

Moreover, although the above two cases of problem have enough meanings for themselves, they also have a
deep connection which is explained in Section 4.

3 Low Resolution Quantization

3.1 Explicit optimal quantization scheme for low resolution case

At first we state the problem formulation dealt with in this section. The next is assumed, which corresponds
to that of 3-1) in Section 2.

Assumption 3.1 $1 obeys a uniform distribution in-x, k] (this meang, obeys a uniform distribution in
[—b1k, 01K] =: [—K/, K]).

As mentioned before, the subject of this paper is mainly for the analysis in order to understand the essential
properties of the optimal quantizers. Therefore, although some assumptions do not consist with the original
objective of system identification, keep this intention in mind in reading the following of this paper.

Assumption 3.1 automatically guarantees the condition (22) and (26) in Lemma 2.1 (i.e., (31)). Then, the
following problem is considered.



Problem 3.1 Let M, be the number of the quantized subsections-af «x|. For the system (1) with As-
sumption 3.1 and a fixetl/,,, find a quantizey that minimizes the variance of (31) such that {g?)l (7) - e(i)} =

0 () for the even numbet/, or E;_, 1, {qgl(i) : e(i)} =0 (:: Jsveron O -e(él)f(g?)l)dcz;l) and
Er [&1@') : e(i)} = 0 (othery) for the odd numben/,.

This problem is not only for the case that the identified systems have such special conditions. As we
will explain the reasons in Note 4.3 is Section 4, this problem is approximately applicable to the optimal
guantization in a local area around the origin of the regressor vector in general.

As described in Section 2, the quantization scheme-6fx, 6,x] = [—+/, '] ony is essentially equal
to that of[—k, x| on¢; and it is completely defined by the setting of the subsections, ..., I_s, I_1,
Iy, I, ..., Iy, where

M, for evenlM,
3(M,+1) foroddM,
and the assigned quantized values
a(y), y € S;
= q(¢1), ¢1 €I
_ (33)
for each subsectiofy (see Fig. 1). Therefore, we should find an optimhaly, ..., Iy andy_ps, ..., Ym

for a fixed M. This is a minimization problem of [éle(qﬁl)} of an about?M x 2)-variables and it seems

to be a considerably hard problem in the sense of computation complexity. However we can show that this
problem is reduced to be a feasible one by using the following calculations.

a(y) 4 q(y) =y
Vit oo e -—_-
:Ijj ----------------- -—'_E E
Yo ------ — S
: O E E E E E > s
4D P TR r y(=di6h)
—— dip  do dj-1 dj dj+1
S, S Sy S; Sjt
(R Il
I 4 I I Ij Ijn

Fig.1 The quantization scheme @f

Hereafter, we consider the case of evgp. The case of odd/, is almost similar to the even case and
the differences are explained in Note 3.1.

First, we considef; = (0, d;] (equivalentlyl; on $1) andSy = (d1, do] (equivalentlyl, on $1) where
their boundaried;, d» have a relation:

dl = Tld27 T € [07 1]5 (34)



with an appropriate ratio;. The quantized valueg andy. for the subsections; ony (or I; on ;) and
So (or 1) satisfying

By, [61-e(é1)] =0, j=1,2

are given as follows. Lej; = % 4 h1, whereh; is an offset, then,

~ ~ k1 rid 1 1 2 . d
Er, {¢1 . e(¢1)} = /k ( 12 2 + z) (z — hl)ﬁdz =00 (3kf — 7“1d2h1k1> , k1= ?1’
—R1

and therefore,
h1 = —_— = *Tldz. (35)

1+7r1 )dQ
2

Similarly, letg, := ( + hs, Wherehs is the offset, then,

S k2 dy +11d | 1 /2
Ej, [¢1 : €(¢>1)} = /k (2 =2 4 Z) (z — hz)f%,dz == (3k§ — (d2 + T1d2)h2k2) :
—R2

2 2K!
1—
kQ = 7612( 2 rl),

and therefore, )
2., 1 _1(1-m) i (36)

By — 2
T 3%dy(1+1r1) 6 (L+1)

Note that in order to make the expectatidiys [gEl : e(&l)} andEj, [gﬁl : e(él)} zero, the assigned quan-
tized valuegj, andi, must be larger than the central values of each subsestiony (or I; on ;) andS,
(or I). Hereafter in this section, the quantized valgeare selected as such values.

By using thesegj; andys, the variances chble(g?)l) in each subsection also can be calculated as follows.
LetVy, [g?)l : e(ggl)} denote the quantity

Vi o e@n)] = [ (1-e(61) ~ By, [61-e(@n)]) Fd1)ddn,

I;

then, for the eved/,,

7 7 M ridy ? 2 1 L1 s 5
VIl |:¢1 . €(¢1):| == /_k1 (2 + Z) (Z — hl) ﬁdz = Tﬁ()ﬁdQ (32T1)

(note thats’ = 6, ), and similarly

Vi, [&1 : e(gz~51)] = /k2 (d2(1+ﬁ) + z>2 (z — h2)2%dz

kg 2
1

1
5160 2,0 B 1181 = r)° +45(1 1) (1 =) 451 —r)T(1+r) 2}

Therefore, the sum of ¥/ [g?)l : e(q?l)} and Vi, {{51 '6(@51)} is

- - - ~ 1 1
vV, [@51 : €(¢1)} + Vi, [¢1 : 6(951)} = Tﬁgﬁdg%(ﬁ)

P1(r1) =32 —18(1 — ) +45(1 + )21 =) +5(1 — )" (L + )72 (37)
The minimizerr{ of this sum is defined by
r{ = arg min ()

r1€[0,1]

= (),



and

1 1

_ _— 75 /,min
m=r? 2160 o 2V (38)

(Vh [</31 : 6((51)} + Vi, [qgl : e(&l)D

Note that the optimat{ is independent of the value d§, which is the upper boundary 6.

Next, we consider another subsecti§inony (or Is on ¢) together withS; (or I;), S_1 (or I_;) andS,
(or I1). Suppose the relation betweénandds is:

dg =T9 d3, (39)

wherer; is also an appropriate number|[iy 1]. Similar to the case of;, S_; andSs, the offseths of g3
for the subsectiot$z ony (or I3 on ¢,) satisfyingE, [(51 : e(&l)} = 0 and the variance ¥/ {<Z~>1 : e(gEl)]
can be determined as follows:

2,2 1 1(1—ry)? ds(1 — 1)
— — k7 — 28 T2 4
& 37%ds(1+1) 6 (1+72) ds, k3 2 (40)
- N ke 2
—R3
— 1 1 5 5 2 3 . L
= o L {801 ) £ 45(1 4+ ra)2(1 o) 4 5(1 ) (14 1))

Therefore, the optimalg that minimizes \, [q?l : e(&l)} + Vi, [gEl : e(q@l)} +Vp, [&1 : e(qgl)} is given by
solving the following minimization problem.

ry = arg rr%n (VI1 {(]31 . e(&l)} + Vi, [&1 : e(q%)} + Vi {q% : 6(&1)})

1
216()@0331/12(7“2)
Po(re) = PP5 —18(1 — 1r9)® +45(1 +1m2) (1 — 1) 4+ 5(1 — ro) (1 + 1) 2. (41)

= argmin
T2

Note 3.1 In the case of odd/,, the quantized valueg , 7> andys for the subsectioy_1, S1, Sz and.Ss
ony (correspondingly_1, I, I andl3 on ¢) should satisfy

Entr, [Q;l ' 6((51)} =0, Ep, [(51 ’ 6(51)} =0, Eg [&1 ' 6((51)} =0.

