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Analysis on Optimal Quantization of Signals for System
Identification and the Effect of Noise∗

Koji Tsumura†and Jan Maciejowski‡

METR 2005–04 January 31, 2005

Abstract: In this paper, we analyse the property of the optimal quantization of signals used for system
identification. We deal with memoryless quantization for output signals and consider to derive optimal
quantization schemes for minimizing the errors of parameter estimation given by least squares method under
a constraint on the number of subsections of the quantized signals or the expectation of the optimal code
length in general resolution case or high resolution case. In the case of general resulution of quantizer and a
kind of uniform distribution of input signals, the optimal quantizer can be given by solving a minimization of
a special 1-dimensional rational function recursively. This quantizer has the property that it is coarse around
the origin of its input and goes to be dense apart from the origin. On the other hand, the optimal quantizer
of high resolution can be given by solving Eular–Lagrange’s equations and the solutions are represented
as a simple function of the distribution density of the regressor vector. We show examples of solutions for
several cases of the distribution density of the regressor vectors and discuss their meanings with respect to
the feasibility of parameter estimations. Moreover, in the case of the constraint of code length, the necessary
information to attain the optimal identification errors is given as a function of the entropy of the regressor
vector.

Keywords: system identification, quantization, least squares method, MA model, entropy

1 Introduction

The recent rapid improvement in the transmission capacity of computer networks makes long-distance auto-
matic control to be more realistic and the necessity of understanding the effects of transmission limitations
on information in control systems has become more widely accepted. In particular, quantization problem of
signals in order to reduce the information of the transmitted signals in control systems has been discussed
actively by several control research groups in the last few years and interesting results have been achieved.

The problem of quantization of signals itself has a long history from the 1940s and one of main themes in
the area of information theory (e.g. see [11]). The purpose of the problem is to attain low distortion between
the original signals and the quantized ones under constraints on the amount of information. Of course, the
situations and the objective for data transmission and for control systems are essentially different and the
necessity of the research for the latter case has been recognized for a long time. However, although we can
see elementary discussion in the control community from the 70s (e.g. see [5]), the strict analysis began at
the late 80s. The main difficulty of quantization problem in control systems should be in their dynamics and
the result by [6, 7] is recognized as a break through, in which papers the behaviour of control systems, and
their stability or state estimation, are analysed in detail. Then, in the last few years, stabilization problems
of quantized systems have been actively investigated for several different situations, e.g., [21, 22, 3, 14, 8,
15, 19]. Among them, a logarithmic quantizer was shown to be coarsest in some sense to attain a kind of
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asymptotic stability [8] and it reveals the difference of importance on signals depending on its magnitudes
and the directions in the signal space from the view point of controlling systems.

With this background, our interests naturally grow into system identification problem; that is, a question:
what quantizer isoptimal for system identification? We expect the answer to this question will clarify
the relationship between system identification and stabilization from the point of view of the information of
signals. However, compared to the research activity in the stabilization or estimation problem, unfortunately,
the quantization problem for system identification [9] has not been adequately considered. From such point
of view, we dealt with this problem.

In this paper, we consider optimal quantization problem of output signals which are used for parameter
estimation. The identified system is a simple SISO MA model in order to reveal the essential property of
the optimal quantization in system identification and assist intuitive understanding of it. Theoptimalitywe
mean in this paper is to minimize the variance of the error of the parameter estimation given by least squares
method under a constraint of the number of quantization steps or the expectation of the code length when
the quantized signals are coded by an optimal coder. We consider this problem for the cases of general
resolution and high resulution of quantization. The difficulty of the problem is in the complex correlation
between the input signals and the quantization errors and managing it is a key for solving the optimization
problem.

In the general resolution case (Section 3), we give the optimal quantizer under a problem settings of a
kind of uniform distribution of input signals. The optimal quantizer is given by solving a minimization of
some special 1-dimensional rational function recursively. The optimal quantization is not uniform and it is
coarse around the origin of the quantized signals and goes to be dense apart from it. This result shows an
opposite property against stabilization given in [8] and reveals a kind of duality of system identification and
stabilization.

In the high resolution case (Section 4), we consider the generalization of the previous results under con-
siderably weak conditions. The straight forward extension of the approach in the previous result is hard to
deal with because of the complexity of the calculation for quantization error. In order to solve this difficulty,
we introduce a key notion; density of the number of the optimally quantized subsections, and by using cal-
culus of variations, analytic solutions are derived under the constraint on the number of quantization steps or
the optimal code length. The solutions are functions of the distribution density of input signals and we can
strictly figure out the profile of the density of the number of quantized subsections. Moreover, these results
suggest several insights on system identification under the condition of finite information. We illustrate such
facts for some cases and discuss on the complexity of the problem of system identification.

In Section 5, we analyse the effect of noise which is added at the input of quantizers. We show that such
noise equivalently twices the magnitude of quantization error compared with the case of noise which is added
at the output of quantizers. Finally, in Section 6, we compare the effect of the resolution of quantizations
and that of the I/O data length. The former is more effective for decreasing quantization error in estimated
system parameters, however, the latter is effective for noise error. This fact shows that there exists a trade-off
between these two errors.

The main purpose of this paper is to reveal the essential properties of the optimal quantization for system
identification, therefore, the argument of this paper is much analytic. Read the followings with this in mind.

In the following of this paper, except for some cases, all the proofs of theorems, lemmas, or propositions
are collected in the appendix for easy understanding of the main theme and the outline of this paper. Refer
them in Appendix A if necessary.

Notations: E[·]: expectation, V[·]: variance,f(x): probability density ofx

2 Preliminaries

The objective of this paper is to show the effect of quantizers of I/O signals for system identification on its
performance in analytic and intuitive form as possible. In general, the quantization error behaves as a random
signal when the quantizer has enough high resolution, and such condition has been often assumed in the
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area of signal processing. However, of course, the quantization error has strong correlation with the original
signal and it should be analyzed strictly, because in system identification, several kinds of correlation are
used for calculating the estimation parameters. Therefore, such assumptions are not appropriate in order to
understand the essence of the quantization probelm and the strict analysis is desirable. On the other hand, we
should also note that it is not easy to derive analytic and intuitive understanding results for general models.