Therefore, from the symmetry ¢f, andS_,, 1 = 0. The quantized valueg andjys are given as similar
to the even case and

ry o= al"gH;iln (;VhHl [le : 6(&1)} + Vi, [¢~51 : 6(6731)})

11,
= argnrruniﬁdzwl(rl)

1 2160
Y1(r) = 432 —18(1 —r)® +45(1 4 r)2(1 — )3 +5(1 — r)T(1 + )72,
Ty = argﬂgn <;VI1+I1 [éf;l : 6(&1)} +Vip [551 : 6(5)1)} +Vi, [le ' 6(5)1)})
1 1
= argngn mfm,dg%(ﬁ)
Yo(rg) = S —18(1 — 12)% 4+ 45(1 + 72)%(1 — 12)® + 5(1 — 72) (1 + 12) 2.

Note that the difference on the formulas between the even case and the odd case is only the coefficient of
in 1/}1(7“1). ]

By repeating the above process, we obtain the following result.

10



Theorem 3.1 The optimal ratios- for Problem 3.1 are given by solving the following optimization problem
iteratively.

rj = arg r;él{%nu ¥;(r;) (42)
pi(ry) =P — 18(1 = r;)° +45(1 4 75)*(1 — rj)* + 5(1 = r;) (1 +7;) 7> (43)
I = 1)y (r9) (44)
min . | 32 foreven M,
Vo {432 for odd M, (45)
The optimal value of the variance is given by
M N -

2 Vi [dn -e(¢1)] for even M,
Vi [¢1 : €(¢1)} = N F:M M L (46)

Vi, [dee@)]+ S Vi [di-e(én)] forodd M,

J=—M, j#+1
_ 1 /4, min n4 4 mm

= Jig0" VM= 21606 Vii= (47)

We call this optimal quantization schem@@ hereafter.

Note 3.2 The original minimization problem of an abo(#M x 2)-variables function \,{&1 . e(d?l)] can

be reduced to a recursive minimization problem of an only 1-variable rational function. Moreover, from
Lemma A.1 in Appendix A, the local minimum af;(r;) in 7; € (0, 1) is unique, therefore, finding the
minimizer does not require high complexity of calculation.

Every ratior? can be explicitly given by (42)- (45) iteratively, however, understanding the properties of
r¢ is not straightforward from (42)- (45) directly. On the asymptotic characteristics of the optimal ratios
et (j = 1,2,...) and the related quantities, we can derive the following series of Lemma 3.4. Their
proofs are collected in Appendix A.

Lemma 3.1
<18y, Vji>0 (48)
r{ —1, j — 00 (49)
Lemma 3.2

where| - | denotes the width of the subsection.

Lemma 3.2 shows that the optimal quantization scheryg @as the property that it is coarse around the
origin of y and becomes dense whergoes to the boundaries pf«’, ']. This property is, in some sense,
a dual to the result of the quantization problem for stabilization by [8], that is, the coarsest quantization
scheme for stabilization is dense around the origin and becomes coarse at a distance from the origin. These
observations suggest that there seems to exist a trade-off between parameter estimation and stabilization in
gquantization scheme for adaptive type control systems.

Next, consider the unboundednessﬂgﬁ1 ;0. Ifitis bounded and 72, ; L =~ < o0, then this causes

a contradiction of the optimality of &t that is, when a regiofi-~, ~| of (;31 is quantized, the width of
I, for example, is never smaller than 1 even if the number of quantization levels increases to infinity. Of
course, this is not true arfd; r is therefore unbounded. The next lemma strictly shows this fact. See

J

Appendix A for the proof.
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Lemma 3.3

e"_‘

11 =00 (51)
j=1

<

From Lemma 3.1 to Lemma 3.3, we know the outline of the quantization of the régidn «']. Next,
consider the evaluation of the magnitude ofqﬂ . e(g?)l)] with respect to the number of the quantization
levels M, and the following lemma shows an asymptotic characteristigg.

Lemma 3.4 '
YRt — Wo(M), M — oo (52)

wherea = —5-372 andb = % and ¥ (m) is a function ofm defined as the solution of the following
recurrence formula with an appropriate initial numbe(0) = K.

Y(m) —d(m —1) = a’(m — 1) (53)
By approximating the difference equation (53) (or (151) in Appendix A) with a differential equation

dip(m)

dm

wherev > 0 is an appropriate constant number, then, we obtain

= (a+v)y°(m) = ag®(m) + o(¢*(m)), (54)

B(m) = {(—b+ 1)(a + v)m + K} =55 (55)

for an appropriate constaft. From (47) and the convexity of the function (55), the varianggl¥/, - e(¢,)]
at sufficiently largeV/ satisfies

Var 1 e(dr)] < 21160n4((—3/2+1)((—5.3*%+u)(M—1)+K))%

= Ax'(M - K"

1 5 -2
A = % (5 2372 — V)
K = (5-33—v)'K. (56)

This (56) shows a relation between the optimal variance and the number of quantization levels. In the
following section this result is used to evaluate the magnitudk i6f

3.2 Numerical simulation
In this subsection, we demonstrate the characteristics of the optimal quantizater by using simple numerical
examples.

At first generate 10000 sets of I/O data for the system (1) #ith1 andw = 0; the 1st order MA model
and noise-free case, wherg) (= ¢:(¢)) is an independent random noise of uniform distributiof+n, 4].
Show the histogram af = ¢; in Fig. 2.

12



number ofg,

é1
Fig.2 Histogram of input data = ¢;

Next quantize the output dagawith the optimal quantizers in Theorem 3.1 and uniform quantizers for
comparison under the constraintdf = 5 (M, = 9), M = 10 (M, = 19), andM = 50 (M, = 99).
Fig. 3, 5, and 7 show the step functions of the optimal quantizerdffor 5, M = 10, andM = 50
respectively and Fig. 4, 6, and 8 show the corresponding step functions of the uniform quantizers. Fig. 3, 5,
and 7 show the property of the optimal quantizers, that is, it is coarse around the origin and goes to be dense

apart from the origin. Then, calculate the bias term ave.e = 5t55 212" ¢1(4) - e(i), its variance ave.

¢? - e = 105 i $3(i) - €%(i), and the quantization error terggis; (UTU) ~*UTE by usingu = ¢,
and the known quantization errerbetweeny and the calculateg. Table 1, 2, and 3 show the summary
of the results. From Table 1, 2, and 3, the optimal quantizers which miniﬁh[zfé . 62} attain lesser ave.