From above observations, in this paper, we deal with the system identification by least square criterion for
a simple discrete time SISO MA model. The plant is:

yo(i) = q(y(i)) + w(i), y(i) = φ(i)θ (1)

φ(i) := [u(i) u(i− 1) · · · u(i− n + 1) ] ,

θ := [ θ1 θ2 · · · θn ]T ,

yo, y, w, u ∈ R, φ ∈ R1×n, θ ∈ Rn×1,

wherew: noise,q: quantizer of the original analogue outputy, yo: observed output,φ: regressor vector,θ:
system parameter,n: dimension of MA model,u: input, i: index of time. The inputu, that is, the associate
regressor vectorφ is a realization of a stochastic process with a joint density functionf(φ1, φ2, . . . , φn) of
φ1, φ2, . . . , φn, whereφi denotes thei-th elements ofφ. The class off(φ1, φ2, . . . , φn) considered in this
paper is explained in later.

We will also discuss a case of noise as

yo(i) = q(y(i) + w(i)) (2)

in Section 5. We refer this case (2) aspre-quantizer noiseand the case (1) aspost-quantizer noise. However,
in order to avoid complicated notations and focus on the effect for system identification by quantization, we
mainly deal with the plant (1) throughout this paper until Section 5.

The quantizerq is a memoryless symmetric type defined by

q(y) := sgn(y)ȳj , y ∈ Sj , ȳj ≥ 0 (3)

S0 := {y = 0} , Sj := {y : dj−1 < y ≤ dj} , j > 0,

Sj := {y : dj−1 ≤ y < dj} , j < 0 (4)

d0 = 0 < d1 < d2 · · · ,
d−1 = −d1, d−2 = −d2, . . . , (5)

where sgn(y)ȳj is the assigned quantized value to the subsectionSj . The quantizerq is symmetrical with
respect to the origin, and hereafter we may omit references on the negative subsectionsS−1, S−2, . . . if they
are obvious from the context.

The estimated parameterθ̂ using the least squares method with an enough length of I/O data set{u(i)}
and{yo(i)} is given by

θ̂ = (UTU)−1UT
(
Y + W

)
, (6)

where

U := [ φ(1)T φ(2)T · · · φ(N)T ]T ,

W := [ w(1) w(2) · · · w(N) ]T ,

Y := [ ȳ(1) ȳ(2) · · · ȳ(N) ]T ,

ȳ(i) := q(y(i)), (7)

andN is the I/O data length. Define the quantization error betweenȳ andy by

e(i) := ȳ(i)− y(i), (8)

then, the estimated parameterθ̂ can be written as

θ̂ = (UTU)−1UT(Uθ + E + W )
= θ + ∆E + ∆W (9)
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E := [ e(1) e(2) · · · e(N) ]T ,

∆E := (UTU)−1UTE,

∆W := (UTU)−1UTW. (10)

This shows that the estimation errorθ̂ − θ can be evaluated from the magnitudes of thequantization error
term∆E and thenoise error term∆W .

The reduction of the noise error term∆W is the main theme of the ordinary system identification and its
characteristics in probabilistic/deterministic sense have been well investigated. On the other hand, although
the quantization error term∆E can be reduced in general when the resolution of quantizer goes to high,
there exists a limitation of the reduction under a constraint of the resolution of quantizer, and we should
designgoodquantizers to reduce∆E.

In general, the objective of designing quantizers in the field of information theory is reducing the dis-
tortion between the original signals and the quantized signals under constraints on the information of the
transmitted signals [1, 13, 10, 2]. The constraint on the information of signals can be given by the number of
the quantization steps or the mean code length of the associated code. The former is called “fixed-rate quan-
tization” and the latter “variable-rate quantization” respectively. On the other hand, the purpose in system
identification should be the reduction of the estimation error and this point is the definitive difference.

A conventional, and reasonable, method to evaluate the noise error term∆W in probabilistic approach is
to show the convergence rate of

N(UTU)−1 N→∞−→ 1
σ2

u

I,
1
N

UTW
N→∞−→ O, (11)

whereσ2
u is the covariance ofu, under an assumption of the mutual independence of the input signalu

and the noisew. This methodology is also basically applicable to the evaluation of∆E in probabilistic
approach. However, different from the case of the noise error term, we should note thatu ande are not
independent in general, and the evaluation ofUTE is much more complicated. Solving this difficulty and
evaluating the magnitude ofUTE are the key technique of this paper.

Useful notions for dealing with the relationship ofu (or φ) ande are subsections and variable transforma-
tion of φ explained as follows. We define subsetsΦj of the regressor vectorφ associated with the subsection
Sj by

Φj := {φ : y = φθ ∈ Sj} . (12)

We also consider the following variable transformation:

y = φθ = φT · T−1θ = φ̃θ̃, θ̃ := T−1θ =
[
θ̃1

O

]
, φ̃ := φT =: [ φ̃1 φ̃2 · · · φ̃n ] (13)

whereT is an orthogonal matrix. Of course suchT always exits for anyθ. Then,Φj is represented as

Φj :=





{
φ : φ̃1θ̃1 ∈ (dj−1, dj ]

}
, j > 0,

{φ = 0} , j = 0,{
φ : φ̃1θ̃1 ∈ [d−j+1, d−j)

}
, j < 0.

(14)

We also define subsections on the space ofφ̃1:

Ij :=





{
φ̃1 : φ̃1θ̃1 ∈ (dj−1, dj ]

}
, j > 0,{

φ̃1 = 0
}

, j = 0,{
φ̃1 : φ̃1θ̃1 ∈ [d−j+1, d−j)

}
, j < 0,

(15)

then, the subsectionsSj , Φj , andIj correspond to each other, and the probability distribution ofy depends
only on that ofφ̃1. Therefore, in order to analyse the probability distribution ofy and the errore, the variable
φ̃1 and its subsectionIj are convenient to deal with.
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The quantization error term∆E andU are also transformed to

∆Ẽ := T−1∆E, Ũ := UT =




φ(1)T
φ(2)T

...
φ(N)T


 (16)

by T and it can be represented as

∆Ẽ = T−1(UTU)−1UTE = (ŨTŨ)−1ŨTE

= (ŨTŨ)−1




∑N
i=1 φ̃1(i)e(i)∑N
i=1 φ̃2(i)e(i)

...∑N
i=1 φ̃k(i)e(i)


 = (ŨTŨ)−1




∑N
i=1 φ̃1(i)(q(φ̃1(i)θ̃1)− φ̃1(i)θ̃1)∑N
i=1 φ̃2(i)(q(φ̃1(i)θ̃1)− φ̃1(i)θ̃1)

...∑N
i=1 φ̃k(i)(q(φ̃1(i)θ̃1)− φ̃1(i)θ̃1)


 . (17)

Note that‖∆Ẽ‖2 = ‖∆E‖2 sinceT is an orthogonal matrix.

In Section 3 and Section 4, which are main results of this paper, we assume the followings onf(φ) or
f(φ̃).