ﬁEeQ = 1ov00 r29%0 ¢2(i) - €2(i) than those of the uniform quantizers and consequently attain lesser

/(~ ) (%
q(o1 (1)
4 T T T T T T 4 T T T T T T T T
! ! ! ! ! ! ! —_— | | | | | ! ! ! Z
: : : : : : ‘\_“) | | | | | | | I
3 | | | | | I 3r : : : : : : : /:/
| | | | | | At ! | | | | | | [ cann)
| | | | | = ! | | | | ! ! 7 !
2F ! ! ! ! ! v ! ! 2F | | | | | | Al |
: : : : ! Pl : : | | | | | e |
b | 0 N R S
1F | | | 7 | | | L Z
b | A S R e R
L | l g I M A A 7
0 T : : T ¢1 0 i : : :/ : : : : (bl
| | | J | | | |
oA | Lo Lol =
1 | | | L0 | | | | AT | | 4 | | | |
| | [ | | | | |
oo | b e
,
S I A e
| | | | | ! | s | | | | ! !
| 4\/ i | | | | | | | | | | |
3 o, | | | | | | I | | | | | |
— ! ! ! ! ! ! N P | | | | | | |
L : : : : : : : /1 | | | | | | |
) e | | | | | 1 |
4 1 1 s ! L L L 4 I I I I I I I I
-4 2 0 2 4 ‘4 2 0 2 4

Fig.3 Optimal quantization schemq)ﬁ for M = 5Fig.4 Uniform quantization scheme fof = 5

Table.1 The bias, variance, and quantization erroffoe 5

Qopt uniform

ave.¢; - e | 6.61e-004| -4.91e-002

ave.¢? - €2 | 1.79e-001| 2.89e-001
|AE| 1.18e-004| 9.07e-003
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Fig.5 Optimal quantization schemeyg} for M = 1(Fig.6 Uniform quantization scheme fof = 10

Table.2 The bias, variance, and quantization errof\for= 10

optimal uniform

ave.¢; - e | 1.19e-004| -1.17e-002

ave.¢? - ¢ | 4.54e-002| 7.03e-002
|AE| 2.36e-005| 2.16e-003
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Fig.7 Optimal quantization schemeb&for M = 5(Fig.8 Uniform quantization scheme fof = 50

Table.3 The bias, variance, and quantization erroffo+= 50

optimal uniform
ave.¢; -e | -8.24e-005| -8.90e-004
ave.¢? - ¢* | 1.88e-003| 2.90e-003

|AE]| 1.68e-005| 1.64e-004
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4 High Resolution Quantization

In Section 3, we gave an optimal quantizer regardless of its resolution, however, under strong assumptions

on the distribution density(¢) or f(¢). On the other hand, in this section we give optimal quantizers for
general distribution densitieq ¢) where quantizers are assumed to be in high resolution. Here we formally
state the assumptions of this section,

Assumption 4.1 The inputu, the distribution density"(g?)l) and the quantizer satisfy the assumptions 4-1)
~ 4-5).

At first, the assumption 4-1) gives the reasonability ¢¢/'VE] as the minimized function. With the as-
sumptions 4-2) and 4-3), the bias-free conditidt/EE] or E[UT E] is asymptotically satisfied when the
widths of the quantization steps go to 0. Moreover, Lemma 2.2 is derived from the assumption 4-4) and it
shows that the variance[V T E] (= V[UT E]), which is minimized, can be approximated by (28) in high
resolution case. Therefore, the highlight of the problem is in the calculation of (28) for g¢giteéjahnd

finding its minimizer.

A key idea to solve the problem is introducing the following quantity on the distribution of quantization
subsections, which is a reasonable notion under assumption 4-2) in Section 2.

Definition 4.1 The quantityy(¢;) which satisfies
019(41)d¢, = number of quantized subsectionsiift; ¢;) (= 01d¢,) (57)

is called distribution density of the number of quantized subsections.

This quantity is the same introduced in [1, 13] and from this definiti¢n; )~ represents the width of the
quantization step a ¢, .

In Section 3 for the bias-free condition, the quantized value for each subsection is strictly assigned to
satisfy that the expectation of the quantization error is zero in each subsection. Although such consideration
is indispensable in low resolution case of the quantization, however, the bias-free is asymptotically satisfied
in high resolution case and the assignment of the quantized yalaaot critical problem. In particular, at
the asymptotic situation @f ;| — 0, the middle point of each subsection is reasonable to be assigned as the
quantized value. Therefore, we fix such quantized values in the following of this section.

Then, we assume the following.

Assumption 4.2 The density(¢1) satisfies:

M < o0. (58)

dn

With this “smoothness” of the derlsig(q%) and that off(q?l), which is given by the assu~mptior~1 4-5), we
can select the mean valgtje*1 ~ g(¢1)~* for the subsectiod; and then, we defing; ~ f(¢1) in ¢1 € I;
which satisfies the next.

pj = /1 f(dr)der =: figi*

Moreover, with the variance(¢: ) of f(¢) at$, defined in (29), the assumption 4-5), Assumption 4.2, and
with A¢ := max; ¢f1|dj+1 — d,|, we can derive the followings by direct calculations:

/ (Zn: 95%) (1) f (1, -, In)der -~ dy,
P

_ / o%(61)eX($1) f (b1)déhy
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j ¢1j—§gj

¢~51j+% ;1 o~ - -
= Z/¢> ) i (07¢1; — )% (d1;) fidx + O(AP?)
j 17729,
_ 1 - -
= BY a0 bu) ) + 0(AF)
J

b1+39; 0 1

; ¢1j—%9j_1 127

~ b1+ ;1 ~ ~ -~ -~
= BY [ D) G0 G0 + 0(aF)

i ¢~>1j—%9;1 12

= G [ 5005020 (311 (G0)dbs +O(AF), (59)

20%(d1)) fidr + O(A?)

Whereélj is the assigned valug satisfyingg?lj € I;. This says that
~ 1 - ~ -
07 [ 13906120 (61)f (1) (60)

is an objective function when the assumption 4-2) is satisfied.

In the following we give the optimal quantizers, which minimize (60), under a constraint of the number of
quantization steps (Section 4.1) or of the expectation of the code length where the quantized data is optimally
encoded (Section 4.2). The former case is referred as “fixed-rate quantization” because it is identical to a
“fixed-code length” case, on the other hand, the latter case is referred as “variable-rate quantization” and in
fact the code length is not fixed.

4.1 Fixed-rate Quantization

From the above observations, the original optimization problem of (28) (i.e. (60)) can be replaced by the
following at N — oo and high resolution case:

Problem 4.1
1(61) 1= axgmin [ F(g(d1))dé (61)
e
st [ g@ndh =, (62)
ot
where
Floldn) = 150060 o0 1() (63)

We can derive the next result.
Theorem 4.1 The solution of (61) is:

gi($1) = Ko3(d1)f3(d) (64)
K = D 'm (65)

D = /U%(ﬁzgl)f‘

=
-
=
QL
-2
=

(66)
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Moreover, the optimized value is given by

[ Florton Gt = @AM (67)

Note 4.1 If the corresponding distribution density of the number of quantized subsectighn y is
required, from the equivalenge= 6, ¢, and the corresponding definitions

Fy(@),y(i+ 1), y(i +n = 1) (= f(9)),

f(y)(Hf(%l)%
a(y)(« o)),
we can derive the similar results
Flolw) = 1500) 0% )
9:(y) Ko (y)f5(y)
K = D 'M
I
[ Flastw), Gelonay = 500>

Proof of Theorem 4.1By employing the similar technique in [1, 13], the optimal solution can be given.
With the calculus of variations, the following Euler—Lagrange’s equation:
4 (W> _9F _,
dpy \ g 0G ’

where

G() = /~¢1 9(1)dér,

¢1inm

gives a differential equation:

(=29(81) P (@1)f(d1)) =0, (68)

do
and the solution is: ) L
g(61) = Ko3(¢1)f3(41), K :constant

The constant numbék is directly calculated by the condition (62), and the value of the objective function
is derived as follows.

/f@f((z;l))dqgl - %é%(KU%(él)f%(&1))7202(951)f(¢~>1)d<2~51
— /;é%K—zgi(ggl)f(qzl)idqgl _ %g%K_zD
— i~2 33 r—2
= S0D*M )
]

From this result, the asymptotic optimal quantizations at high resolution case are easily calculated analyt-
ically or numerically if the marginal distribution&(¢;) are known.

Note 4.2 When f(¢) is a multidimensional normal distribution:

_ - 1 1op g~
n = 1 —= T s
Frduneensdn) = oo (—5d"T7)
I' = diag(os,00,--..,00),
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then ~ ~

a*(¢1) = ¢1 + (n —1)o;
Moreover consider a case that the ordeaf the MA model~is enough large, then, in the aregf(aft) has an
enough large value (i.ep; is not large), the variation of (¢, ) is relatively small and

o(¢1) ~ n2oo. (70)

Therefore,

and
g(d1) ~ (/f (¢1) d¢1> 1f%(¢~51),
[ Flaéia ~ & ([ fs(él)dq%1> no2 M2

= —026\f ot M2 ~ 0.8658m02no M 2. (71)

Note 4.3 Here we consider a optimized function:
E [0 ¢*] = [ G601 (Gr)don.

Then, the optimal quantizati(yj(ggl) for the above is also given by

wheregl(¢1) is defined only for the regioR\[—¢, ], € < 1, becausef{éi%f%(él) is too small in[—e, €]

to apply the approximation of high resolution case. On the other hand, Whé)\is normal distribution,
uniform distribution or other probable cases, the marginal deng y1) is approximately uniform around

the origin [—e, ¢]. Therefore, the optimal quantizatigi(¢; ) in the region[—e, ¢ is similar to the solution
derived in Section 3. From this reason, the result in Section 3 also indispensable for constructing the optimal
gquantization in high resolution case.

We illustrateg (¢, ) for the cases that(¢:) is uniform distribution, normal distribution and power law as
follows.

In Section 3, we derived the strictly optimal quantization for general resolution caseﬁ(/dﬁehis uni-
form distribution. Lemma 3.2 shows that the optimal quantization is coarse around the origjraofi
dense near the boundary ®f. Such property of the optimal quantization can be also seen in Theorem 4.1
(see Fig. 9). Fig. 9 is an example of a simple ora&ﬁl) $1, and the theorem shows that the growing rate
of the resolutlon against; is known wherv (¢, ) is given analytically. In this case, the order of the growing

rate |Sgb1 , which is unknown from the results of the previous section.

In the case thaf(¢;) is normal distribution, the profile of the densifi{$;) around the origin is flat,
therefore, the optimal quantizer must have the similar profile for the casettiatuniform distribution
around the origin. That is, the resolution grows around it, and we can see such profilé;0fin Fig. 10.

On the other hand, in the area of the tailfcéf%l), gf(ggl) goes down, however, against our intuition, the res-
olution remains high such ag(3) ~ 0.201 ~ 51% of max g¢(¢1) or g¢(4) ~ 0.0758 ~ 19% of max g¢(¢1),
wheref(¢;) is enough small.
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Finally we show the case gf(g?)l) ~ ¢~>1‘2 at the tail of the distribution as an example of power law. In this
case,gr is constant and it is marginal for the existence of the solution (see Fig. 11). This result shows the
difficulty of the system identification in an enough accuracy by using finite information on the system when
the tail of the distribution densﬂyi(gbl) is heavier tharzO(qS1 ). In other word, it explains the complexity
of power law from the view point of parameter estimation of system identification.

-

022 gf(¢1)/

0.1 "”’

" 1)

S T B R S T
$1

Fig. 9: Uniform distribution densit}f(él) of the
regressor (solid line) and the distribution density of
the number of the optimally quantlzed subsections
gi(#1) (dashed line) in the casg¢;) =

Fig. 10: Normal distribution density(¢;) of the
regressor (solid line) and the distribution density of
the number of the optimally quantlzed subsections
gi(¢1) (dashed line) in the casg¢;) =
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Fig. 11: Power law@(¢;?)) case off(¢1) of the
regressor (solid line) and the distribution density of
the number of the optimally quantized subsections
gi(¢1) (dashed line) in the casg¢,) = ¢

4.2 Variable-rate Quantization

In the previous subsection, we derive an optimal quantizer to minimize the identification error (28) (i.e.
(60)) under constraint of the number of quantization steps, i.e., fixed-rate quantization, in the case of high
resolution. On the other hand, for the purpose to reduce the information of the observed data from the
identified system, it is reasonable to apply variable-rate coding for the quantized signals and measure the
mean code length as the quantity of the information. According to this observation, we consider the mini-
mization problem of (28) (i.e. (60)) under constraint of the expectation of the optimal code length, that is,
variable-rate quantization, in high resolution case.

Let C(-) be an encoder which is a mapping from source alphabets to code alphabéts) dinel code
length. We regard the quantized outpiit);) as the corresponding source alphabets, theri(g(¢1)))

represents the code lengthgdfh; ). The expectation of the variable-rate optimal code length for a quantized
signal has relation with the entropy of the source alphabets from the following well-known source coding
theorem.

Proposition 4.1 [16, 4] Letx be source alphabets, then,
E[l(C(z))] = H(x), (72)

whereH (x) represents the entropy of

With this proposition, the optimization problem of the quantizer for the code length is reduced to the mini-
mization problem of (28) (i.e. (60)) under constraint of entropy of the quantized signals.

The basic idea to represent the quantizer in high resolution case is the same of the previous subsection.
That is, under the assumption 4-5) and Assumption 4.2, we can get the asymptotic approximation of the
entropy of the quantized signal:

H(f.g) = > —pjlogp;
7

= Z—/I_f(él)ddi log f;9; "
~ [~ #0105 (FG)g @) dn
= Ha(f) + [ ~£@0)1og (57 (00) dn, (73)
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whereHy(f) := [ —f(¢1)log f(¢1)dér. By using this asymptotic approximation of the entropy (73), we
consider the following problem.

9u(é1) i= argmin [ F(g(1)ddn (74)
st.H(f,g) =logM (75)

Note thatM is an expected number of quantization steps in the sense of (75).

We can derive the next result.

Theorem 4.2 The solution of (74) is:

ge($1) = KMo(d) (76)
K = explL (77)
L= —fﬂﬁ—1/fmga@nd@
=[G ¢ (78)
Moreover, the optimized value is given by
[ Flolbiaby = iR, (79

Proof We employ the similar technique in [10, 2]. Latbe a Lagrange multiplier and consider the
minimization problem of the following quantity.

/f(g(él))da% +\H(f,9)

2
= 1 92 < (1 )> o?(d1)f(d1) — Af(d1)log (9_1(&1)) dy + NH(f)

P1
- /EﬁﬂmeOM¥@0+M%M%D%H4HU) (80)
By applying Eular-Lagrange’s differential equation, we get
0 (9720%(61) + Aogg) = —297%0%(61) + Ag ™
g
= constant (81)

Fix the constant to be zero, then,

INE -
9= ()\> o(é1), (82)
and by substituting it foi ( f, g), we get

H(f,g) = /—ﬂ%gﬁm&

= 10g< ) +/ flog dgbl

= log M. (83)

Therefore,
2\ 2 B f
(A) = exp (/flog (¢1)d¢)1 + log M> (84)
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and (76) is derived. By substituting for the objective integral, the following is derived.