Assumptions in Section 3:

3-1) f(φ̃) is a uniform distribution

Assumptions in Section 4:

4-1) u(i) = φ1(i), i = . . . , 1, 2, . . . are mutually independent

4-2) the resolution of quantizer is enough high

4-3) f(φ̃) is symmetric about each̃φi-axis

4-4) f(φ̃) satisfies:

f(φ̃) =
n∏

i=1

(Hi + Ki(φ̃i − φ̃io) + O((φ̃i − φ̃io)2)) (18)

|Hi|, |Ki| < ∞
in the neighborhood of an arbitrarỹφo = [φ̃1o φ̃2o · · · φ̃no] ∈ {φ̃}.

4-5)

d(σ2(φ̃1)f(φ̃1))
dφ̃1

< ∞ (19)

When assumption 3-1) or 4-1) is satisfied,UTU or ŨTŨ converges toNI, then it is reasonable to find an
optimal quantizer which minimizesV

[
UTE

]
or V

[
ŨTE

]
under constraints on the resolution of quantizer,

bias-free of the quantization error term such asE
[
UTE

]
= 0 or E

[
ŨTE

]
= 0 and so on. In order to

evaluate these quantities, we prepare further notations. The marginal distribution densityf(φ̃1) on the space
of φ̃1 is defined by

f(φ̃1) :=
∫

f([ φ̃1 φ̃2 · · · φ̃n ])dφ̃2 · · · dφ̃n.

The notationsf(φ̃i, φ̃j), f(φ̃i, φ̃j , φ̃k), . . . are also defined similarly. Then, a bias-free conditionE
[
UTE

]
=

0, that is

E

[
N∑

i=1

φk(i)e(i)

]
= 0
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for eachk, can be written as

E

[
N∑

i=1

φ̃k(i)e(i)

]
= NE

[
φ̃k · e(φ̃1)

]
= N

∫
φ̃ke(φ̃1)f(φ̃1, φ̃k)dφ̃1dφ̃k = 0 (20)

for eachk 6= 1 and

E

[
N∑

i=1

φ̃1(i)e(i)

]
= NE

[
φ̃1 · e(φ̃1)

]
= N

∫
φ̃1e(φ̃1)f(φ̃1)dφ̃1 = 0 (21)

for k = 1 because of̃UTE = TTUTE, whereT is orthogonal, that is, nonsingular. Of course, another
bias-free conditionE

[
ŨTE

]
= 0 is directly reduced to (20) and (21). If assumption 3-1) or 4-3) is satisfied,

∫
φ̃kf(φ̃1, φ̃k)dφ̃k = 0 (22)

is held fork 6= 1, then, (20) is automatically satisfied. Therefore, the bias-free condition is reduced to (21)
under such assumption. A sufficient condition of (21) is

EIj

[
φ̃1e(φ̃1)

]
:=

∫

φ̃1∈Ij

φ̃1e(φ̃1)f(φ̃1)dφ̃1 = 0, ∀j. (23)

This condition shows a properness ofyj which represents the subsectionIj and it is enough reasonable to
be satisfied.

On the other hand, the objective variance V[UTE] (= V[ŨTE]) is written as

V[UTE](= V[ŨTE]) =
n∑

k=1

E




(
N∑

i=1

φ̃k(i)e(i)

)2

 =

n∑

k=1

E




(
N∑

i=1

φ̃k(i)e(φ̃1(i))

)2

 . (24)

With respect to this formula, we can derive the following two key lemmas.

Lemma 2.1 Under a condition:
∫

φ̃hf(φ̃1, . . . , φ̃h, . . . , φ̃n)dφ̃h = 0, (25)

E




(
N∑

i=1

φ̃k(i)e(φ̃1(i))

)2

 =





N
∫

φ̃2
1e

2(φ̃1)f(φ̃1)dφ̃1 for k = 1

N
∫

φ̃2
ke

2(φ̃1)f(φ̃1, φ̃k)dφ̃1dφ̃k for k 6= 1
(26)

is satisfied.

The proof of this lemma is given in Appendix A as mentioned in Section 1. Note that the condition in the
lemma is satisfied under the assumption 3-1).

Lemma 2.2 Assume thatf(φ̃) satisfies (18), then,

E




(
N∑

i=1

φ̃k(i)e(i)

)2

 −→

∆ymax→0
NE

[
φ̃2

k(i)e
2(i)

]
, (27)

where∆ymax is the maximum width of the subsectionsSj of quantizer defined by∆ymax := maxj |dj+1 −
dj |.
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This lemma is for high resolution case discussed in Section 4. See Appendix A for the proof.

When Lemma 2.1 is applicable, (24) is represented by

V
[
UTE

]
= N

∫ (
n∑

k=1

φ̃2
k

)
e2(φ̃1)f(φ̃1, . . . , φ̃n)dφ̃1 · · · dφ̃n

= N

∫
σ2(φ̃1)e2(φ̃1)f(φ̃1)dφ̃1, (28)

whereσ(φ̃1) is a kind of variance off(φ̃) at φ̃1 defined by

σ(φ̃1) :=

(
f(φ̃1)−1

∫ (
n∑

k=1

φ̃2
k

)
f(φ̃1, . . . , φ̃n)dφ̃2 · · · dφ̃n

) 1
2

. (29)

And also in the case that Lemma 2.2 is applicable, we get

V
[
UTE

] (
= V

[
ŨTE

])
−→

∆ymax→0
N

∫
σ2(φ̃1)e(φ̃1)f(φ̃1)dφ̃1. (30)

Another possible objective function isV
[
(ŨTE)1

]
, that is the variance of the first element ofŨTE, which

focuses on the quantization error in the unique nonzero elementθ̃1 of θ̃. Under the condition (21), this
formula is also represented by

V
[
(ŨTE)1

]
= V

[
φ̃1e(φ̃1)

]
= N

∫
φ̃2

1e
2(φ̃1)f(φ̃1)dφ̃1. (31)

Based on these observations, the original optimization problem is reduced to the feasible forms and the
main result in the following of this paper is summarized as deriving the optimal quantizer for minimizing:

1) (31) whenφ̃ satisfies assumption 3-1) (Section 3,low resolution case),

2) (28) whenφ satisfies assumptions 4-1)∼ 4-5) (Section 4,high resolution case).

Moreover, although the above two cases of problem have enough meanings for themselves, they also have a
deep connection which is explained in Section 4.

3 Low Resolution Quantization

3.1 Explicit optimal quantization scheme for low resolution case

At first we state the problem formulation dealt with in this section. The next is assumed, which corresponds
to that of 3-1) in Section 2.