1 - ~ - ~ o~ 1 A
019 (@)% (01 f(d1)ddn = 5015
L (85)

U

Note 4.4 Interesting fact is that the optimal is a simple linear function of({sl). The constant coefficient

is also linear to the number of the quantization stéps On the other hand, the convergence rate of the
minimized variance of the quantization error termlis~2 and this fact is common with the fixed-rate
quantization.

Note 4.5 When f(;) is a multidimensional normal distribution amdis large as discussed in Note 4.2, by
using (70),

L ~ —H(f) - log(aon%),

K~ exp(—H(f)) - (o,m?) ",

and

go(d1) = KMo(dy)
~ M -exp(—H(f)) - (05n2) ™" - oon
= M -exp(—H(f))

- 1 -~
[Flao)asr ~ 50 exp@H(P)motM
1 - _
= EH%QeﬂnaﬁM_Q ~ 0.4533702noi M 2. (86)

The comparison of (71) and (86) tells us that the case of the variable-rate optimal coding attains about a half
magnitude of the variance of the quantization error comparedqgwitbr fixed-rate quantization.

5 Pre-quantizer Noise Case

In Section 2, we showed two forms of exogenius neisas (1) and (2). In the case of (1), the relationship
between noise error terth 11 and the quantization error terfE is simple since they are independent and

we can simply evaluate their magnitude separately. On the other hand, in the case of the pre-quantizer noise
(2), although which is more realistic case, the effects of noise and quantization on the identification error are
complexly correlated each other and their evaluation is not straightforward. This shows the necessity of the
analysis on the effect of the correlation between noise and quantization on the parameter error for the case
of (2).

For the system (2), we defieand the erroe, betweeny andy as follows.
9:=4q(y), eq:=9—y (87)

The abovey ande, can be regarded as an imaginary quantized signal and the corresponding quantization
error. The error betweey, defined in (1) and:

Cw = Yo =Y (88)

can be regarded as animaginary noise. Therefore, the observedsigaalbe represented by the imaginary
quantized erroe, and the imaginary noisg, as

Yo =Y +eq+ ey. (89)
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In order to evaluate the essential characteristics of the effect of noise on parameter error, here we deal
with the quantity: ) )
Vipi(eq + ew)] = E[gzb%(ei + efu + 2eq€q)]. (90)

Note that the imaginary quantization erkQris definitely given on the event in;, on the other hand, the

imaginary noise erroz,, is probabilistically realized and its distribution density depends prrherefore,
we get

V {qgl(eq + ew)} = E [g?)%(eg + e?u + Qeqew)}
= E |61 (c2(61) + By, [e1] +2e4(01)Ey, lew))], (91)
where
E;, 2] = / xdP(z|¢y) (92)

andP(a;\q@l) is a conditional probability of: given$,. We here assume thatis a random noise obeying
uniform distribution of a sectiofi-¢, ¢]. Lety; be the middle point of; for simplicity and we calculate
hereafter two termg; [e?ﬂ} andE; [e,] which depend om,, in the right hand side of (91).

Assumegbl( ) is in a subsectiod; of width 6716 (i.e. (i) € S; = (d;_1, d;] of width §) and satisfies

91gb1 dj— 12+d] + h. Moreover, assume thatandd have a relatior = (% + s)0 wheres is an integer for
simplicity of the following analysis aneis enough small such that; — d;_1|, |dj+1 — d;|, |dj+2 — djta],

, can be considered to be a constaim the region[y; — €, §; + €]. Then, in the casé > 0, we can
derive

2
E¢~>1 [ew]
= P(hér +we S;_s)- eaymﬁwesﬂ + P(O1g1 +w € Sj_(5_1)) - eayéumwesjf(sfl) +
+ P(0~1¢~>1 +w € Sji(s-1)) - S |51¢~71+w65j+(571) T P(élél +w € Sjts) 630’51<51+w65j+s

+ P61 +w € Sji(s41)) - € ’01¢31+w657+(s+1>

—(3+s—1)8 3+s—2)8 ol -
-/ (o qediin-+o)+ [ = 09+ )
—(L+8)5+n Lis—1)s 2e
(5+s-1)5 (3+9)8 1 - .
_|_..._|_/ ((3—1)) (quﬁl—i—w +/ )—d(91¢1+w)
(345-2)5 1is—1)6 2¢
(5+s+1)d+h o1~ -
+ (s + 1)3)* 5 d(Br61 + w)
(3+s)0 2e
52
- {(12+22+---+52)-254—((3—1—1)2—32)~h}2—
€
= a(s,0) 4+ b(0,h) (93)
where
1\2  /2\? 21 1
a(s,d) = {() + () +- (S) } - (86)
S S S S+ 3
b(0,h) = §-h.
On the contrary, wheh < 0, we can derive
E;, |e2] = a(s,8) = (3, h). (94)

For the other terms which depends@p we can also derive the following fér > 0.

E5, leul
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= Pbip1+weSj—)- 6w’§1<131+wesj_s + P(01¢1 +w € ij(sq)) : 6w’9‘1¢31+wesj_(s_1) +
+ P(91¢1 +w e SjJr(Sfl)) . 6w’9~1¢~>1+w65j+(5_1) + P(91(Z51 +w € Sj—i—s) . ew’9~1¢~>1+w€5’j+s

+ P(01¢1 +w € Sj+(s+1)) . ew’éléﬁweSﬁ(sH)

—(A+s-1)5 (3+s5—-2)8 1~ -
-/ (~)gebiin +w)+ [ <<s—1>>5;d<91¢1+w>

~(3+s)8+n 3+s=1)d
(§+571)6 1 ~ ~
+ ... _|_/ (s — 1)5 d(91¢1 +w +/ Sé*d(alﬁbl + w)
(%+372)5 5+s— 1)é 2¢
(5+s+1)0+h ~ ~
+/ (s + Do d(B1d1 +w)
(L+)3 2e
_ (@s+Ds, (95)
2e

From the above, we can get the following which is used for the calculation of the right hand side of (91).
€2+ E; [e2] +2¢, 5 [ew] = (—h)? +als,0) + [b(0,h)| + 2(—h) - h = a(s,8) + [0 - h| = h? (96)

When the quantization step width is enough smallis almost constant in a quantization subsection, there-
fore, we get an approximation of the following partial integral of (91):

/i of (a(s, 0) + 0 61h'| (élh’)2) F(d1)0rdh

!

0

LI 0
= @2 f(d1)b: ([a(s,d) B A %5 L0, 0% — ;G%h’?)] gt [a(s,é) h - %5 SO0 — ;H%hﬂ 5/>
-2

= B0 (als,0)3 + 5257 (97)

whered’ := 6,16 andh’ := 67 'h.