Assumption 3.1 φ̃1 obeys a uniform distribution in[−κ, κ] (this meansy obeys a uniform distribution in
[−θ̃1κ, θ̃1κ] =: [−κ′, κ′]).

As mentioned before, the subject of this paper is mainly for the analysis in order to understand the essential
properties of the optimal quantizers. Therefore, although some assumptions do not consist with the original
objective of system identification, keep this intention in mind in reading the following of this paper.

Assumption 3.1 automatically guarantees the condition (22) and (26) in Lemma 2.1 (i.e., (31)). Then, the
following problem is considered.

7



Problem 3.1 Let Mo be the number of the quantized subsections of[−κ, κ]. For the system (1) with As-

sumption 3.1 and a fixedMo, find a quantizerq that minimizes the variance of (31) such thatEIj

[
φ̃1(i) · e(i)

]
=

0 (∀j) for the even numberMo or EI−1+I1

[
φ̃1(i) · e(i)

]
= 0

(
:=

∫
φ̃1(i)∈I−1∪I1

φ̃1 · e(φ̃1)f(φ̃1)dφ̃1

)
and

EIj

[
φ̃1(i) · e(i)

]
= 0 (otherj) for the odd numberMo.

This problem is not only for the case that the identified systems have such special conditions. As we
will explain the reasons in Note 4.3 is Section 4, this problem is approximately applicable to the optimal
quantization in a local area around the origin of the regressor vector in general.

As described in Section 2, the quantization scheme of[−θ̃1κ, θ̃1κ] = [−κ′, κ′] on y is essentially equal
to that of[−κ, κ] on φ̃1 and it is completely defined by the setting of the subsectionsI−M , . . . , I−2, I−1,
I1, I2, . . . , IM , where

M :=





1
2Mo for evenMo

1
2(Mo + 1) for oddMo

, (32)

and the assigned quantized values

q(y), y ∈ Sj

= q(φ̃1), φ̃1 ∈ Ij

= ȳj (33)

for each subsectionIj (see Fig. 1). Therefore, we should find an optimalI−M , . . . , IM andȳ−M , . . . , ȳM

for a fixedM . This is a minimization problem ofV
[
φ̃1e(φ̃1)

]
of an about (2M × 2)-variables and it seems

to be a considerably hard problem in the sense of computation complexity. However we can show that this
problem is reduced to be a feasible one by using the following calculations.

y (= φ̃1θ̃1)
d1 d2 dj−1 dj dj+1

S−1

l
I−1

S1

l
I1

S2

l
I2

· · · · · ·

Sj

l
Ij

Sj+1

l
Ij+1

q(y)

ȳ1

ȳ2

ȳj

ȳj+1

O

q(y) = y

Fig. 1 The quantization scheme ofq

Hereafter, we consider the case of evenMo. The case of oddMo is almost similar to the even case and
the differences are explained in Note 3.1.

First, we considerS1 = (0, d1] (equivalentlyI1 on φ̃1) andS2 = (d1, d2] (equivalentlyI2 on φ̃1) where
their boundariesd1, d2 have a relation:

d1 = r1d2, r1 ∈ [0, 1], (34)
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with an appropriate ratior1. The quantized values̄y1 andȳ2 for the subsectionsS1 on y (or I1 on φ̃1) and
S2 (or I2) satisfying

EIj

[
φ̃1 · e(φ̃1)

]
= 0, j = 1, 2

are given as follows. Let̄y1 = d1
2 + h1, whereh1 is an offset, then,

EI1

[
φ̃1 · e(φ̃1)

]
=

∫ k1

−k1

(
r1d2

2
+ z

)
(z − h1)

1
2κ′

dz =
1

2κ′

(
2
3
k3

1 − r1d2h1k1

)
, k1 :=

d1

2
,

and therefore,

h1 =
2
3

k2
1

r1d2
=

1
6
r1d2. (35)

Similarly, let ȳ2 := (1+r1)d2

2 + h2, whereh2 is the offset, then,

EI2

[
φ̃1 · e(φ̃1)

]
=

∫ k2

−k2

(
d2 + r1d2

2
+ z

)
(z − h2)

1
2κ′

dz =
1

2κ′

(
2
3
k3

2 − (d2 + r1d2)h2k2

)
,

k2 :=
d2(1− r1)

2
,

and therefore,

h2 =
2
3
k2

2

1
d2(1 + r1)

=
1
6

(1− r1)2

(1 + r1)
d2. (36)

Note that in order to make the expectationsEI1

[
φ̃1 · e(φ̃1)

]
andEI2

[
φ̃1 · e(φ̃1)

]
zero, the assigned quan-

tized values̄y1 andȳ2 must be larger than the central values of each subsectionS1 ony (or I1 on φ̃1) andS2

(or I2). Hereafter in this section, the quantized valuesȳi are selected as such values.

By using thesēy1 andȳ2, the variances of̃φ1e(φ̃1) in each subsection also can be calculated as follows.

Let VIj

[
φ̃1 · e(φ̃1)

]
denote the quantity

VIj

[
φ̃1 · e(φ̃1)

]
:=

∫

Ij

(
φ̃1 · e(φ̃1)− EIj

[
φ̃1 · e(φ̃1)

])2
f(φ̃1)dφ̃1,

then, for the evenMo,

VI1

[
φ̃1 · e(φ̃1)

]
=

∫ k1

−k1

(
r1d2

2
+ z

)2

(z − h1)2
1

2κ′
dz =

1
2160

1
2κ′

d5
2

(
32r5

1

)

(note thatκ′ = θ̃1κ), and similarly

VI2

[
φ̃1 · e(φ̃1)

]
=

∫ k2

−k2

(
d2(1 + r1)

2
+ z

)2

(z − h2)2
1

2κ′
dz

=
1

2160
1

2κ′
d5

2

{
−18(1− r1)5 + 45(1 + r1)2(1− r1)3 + 5(1− r1)7(1 + r1)−2

}
.

Therefore, the sum of VI1
[
φ̃1 · e(φ̃1)

]
and VI2

[
φ̃1 · e(φ̃1)

]
is

VI1

[
φ̃1 · e(φ̃1)

]
+ VI2

[
φ̃1 · e(φ̃1)

]
=

1
2160

1
2κ′

d5
2ψ1(r1)

ψ1(r1) := 32r5
1 − 18(1− r1)5 + 45(1 + r1)2(1− r1)3 + 5(1− r1)7(1 + r1)−2. (37)

The minimizerro
1 of this sum is defined by

ro
1 = arg min

r1∈[0,1]
ψ1(r1)

ψmin
1 := ψ1(ro

1),

9



and
(
VI1

[
φ̃1 · e(φ̃1)

]
+ VI2

[
φ̃1 · e(φ̃1)

])∣∣∣
r1=ro

1

=
1

2160
1

2κ′
d5

2ψ
min
1 . (38)

Note that the optimalro
1 is independent of the value ofd2, which is the upper boundary ofS2.

Next, we consider another subsectionS3 ony (or I3 on φ̃1) together withS1 (or I1), S−1 (or I−1) andS2

(or I2). Suppose the relation betweend2 andd3 is:

d2 = r2d3, (39)

wherer2 is also an appropriate number in[0, 1]. Similar to the case ofS1, S−1 andS2, the offseth3 of ȳ3

for the subsectionS3 on y (or I3 on φ̃1) satisfyingEI3

[
φ̃1 · e(φ̃1)

]
= 0 and the variance VI3

[
φ̃1 · e(φ̃1)

]

can be determined as follows:

h3 =
2
3
k2

3

1
d3(1 + r2)

=
1
6

(1− r2)2

(1 + r2)
d3, k3 :=

d3(1− r2)
2

(40)

VI3

[
φ̃1 · e(φ̃1)

]
=

∫ k3

−k3

(
d3(1 + r2)

2
+ z

)2

(z − h3)2
1

2κ′
dz

=
1

2160
1

2κ′
d5

3

{
−18(1− r2)5 + 45(1 + r2)2(1− r2)3 + 5(1− r2)7(1 + r2)−2

}

Therefore, the optimalro
2 that minimizes VI1

[
φ̃1 · e(φ̃1)

]
+ VI2

[
φ̃1 · e(φ̃1)

]
+ VI3

[
φ̃1 · e(φ̃1)

]
is given by

solving the following minimization problem.

ro
2 := arg min

r2

(
VI1

[
φ̃1 · e(φ̃1)

]
+ VI2

[
φ̃1 · e(φ̃1)

]
+ VI3

[
φ̃1 · e(φ̃1)

])

= arg min
r2

1
2160

1
2κ′

d5
3ψ2(r2)

ψ2(r2) := ψmin
1 r5

2 − 18(1− r2)5 + 45(1 + r2)2(1− r2)3 + 5(1− r2)7(1 + r2)−2. (41)

Note 3.1 In the case of oddMo, the quantized values̄y1, ȳ2 andȳ3 for the subsectionS−1, S1, S2 andS3

ony (correspondinglyI−1, I1, I2 andI3 on φ̃1) should satisfy

EI1+I−1

[
φ̃1 · e(φ̃1)

]
= 0, EI2

[
φ̃1 · e(φ̃1)

]
= 0, EI3

[
φ̃1 · e(φ̃1)

]
= 0.

Therefore, from the symmetry ofS1 andS−1, ȳ1 = 0. The quantized values̄y2 andȳ3 are given as similar
to the even case and

ro
1 := arg min

r1

(
1
2

VI1+I−1

[
φ̃1 · e(φ̃1)

]
+ VI2

[
φ̃1 · e(φ̃1)

])

:= arg min
r1

1
2160

1
2κ′

d5
2ψ1(r1)

ψ1(r1) := 432r5
1 − 18(1− r1)5 + 45(1 + r1)2(1− r1)3 + 5(1− r1)7(1 + r1)−2,

ro
2 := arg min

r2

(
1
2

VI1+I−1

[
φ̃1 · e(φ̃1)

]
+ VI2

[
φ̃1 · e(φ̃1)

]
+ VI3

[
φ̃1 · e(φ̃1)

])

= arg min
r2

1
2160

1
2κ′

d5
3ψ2(r2)

ψ2(r2) := ψmin
1 r5

2 − 18(1− r2)5 + 45(1 + r2)2(1− r2)3 + 5(1− r2)7(1 + r2)−2.

Note that the difference on the formulas between the even case and the odd case is only the coefficient ofr5
1

in ψ1(r1).

By repeating the above process, we obtain the following result.
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Theorem 3.1 The optimal ratiosro
j for Problem 3.1 are given by solving the following optimization problem

iteratively.

ro
j := arg min

rj∈[0, 1]
ψj(rj) (42)

ψj(rj) := ψmin
j−1r

5
j − 18(1− rj)5 + 45(1 + rj)2(1− rj)3 + 5(1− rj)7(1 + rj)−2 (43)

ψmin
j := ψj(ro

j ) (44)

ψmin
0 :=

{
32 for even Mo

432 for odd Mo
(45)

The optimal value of the variance is given by

VM

[
φ̃1 · e(φ̃1)

]
:=





M∑
j=−M

VIj

[
φ̃1 · e(φ̃1)

]
for even Mo

VI1+I−1

[
φ̃1 · e(φ̃1)

]
+

M∑
j=−M, j 6=±1

VIj

[
φ̃1 · e(φ̃1)

]
for odd Mo

(46)

=
1

2160
κ′4ψmin

M−1 =
1

2160
θ̃4
1κ

4ψmin
M−1. (47)

We call this optimal quantization scheme Qopt hereafter.

Note 3.2 The original minimization problem of an about(2M × 2)-variables function V
[
φ̃1 · e(φ̃1)

]
can

be reduced to a recursive minimization problem of an only 1-variable rational function. Moreover, from
Lemma A.1 in Appendix A, the local minimum ofψj(rj) in rj ∈ (0, 1) is unique, therefore, finding the
minimizer does not require high complexity of calculation.

Every ratioro
j can be explicitly given by (42)∼ (45) iteratively, however, understanding the properties of

ro
j is not straightforward from (42)∼ (45) directly. On the asymptotic characteristics of the optimal ratios

ro
j (j = 1, 2, . . .) and the related quantities, we can derive the following series of Lemma 3.1∼ 3.4. Their

proofs are collected in Appendix A.

Lemma 3.1

ro
j < ro

j+1, ∀j > 0 (48)

ro
j → 1, j →∞ (49)

Lemma 3.2

|Sj | > |Sj+1|, |Ij | > |Ij+1|, ∀j > 0, (50)

where| · | denotes the width of the subsection.

Lemma 3.2 shows that the optimal quantization scheme Qopt has the property that it is coarse around the
origin of y and becomes dense wherey goes to the boundaries of[−κ′, κ′]. This property is, in some sense,
a dual to the result of the quantization problem for stabilization by [8], that is, the coarsest quantization
scheme for stabilization is dense around the origin and becomes coarse at a distance from the origin. These
observations suggest that there seems to exist a trade-off between parameter estimation and stabilization in
quantization scheme for adaptive type control systems.