By using the above result, (91) can be approximated as follows.
E |67 (e2(d1) + g, [ed] +2¢a(61)Ey, [eu)))| ~ D @3f(81)01(als,6) + éé%yz)a/
[ 350 ats, 0197 (G0) + 509 7(G0))dB)

On the other hand, in the noise-free case we get:

12

e[ (260)] +E[R?] =~ SR [Cwan+ [ B@nzein (99)
J

Z ¢~%J (¢~l)( 52)5 ¢~%f(¢~1)*1 €3d(~251
12 3
J

.~ 1 - - - o~ 1 -
= [ (5500G)dn + [ G5 (100)
The results (98) and (100) show the effect of the pre-quantizer noise.

The term[ ¢2 £ (¢1)a(s, 019~ (41))dé1 in (98) is an quantized version of the noise erfar (1) 1ede,
in (100) and we can confirm that the former converges to the latter wher). The remainderg P11 ( ¢>1)( 02g=2(¢1))dd

and [ % f(¢1)(1502972(¢1))dé1 in (98) and (100) can be regarded as the equivalent quantization error and
the interesting fact that the former is twice of the latter. This suggests that the pre-quantizer noise equiva-
lently increases the magnitude of the imaginary quantization error twice compared with the post-quantizer
noise case.
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6 Resolution of Quantizer and I/0O Data Length

By using the results in the previous sections, we evaluate the magnitudes of the errdy feamd AW
based on the approach in [20] and then, compare the effects of the resolution of quantizers and the 1/0 data
length. First, we evaluate the magnitudg6f*U) 1.

Lemma 6.1 [20] Suppose thai(i) are i.i.d. random variables witk[u(i)] = 0, V[u(i)] = 02, V[u?(i)] =
1. Then, for any reliability indexs:, wherel — 81 > 0, andoz N —ny/5- (/i + (n — 1)oz) > 0, the
following inequality is satisfied.

E‘II

Prob([[(UT0) s > e1) < B (101)

€ 1= L (102)

02N —n % (Vn+(n—1)02)

Whenu(i) has a uniform distributionz; € [—r, x], thatis,c2 = $x2, n = fx%, then,

1
(5 50-0) B)

By employing Lemma 6.1, we can evaluehmﬁﬂ in the following theorem.

€1 =

Theorem 6.1 For the system (1) with the optimal quantizgy) defined by (3)~ (5), (42)~ (45), assume
Assumption 3.1. Then, for reliability indices, 3», a length of dataV and the number of quantization
levels2M in [—61k, 61k], wherel — B, — B2 > 0, M > K', whereK’ is defined in (56), andilN —

n,/% (\/ﬁ +(n— 1)a§1> > 0, whereo; = 12, the following inequality holds.

Prob(\AE1| < 6162) >1— 0 — By (103)

1 A%RQ niN

= y €2 1= S\
2N /N 2 M—K'\ B
U¢1N n B1 (\/ﬁ + (n 1)J¢1) 2

€1 :

(104)

From this theorem, we know that the convergence rate of the error|t&itp| has an order of\/ ! at
sufficiently largeM and of N —1/2. Approximately, the total amount of information on the quantized output
transmitted from identified systems to the observers is alydog, 2M/ using a binary coding. Therefore,
under a constraint of such a total amount of information, a lamgés preferable to largev. Of course,
this fact is valid only for the error terA F; and the situation is different for the noise error telil’. We
introduce the result foAW in the following proposition.

Proposition 6.1 [20] Suppose thai(i) andw(i) are i.i.d. random variables witk[u(i)] = 0, V[u(:)] =
o2, andV[w(i)] = o2, respectively. Then, for reliability indice$, 32, and a length of dataV, where

1—B1—B2>0,ando2N — n\/ﬂi1 (v + (n—1)c2) > 0, the following inequality holds.

Prob([[AW oo < €162) > 1 = 1 — B2 (105)
1 nN

= , €9 1= 00 —
2N —n\ /5 (/i + (n = 1)) N B

€1 :

(106)

By combining Theorem 6.1 and Proposition 6.1, we conclude there exists a trade-off b&twesrmd AW
for reducing the total identification error under the constraint of the amount of information transmitted from
the identified systems to the observers.
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7 Conclusion

In this paper, we showed that the optimal quantizers for system identification can be derived analytically and
their basic properties were investigated with a simple MA model. The results of this paper are summarized
as follows:

1) When the regressor vector obeys a kind of uniform distribution, the optimal quantization problem for
system identification is reduced to a recursive minimization of 1-variable rational function (Section 3).

2) This quantizer is coarse around the origin of the output and goes to be dense apart from the origin
(Section 3).

3) General cases of the distribution of regressor vector can be dealt under a condition of high resolution
quantizer by introducing a notion of the density of quantization subsections (Section 4).

4) The above optimization problem is reduced to a minimization of a functional and the solution can be
given by solving Eular-Lagrange’s differential equation (Section 4).

5) The pre-quantizer noise equivalently increases the magnitude of the quantization error twice compared
with the post-quantizer noise.

6) Under a limitation of the total quantity of information of the quantized I/O data, there exists a trade-off
between the magnitudes of the quantization error and noise error.

In this paper, we restrict the model to SISO MA model. For more realistic situation, we should extend
the results to a) ARMA model, or MIMO system, b) quantized input signal, c) on-line system identification,
adaptive control, and these are left to the future work.
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A Appendix

Proposition A.1 (Chebyshev’s inequality (see [12]))etx be an independent random variable aPibb(2?) =
o2. Then for any: > 0,

Prob(|z — E[z]| > co,) < (107)

1
672.
Proof of Lemma 2.1

The left hand side of (26) is extended as:

N 2 N N

E [(Z ng(i)e(ﬁgl(i))> } = E lz Gr(D)e*($1(0) | +E D dr(D)e(d1(0)dr(i + De(@r(i+1)) | +---
i=1 i=1 i=1

= NE {43%62(031)} +2(N - 1)E [q;ke(qzl)qgkﬂe(%)} RIRRRE (108)

In (108), terms of the form @he(g?)i)cz;je(cz;k)] appear and in general, when (25) hold%&ge(q%)@e((}kﬂ
can be calculated as follows.
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Inthe case of £ i # j # k,

E [ne(65e(00)] = [ Gneldi)die(dn)f B bis b5, ) dbniddiddsdn
= [e(6de@n) [ 0n7(Gn. b1y, b)) d6dydin,

e(i)dje(dr) x 0 x doidd;dey
_— (109)

|
—

and also in the case &f=1i # j # k,
E[one(@)de(d)] = [ Gue(dn)die(dn)f (n: b5. du)dnddjddy
— [ nedntetén) ( [ 51 (@n. 3065, 00)d ) dindin
/qﬁhe ¢k x 0 x dqﬁhdqﬁk

(110)

Onthe other handy = j # i # k ori = k # j # k is not the case of (108). Finally in the casehof j,
i =k,

E [dre(@i)dse(dr)] = E[dhe?(@)] - (111)

The other cases are essentially equal to one of the above cases (for example, the-chsg i # j is
equal to the cask =i # j # k).

From the above calculations, we get the following:

E[(Zém)e(&l@)))] = NE[4}eX(d1)]. (112)

O
Proof of Lemma 2.2

The outline of the proof is similar to that of Lemma 2.1 and we evaluate the valu%gb,feﬁéi)gz?je(gﬁk)}
for each possible case.

Let I*, I7, I", or I* be a quantized subsection of the axis/f ¢;, o5, or ¢ respectively and define a
subset in the space of:

7= {in,cf;j,ﬁgh,ﬂgkldgi € Ii,ci;j el gpel" ¢ € Ik}-

Moreover Ietg, &7 E and@ be the quantized values which are middle pointdofl7, 1", and I*
respectively. The partial integral of {E;he(éi)gﬁje(q@k)} restricted to this subset is

/ ne(d F( s $ir 65 k) ddnddidddy. (113)

Let 2A¢ be the width of the largest side of the possible rectangulars parallelepigethien, in the case of

h#i#j#k,
[ 9ne(60816(61)1 G b 63, 61) sy
= / _ ondy (/ - ve(égi)e(a)k)f(g)hv&ia@gjvﬁgk)déid¢;k> dpnd;
onell ¢; €D, ¢t P eIk
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= [ e ([ G G+ Kl - 30+ O((G: - 90%)dés
NI LRSI piel’
X/(Z) elk@—&k)(ﬂk + Ky(dr — on) +O((<5lc—43k)2))d¢3k>

x (Hy + Kn($n — $n) + O — dn)2)) (Hj + Kj(d; — &) + O((d; — ;)?))ddndd;
~ ~ 4 ~ ~
_ gbththHjKiKk%Aqﬁs +O(AF), (114)

and similarly, inthe case é¢f =i # j = k,
/ Pne(d F(On, bis b, 1) ddnddidd;ddy = dpdid;on Hi HKn K i A¢8 +0(AG”). (115)

On the other hand, in the caselot i = j = k,
[ 9ne(60816(61)1 (B b1 63, b1)tdndsdd
= o ([ BeGE+ K~ 60+ O — i)
¢i6117¢j6137¢k61k ppelh

X (Hi + Ki($i = 61) + O((6s — 60)) (Hj + K;(95 — ;) +O((6; — 8)°))
x (Hy + Ki(or — dr) + O((dr, — dx)?))diddjddy,
=~ 4T = ~ 4 ~ ~
= o0 s HH LA+ 0(AF) (116)

and similarly, inthe case éf = j # i =k,

/ ne(d F (B bis b5 ) ddnddidds;ddy = I, by Hy H:H, Hk—Aczﬁ +0(AFT). (117)

The above show that, whekg — 0, the rate of convergence of (114) and (115) to O is faster than that of
(116) and (117), therefore, we get the following:

N 2
E [(Z ¢>k(i)e(¢1(i))> ] o NE[GRE@)]. (118)
i=1 max
O
Lemma A.1
Y(r) == kr® —18(1 —r)> +45(1 + )21 —r)3 + 5(1 — ) (1 4 )72 (119)
has only one local minimum ine (0, 1) when0 < k.
Proof The derivative of)(r) is calculated by
dﬁ(r) = (1+1) ()
,
v(r) = 5k(1+7)3r* +90(14+r)3(1 —r)* +90(1 +r)*(1 —r)® = 35(1 +7)(1 — )5 —10(1 —r)”
(5k — 160)r" + (15k — 480)r°® + (15k — 240)r° 4 (5k + 1040)r* + 1200r® — 12007 — 160r,
(120)
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therefore, the condition th&% has only one zero in € (0, 1) is equal to that of/(r). Note that from
(120), we can calculate

dizir) = 7(5k — 160)r5 + 6(15k — 480)r° 4 5(15k — 240)r* + 4(5k + 1040)73 + 360012 — 24007 — 160
(121)
d?;;gr) = 210(5k — 160)r* + 120(15k — 480)r° + 60(15k — 240)r” + 24(5k + 1040)r + 7200, (122)
and also
(0) =0, v(1) =5k >0, (123)
dz(r()) = —160 < 0, d”d(? = 220k > 0. (124)

Whenk = k', 0 < k' < 1, itis known that (122) is concave and

d3v(0)
dr?

d
— 7200 > 0, VT = 73440 + ¢(K') < 0. (125)

This shows that the sign (ﬁ‘Z”T—S”) changes once from positive to negative, that is, the curvatuﬁ(%é&
changes once from positive to negative, whencrease from 0 to 1 with enough smalk= £’. From this

factand (124), whek = ¥/, dfi(r) has only one zero (denotg) in » € (0, 1) and the sign oflf% changes

r

from negative to positive when increases. Moreove% is convex fromr = 0 to the local mininum

(denotery,in) and increases fromy;, tor,. If k <¢ 1, dl(’if) atk’'(< 1) is added a convex and increasing

function:

(k — k') (35r% 4+ 9075 + 75r% 4 2013). (126)
Therefore, wherk > 0, d'zlsf") is convex between 0 and,;, and increases fromy,;, to r,. This implies

d’:l([) has only one zero between 0 and Of course,d”d—g’") has no zero between andr = 1 whenk > 0.

In conclusion,dfisf) has only one zero ate (0, 1) and also the sign changes once from negative to positive

for all £ > 0. With this fact and (123)y has only one zero at< (0, 1) and its sign changes from negative
to positive for allk > 0 and we finally conclude the statement of the lemma. O

Proof of Lemma 3.1
From Lemma A.1, it is known that; (r1) has only one local minimum in; € (0,1). Moreover, from
$j(0) = 32, Vj, (1) = ¢, g™ = 32 or 432

the minimum value)" satisfies
min - 39, (127)

Next, 15 (r2) satisfies '
P2(0) = 32, o(1) = Y™ < 32,
and alsay,(r2) has only one local minimum in, € (0,1). This means

min - ymin,
Moreover, the term? andr3 is a strictly increasing function i0, 1]. Therefore, withpgn > min,

r{ <ry <1 (128)
By repeating the same process, we finally obtain

r{<ry<rg <o <1
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Next showlim r;? = 1. Letlim; . r;? = ro. Then,ro, satisfies

Too i= arg Tgég] Yoo (T)

Yoo (r) = YIS _18(1 — )5 +45(1 +7)*(1 — )3 +5(1 — r)7(1 +7) 72 (129)
¢énoin = woo (Too) .

Note that ifpi% > 0, 1. (r) has also only one local minimum in€ (0, 1). On the other hand, when
Ymin = (), it is also known that).(r) is a decreasing function in€ [0, 1] from the proof of Lemma A.1

andmin, 1 (r) = Y0 (1). From (129) ) (1) = 2%, and the minimum is attained at= 1. This means

Too = 1 (@ndy it = 0). O

Proof of Lemma 3.2

Consider the subsectiods (S;) andl; 1 (Sj4+1), the general case for (34) (41), and from

ki /d. +d. 2
—Rj

the offsetsh; andh;; such thaty, [gz?l : e(g?)l)} =0andEy,,, {(251 : e(gz?l)] = 0 are given as

2 1

o djt1 — d;
J 3dj +djs1

2
Birq — =
2 s Tlgj+1 3d

1 9 djio — dj+1(131)
i+1 + djyo

2 — —
ki’ kj — kj+1’ kj+1 — 2

On the other hand, the variance is calculated as

VIj {(;51 . e(q&)} = /I: (dﬂ—gdj"‘l + Z>2 (z — hj)Q dz

= A(djs1 — )" + B(dj + dj1)* (dj1 — d5)°, (132)

where ) . .
A=—0 — —— B:= ) 1
T 32_23<0, 3.24>0 (133)