Next, consider the unboundedness of
∏∞

j=1
1
ro
j
. If it is bounded and

∏∞
j=1

1
ro
j

= γ < ∞, then this causes

a contradiction of the optimality of Qopt, that is, when a region[−γ, γ] of φ̃1 is quantized, the width of
I1, for example, is never smaller than 1 even if the number of quantization levels increases to infinity. Of
course, this is not true and

∏∞
j=1

1
ro
j

is therefore unbounded. The next lemma strictly shows this fact. See

Appendix A for the proof.
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Lemma 3.3 ∞∏

j=1

1
ro
j

= ∞ (51)

From Lemma 3.1 to Lemma 3.3, we know the outline of the quantization of the region[−κ′, κ′]. Next,

consider the evaluation of the magnitude of V
[
φ̃1 · e(φ̃1)

]
with respect to the number of the quantization

levelsM , and the following lemma shows an asymptotic characteristics ofψmin
M .

Lemma 3.4
ψmin

M → Ψb
a(M), M →∞ (52)

wherea = −5 · 3− 5
2 and b = 3

2 , andΨb
a(m) is a function ofm defined as the solution of the following

recurrence formula with an appropriate initial numberψ(0) = K.

ψ̂(m)− ψ̂(m− 1) = aψ̂b(m− 1) (53)

By approximating the difference equation (53) (or (151) in Appendix A) with a differential equation

dψ̃(m)
dm

= (a + ν)ψ̃b(m) ≥ aψ̃b(m) + o(ψ̃b(m)), (54)

whereν > 0 is an appropriate constant number, then, we obtain

ψ̃(m) = {(−b + 1)(a + ν)m + K} 1
−b+1 (55)

for an appropriate constantK. From (47) and the convexity of the function (55), the variance VM [φ̃1 ·e(φ̃1)]
at sufficiently largeM satisfies

VM

[
φ̃1 · e(φ̃1)

]
≤ 1

2160
κ4((−3/2 + 1)((−5 · 3− 5

2 + ν)(M − 1) + K))
1

−3/2+1

= Aκ4(M −K ′)−2

A :=
1

540

(
5 · 3− 5

2 − ν
)−2

K ′ := (5 · 3− 5
2 − ν)−1K. (56)

This (56) shows a relation between the optimal variance and the number of quantization levels. In the
following section this result is used to evaluate the magnitude of∆E.

3.2 Numerical simulation

In this subsection, we demonstrate the characteristics of the optimal quantizater by using simple numerical
examples.

At first generate 10000 sets of I/O data for the system (1) withθ = 1 andw = 0; the 1st order MA model
and noise-free case, whereu(i) (= φ̃1(i)) is an independent random noise of uniform distribution in[−4, 4].
Show the histogram ofu = φ̃1 in Fig. 2.
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Fig. 2 Histogram of input datau = φ̃1

Next quantize the output datay with the optimal quantizers in Theorem 3.1 and uniform quantizers for
comparison under the constraint ofM = 5 (Mo = 9), M = 10 (Mo = 19), andM = 50 (Mo = 99).
Fig. 3, 5, and 7 show the step functions of the optimal quantizers forM = 5, M = 10, andM = 50
respectively and Fig. 4, 6, and 8 show the corresponding step functions of the uniform quantizers. Fig. 3, 5,
and 7 show the property of the optimal quantizers, that is, it is coarse around the origin and goes to be dense
apart from the origin. Then, calculate the bias term ave.φ̃1 · e = 1

10000

∑10000
i=1 φ̃1(i) · e(i), its variance ave.

φ̃2
1 · e2 = 1

10000

∑10000
i=1 φ̃2

1(i) · e2(i), and the quantization error term1
10000(UTU)−1UTE by usingu = φ̃1

and the known quantization errore betweeny and the calculated̄y. Table 1, 2, and 3 show the summary
of the results. From Table 1, 2, and 3, the optimal quantizers which minimizeE

[
φ̃2

1 · e2
]

attain lesser ave.

φ̃2
1 · e2 = 1

10000

∑10000
i=1 φ̃2

1(i) · e2(i) than those of the uniform quantizers and consequently attain lesser
|∆E|.
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Fig. 3 Optimal quantization scheme Qopt for M = 5
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Fig. 4 Uniform quantization scheme forM = 5

Table. 1 The bias, variance, and quantization error forM = 5

Qopt uniform

ave.φ̃1 · e 6.61e-004 -4.91e-002

ave.φ̃2
1 · e2 1.79e-001 2.89e-001

|∆E| 1.18e-004 9.07e-003
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Fig. 5 Optimal quantization scheme Qopt for M = 10
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Fig. 6 Uniform quantization scheme forM = 10

Table. 2 The bias, variance, and quantization error forM = 10

optimal uniform

ave.φ̃1 · e 1.19e-004 -1.17e-002

ave.φ̃2
1 · e2 4.54e-002 7.03e-002

|∆E| 2.36e-005 2.16e-003
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Fig. 7 Optimal quantization scheme Qopt for M = 50
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Fig. 8 Uniform quantization scheme forM = 50

Table. 3 The bias, variance, and quantization error forM = 50

optimal uniform

ave.φ̃1 · e -8.24e-005 -8.90e-004

ave.φ̃2
1 · e2 1.88e-003 2.90e-003

|∆E| 1.68e-005 1.64e-004
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4 High Resolution Quantization

In Section 3, we gave an optimal quantizer regardless of its resolution, however, under strong assumptions
on the distribution densityf(φ) or f(φ̃). On the other hand, in this section we give optimal quantizers for
general distribution densitiesf(φ) where quantizers are assumed to be in high resolution. Here we formally
state the assumptions of this section,

Assumption 4.1 The inputu, the distribution densityf(φ̃1) and the quantizer satisfy the assumptions 4-1)
∼ 4-5).

At first, the assumption 4-1) gives the reasonability of V[UTE] as the minimized function. With the as-
sumptions 4-2) and 4-3), the bias-free condition E[UTE] or E[ŨTE] is asymptotically satisfied when the
widths of the quantization steps go to 0. Moreover, Lemma 2.2 is derived from the assumption 4-4) and it
shows that the variance V[UTE] (= V[ŨTE]), which is minimized, can be approximated by (28) in high
resolution case. Therefore, the highlight of the problem is in the calculation of (28) for generalf(φ) and
finding its minimizer.

A key idea to solve the problem is introducing the following quantity on the distribution of quantization
subsections, which is a reasonable notion under assumption 4-2) in Section 2.

Definition 4.1 The quantityg(φ̃1) which satisfies

θ̃1g(φ̃1)dφ̃1 = number of quantized subsections ind(θ̃1φ̃1) (= θ̃1dφ̃1) (57)

is called distribution density of the number of quantized subsections.

This quantity is the same introduced in [1, 13] and from this definition,g(φ̃1)−1 represents the width of the
quantization step at̃θ1φ̃1.

In Section 3 for the bias-free condition, the quantized value for each subsection is strictly assigned to
satisfy that the expectation of the quantization error is zero in each subsection. Although such consideration
is indispensable in low resolution case of the quantization, however, the bias-free is asymptotically satisfied
in high resolution case and the assignment of the quantized valueȳj is not critical problem. In particular, at
the asymptotic situation of|Ij | → 0, the middle point of each subsection is reasonable to be assigned as the
quantized value. Therefore, we fix such quantized values in the following of this section.

Then, we assume the following.

Assumption 4.2 The densityg(φ̃1) satisfies:

dg(φ̃1)−2

dφ̃1

< ∞. (58)

With this “smoothness” of the densityg(φ̃1) and that off(φ̃1), which is given by the assumption 4-5), we
can select the mean valueg−1

j ∼ g(φ̃1)−1 for the subsectionIj and then, we definefj ∼ f(φ̃1) in φ̃1 ∈ Ij

which satisfies the next.
pj :=

∫

Ij

f(φ̃1)dφ̃1 =: fig
−1
i

Moreover, with the varianceσ(φ̃1) of f(φ̃) at φ̃1 defined in (29), the assumption 4-5), Assumption 4.2, and
with ∆φ̃ := maxj φ̃−1

1 |dj+1 − dj |, we can derive the followings by direct calculations:

∫ (
n∑

k=1

φ̃2
k

)
e2(φ̃1)f(φ̃1, . . . , φ̃n)dφ̃1 · · · dφ̃n

=
∫

σ2(φ̃1)e2(φ̃1)f(φ̃1)dφ̃1
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=
∑

j

∫

Ij

σ2(φ̃1) · e2(φ̃1)f(φ̃1)dφ̃1

=
∑

j

∫ φ̃1j+
1
2
g−1

j

φ̃1j− 1
2
g−1

j

(ȳj − x)2 · σ2(x)f(x)dx + O(∆φ̃3)

=
∑

j

∫ φ̃1j+
1
2
g−1

j

φ̃1j− 1
2
g−1

j

(θ̃2
1φ̃1j − x)2σ2(φ̃1j)fjdx + O(∆φ̃3)

= θ̃2
1

∑

j

1
12

g−3
j σ2(φ̃1j)fj + O(∆φ̃3)

= θ̃2
1

∑

j

∫ φ̃1j+
1
2
g−1

j

φ̃1j− 1
2
g−1

j

1
12

g−2
j σ2(φ̃1j)fjdx + O(∆φ̃3)

= θ̃2
1

∑

i

∫ φ̃1j+
1
2
g−1

j

φ̃1j− 1
2
g−1

j

1
12

g(φ̃1)−2σ2(φ̃1)f(φ̃1)dφ̃1 + O(∆φ̃3)

= θ̃2
1

∫ 1
12

g(φ̃1)−2σ2(φ̃1)f(φ̃1)dφ̃1 + O(∆φ̃3), (59)

whereφ̃1j is the assigned valueIj satisfyingφ̃1j ∈ Ij . This says that

θ̃2
1

∫ 1
12

g(φ̃1)−2σ2(φ̃1)f(φ̃1)dφ̃1 (60)

is an objective function when the assumption 4-2) is satisfied.

In the following we give the optimal quantizers, which minimize (60), under a constraint of the number of
quantization steps (Section 4.1) or of the expectation of the code length where the quantized data is optimally
encoded (Section 4.2). The former case is referred as “fixed-rate quantization” because it is identical to a
“fixed-code length” case, on the other hand, the latter case is referred as “variable-rate quantization” and in
fact the code length is not fixed.

4.1 Fixed-rate Quantization

From the above observations, the original optimization problem of (28) (i.e. (60)) can be replaced by the
following atN →∞ and high resolution case:

Problem 4.1

gf(φ̃1) := arg min
g

∫
F(g(φ̃1))dφ̃1 (61)

s.t.
∫ φ̃max

1

φ̃min
1

g(φ̃1)dφ̃1 = M, (62)

where

F(g(φ̃1)) :=
1
12

θ̃2
1g(φ̃1)

−2
σ2(φ̃1)f(φ̃1). (63)

We can derive the next result.

Theorem 4.1 The solution of (61) is:

gf(φ̃1) = Kσ
2
3 (φ̃1)f

1
3 (φ̃1) (64)

K = D−1M (65)

D =
∫

σ
2
3 (φ̃1)f

1
3 (φ̃1)dφ̃1. (66)
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Moreover, the optimized value is given by
∫
F(gf(φ̃1)Gf(φ̃1))dφ̃1 =

1
12

θ̃2
1D

3M−2. (67)

Note 4.1 If the corresponding distribution density of the number of quantized subsectionsg(y) on y is
required, from the equivalencey = θ̃1φ̃1 and the corresponding definitions

fy(y(i), y(i + 1), . . . , y(i + n− 1))(↔ f(φ̃)),

f(y)(↔ f(φ̃1)),

σ(y)(↔ σ(φ̃1)),

we can derive the similar results

F(g(y)) =
1
12

g(y)−2σ2(y)f(y)

gf(y) = Kσ
2
3 (y)f

1
3 (y)

K = D−1M

D =
∫

σ
2
3 (y)f

1
3 (y)dy

∫
F(gf(y), Gf(y))dy =

1
12

D3M−2.

Proof of Theorem 4.1By employing the similar technique in [1, 13], the optimal solution can be given.
With the calculus of variations, the following Euler–Lagrange’s equation:

d

dφ̃1

(
∂F
∂g

)
− ∂F

∂G
= 0,

where

G(φ̃1) :=
∫ φ̃1

φ̃min
1

g(φ̃1)dφ̃1,

gives a differential equation:
d

dφ̃1

(
−2g(φ̃1)−3σ2(φ̃1)f(φ̃1)

)
= 0, (68)

and the solution is:
g(φ̃1) = Kσ

2
3 (φ̃1)f

1
3 (φ̃1), K : constant.

The constant numberK is directly calculated by the condition (62), and the value of the objective function
is derived as follows.

∫
F(gf(φ̃1))dφ̃1 =

∫ 1
12

θ̃2
1(Kσ

2
3 (φ̃1)f

1
3 (φ̃1))−2σ2(φ̃1)f(φ̃1)dφ̃1

=
∫ 1

12
θ̃2
1K

−2σ
2
3 (φ̃1)f(φ̃1)

1
3 dφ̃1 =

1
12

θ̃2
1K

−2D

=
1
12

θ̃2
1D

3M−2 (69)

From this result, the asymptotic optimal quantizations at high resolution case are easily calculated analyt-
ically or numerically if the marginal distributionsf(φ̃1) are known.