Therefore,

Vi, + Vi, = A(dj —d;)° + B(djy1 + dj)*(djpr — d;)?
+ A(dj2 — djt1)” + B(djyz + djs1)*(djra — djpr)® = Z(dj41).  (134)

FromA < 0 andB > 0 and the symmetric structure &f(d;;;) except for the term¢d; .1 + d;)? and
(dj42 + djt1)?, itis known that?Z(d;1) has its minimum atl, > %. This means/;| > |11, that
is, |.Sj| > |Sj+1|. The same discussion is applicable for arbitrary sectipasd/;, 1, and we can conclude
the statement is true. |

Proof of Lemma 3.3
We show a contradiction of an assumption[¢fZ, Ti = v < oo. Atfirst, define another quantization
J

scheme Q' based ongdt. In this proof, we refer only to the positive section of the reg{ieél K, 0 k] from
the symmetry of the quantization. The partition scheme of Q’ is the same th@b@b@cept for the regions
on ¢; corresponding td; andU32,, 11 I; wherem is an appropriate number. L2k,,, denote the width of
I,,. The scheme Q’ divides the regions @n corresponding td; andJ72,, 1 £; of Qgopt uniformly into
small subsections of a widt2¥k,,, and the remainders. Here Ilg-tandM’ denote the subsections of Q" and
their maximum index respectively. Similar ¥y, [q?l : e(qgl)}, define the total varianceé}, , - [q?l : e(q?l)}

in the region/; with the quantization scheme Q’. Then,

Vi =V (135)
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monotonically increases &g, — 0. On the other hand,

M’ 00
> V= > Vip=1a>0, (136)

and whenmn — oo, a monotonically decreases to 0. From the above two observations, there exists a number
m that satisfies

\ Vh,km >a+ (137)
for somegs > 0. Then, from (136) and (137), we derive

M’ 0

DV +B<Y Vi, (138)

=1 7 =1
For suchm, define

_ (14l ) jem+1 ]
J = (ka + . , (139)

where| - | denotes the width of the subsections. Then, from the assum]ﬂﬁ@pr—lq < o0, there exists\
such that ’
M [e's)
M>m—1+J, Y Vi +8>> V. (140)
j=1 j=1
From (138),
M m-+J
YV 48> Vi +5, (141)
j=1 =1’
and therefore,
M m+J
> Vi > >V (142)
i=1 =t 7
Now define v
A =1 | L]
J = <2km> + < o, , (143)
then,J > J’ and
M m-+J’
2. Vi > ) Vi (144)
j=1 =1’
Note that
M m-+J’
Uni=U 7 (145)
j=1 j=1
andM > m + J'. This means that the number of the quantization levels of Q’ in the subségtion/; is

less than that of @ptv and the variance of the former is also less than that of the latter. This contradicts the

optimality of Qppt-
Proof of Lemma 3.4

U

From Lemma 3.1 and its proof, it is known that whes- oo, andzp;-’“in converge to 1 and 0O, respectively.
Therefore, by employing the Taylor series expansiofiy) can be represented by

min
j—1

Yi(r) =

32

(1—=5(1—7r)+10(1 —7)* =101 — r)3) +45-22(1 — r)> + O((1 — r)})

(146)



nearr = 1 at sufficiently largej. By applying a variable transformatidn— r =: ¢, we obtain

vie) = ¥t (1

ate — 0. Denote the local minimum af;(¢) ase;, thene; should satisfies

— 5e + 106 — 10€3) + 180€® + O(e?) (147)

P (=5 4 20€; — 30€7) + 540€¢; + O(€)) = (148)
From (148), it is easy to verify
1 1/2
6 = (1081/; ) +o<(¢]_1 (149)
On the other hand, from (147" is represented by
i — i (1 — Be; + 10€5 — 10€3) + 180€% + O(e}), (150)
and with (149), we get
min min 1 1/2 min3/2 1 3/2 min3/2 rnln
= 5.3 Fymint 4 o(ymin?), (151)
With the convergenc&;ni’f1 — 0, we derive the statement of the lemma. O
Proof of Lemma 6.1[20]
The diagonal elements & TU are in the form of
w(—k+1) +u?(=k+2) + u?(—=k + N).
From the assumption that every sigmais independent, then,
E[(UT0):| = E [uz(—kﬂ) +u?(—k +2) + -+ u¥(—k + )]
= Z E { —k+3j }
= No—g. (152)
The variance can be calculated as
N
V[(UT0)s| = 3 VIu(-k + j)*] = N, (153)

J=1

On the other hand, the non-diagonal elemétt§U);; (i # j) are in the form of

uw(—k+ Du(=l+1) +u(—k +2)u(-1+2) +

Then, their expectations are given by

E [(UTU)U‘]

m=1
= 0.

—k+m)

Ju(—1+ m)]

33

Efu(=k+ Du(=l+1) +u(—=k +2)u(-1+2) +

u(—k+ N)u(—l+ N), k#1.

u(—k + N)u(—1l+ N)]

(154)



The variance is given by noting thEf(u(k + m)u(l + m)) x (u(k + n)u(l + n))] = 0, evenifu(l+m) =
u(k +n) oru(k +m) = u(l +n).

VU0 = B(=k+ Du(=1+1) +u(—k + 2u(=1+2) + -+ u(—k + N)u(~1 + N))?]
N
= Y Blu(—k+mu(-l+m)?|, k#1
m=1
— No (155)

Here we decompodé™ U as
UTU = (UU — No2I) + No21,

and by employing the norm inequality we obtain
IUTU | > [Nzl = |UTU = Nogd |1 (156)

The value of the first term of the right hand side in (156)Ms?, and in the second term, by employing
Chebyshev’s inequality with (152) and (154), we obtain

T ..
Prob(|(UTU — No21);;| > V[(UW) <r,

r

and
n T ..
Prob| > " [(UTU — Noil); ,/ (T70)al 1)y ——28 ViU U)s]
=1 "
= Prob Z|UTU No2I)| > ﬁ(\/774r n—1a2) < nr.
Jj=1 " ' -
Therefore,
N
Prob(||UTU — No2I||; = maxz (UTU — No21)4| > \/7 (\/ﬁ—l— (n— 1)0’5)) < n’r.
(2 j=1
Noting that
1 1
T -1
10T = ] = AT
ol [[=]
< 1
T 02N — sup, MUTU—0iNDz|’
u Pz ]|
this means
1
Prob( |(UTU) 7Y, > < rn?.
( o2 — /X (i + (n—1)o2)
By denotingp; := rn? for simplicity, we obtain the statement. O

Proof of Theorem 6.1

First evaluate the magnitude bt E. Its 1st elementUT E); is of form

G1(L)e(1) + ¢1(2)e(2) + - -+ + d1(N)e(N).

From the independence éi(i) and (56), the expectation and the variancéléf E), are given as:

E[(0"En] =0, V|0TE):| < NANM - K')~?

34



Then by Chebyshev’s inequality, we obtain

- ArAN
T, >,/ — " )<
Prob(\U Ely > B0 = 1)2> < [,

for a reliability index3,. Combine(UT0U/)~! andU™ E using a norm inequality:
(OO BN < |(OT0) (T B,
and this gives
Prob(|((U"0) ' UTE)| < e1e) > Prob([[(0T0) ™ |y < e and|[(UTE)| < es).

Therefore we prove the statements.
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