Note 4.2 Whenf(φ̃) is a multidimensional normal distribution:

f(φ̃1, φ̃2, . . . , φ̃n) =
1

(2π)
n
2 (det Γ)

1
2

exp
(
−1

2
φ̃TΓ−1φ̃

)
,

Γ = diag(σo, σo, . . . , σo),
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then
σ2(φ̃1) = φ̃2

1 + (n− 1)σ2
o .

Moreover consider a case that the ordern of the MA model is enough large, then, in the area atf(φ̃) has an
enough large value (i.e.,̃φ1 is not large), the variation ofσ(φ̃1) is relatively small and

σ(φ̃1) ∼ n
1
2 σo. (70)

Therefore,

D ∼ n
1
3 σ

2
3
o

∫
f

1
3 (φ̃1)dφ̃1

and

gf(φ̃1) ∼ M

(∫
f

1
3 (φ̃1)dφ̃1

)−1

f
1
3 (φ̃1),

∫
F(gf(φ̃1))dφ̃1 ∼ 1

12
θ̃2
1

(∫
f

1
3 (φ̃1)dφ̃1

)3

nσ2
oM

−2

=
1
12

θ̃2
16
√

3πnσ4
oM

−2 ∼ 0.8658πθ̃2
1nσ4

oM
−2. (71)

Note 4.3 Here we consider a optimized function:

E
[
φ̃2

1 · e2
]

=
∫

φ̃2
1e

2(φ̃1)f(φ̃1)dφ̃1.

Then, the optimal quantizationg′f(φ̃1) for the above is also given by

g′f(φ̃1) ∼ Kφ̃
2
3
1 f

1
3 (φ̃1)

K ∼ D−1M

D ∼
∫

R\[−ε, ε]
φ̃

2
3
1 f

1
3 (φ̃1)dφ̃1,

whereg′f(φ̃1) is defined only for the regionR\[−ε, ε], ε ¿ 1, becauseKφ̃
2
3
1 f

1
3 (φ̃1) is too small in[−ε, ε]

to apply the approximation of high resolution case. On the other hand, whenf(φ̃) is normal distribution,
uniform distribution or other probable cases, the marginal densityf(φ̃1) is approximately uniform around
the origin [−ε, ε]. Therefore, the optimal quantizationg′f(φ̃1) in the region[−ε, ε] is similar to the solution
derived in Section 3. From this reason, the result in Section 3 also indispensable for constructing the optimal
quantization in high resolution case.

We illustrategf(φ̃1) for the cases thatf(φ̃1) is uniform distribution, normal distribution and power law as
follows.

In Section 3, we derived the strictly optimal quantization for general resolution case whenf(φ̃1) is uni-
form distribution. Lemma 3.2 shows that the optimal quantization is coarse around the origin ofφ̃1 and
dense near the boundary ofφ̃1. Such property of the optimal quantization can be also seen in Theorem 4.1
(see Fig. 9). Fig. 9 is an example of a simple caseσ(φ̃1) = φ̃1, and the theorem shows that the growing rate
of the resolution against̃φ1 is known whenσ(φ̃1) is given analytically. In this case, the order of the growing

rate isφ̃
2
3
1 , which is unknown from the results of the previous section.

In the case thatf(φ̃1) is normal distribution, the profile of the densityf(φ̃1) around the origin is flat,
therefore, the optimal quantizer must have the similar profile for the case thatφ̃1 is uniform distribution
around the origin. That is, the resolution grows around it, and we can see such profile ofgf(φ̃1) in Fig. 10.
On the other hand, in the area of the tail off(φ̃1), gf(φ̃1) goes down, however, against our intuition, the res-
olution remains high such asgf(3)∼ 0.201∼ 51% of max gf(φ̃1) or gf(4)∼ 0.0758∼ 19% of max gf(φ̃1),
wheref(φ̃1) is enough small.
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Finally we show the case off(φ̃1) ∼ φ̃−2
1 at the tail of the distribution as an example of power law. In this

case,gf is constant and it is marginal for the existence of the solution (see Fig. 11). This result shows the
difficulty of the system identification in an enough accuracy by using finite information on the system when
the tail of the distribution densityf(φ̃1) is heavier thanO(φ̃−2

1 ). In other word, it explains the complexity
of power law from the view point of parameter estimation of system identification.
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Fig. 9: Uniform distribution densityf(φ̃1) of the
regressor (solid line) and the distribution density of
the number of the optimally quantized subsections
gf(φ̃1) (dashed line) in the caseσ(φ̃1) = φ̃1
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Fig. 10: Normal distribution densityf(φ̃1) of the
regressor (solid line) and the distribution density of
the number of the optimally quantized subsections
gf(φ̃1) (dashed line) in the caseσ(φ̃1) = φ̃1
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Fig. 11: Power law (O(φ̃−2
1 )) case off(φ̃1) of the

regressor (solid line) and the distribution density of
the number of the optimally quantized subsections
gf(φ̃1) (dashed line) in the caseσ(φ̃1) = φ̃1

4.2 Variable-rate Quantization

In the previous subsection, we derive an optimal quantizer to minimize the identification error (28) (i.e.
(60)) under constraint of the number of quantization steps, i.e., fixed-rate quantization, in the case of high
resolution. On the other hand, for the purpose to reduce the information of the observed data from the
identified system, it is reasonable to apply variable-rate coding for the quantized signals and measure the
mean code length as the quantity of the information. According to this observation, we consider the mini-
mization problem of (28) (i.e. (60)) under constraint of the expectation of the optimal code length, that is,
variable-rate quantization, in high resolution case.

Let C(·) be an encoder which is a mapping from source alphabets to code alphabets andl(·) the code
length. We regard the quantized outputq(φ̃1) as the corresponding source alphabets, then,l(C(q(φ̃1)))
represents the code length ofq(φ̃1). The expectation of the variable-rate optimal code length for a quantized
signal has relation with the entropy of the source alphabets from the following well-known source coding
theorem.

Proposition 4.1 [16, 4] Letx be source alphabets, then,

E [l(C(x))] ≥ H(x), (72)

whereH(x) represents the entropy ofx.

With this proposition, the optimization problem of the quantizer for the code length is reduced to the mini-
mization problem of (28) (i.e. (60)) under constraint of entropy of the quantized signals.

The basic idea to represent the quantizer in high resolution case is the same of the previous subsection.
That is, under the assumption 4-5) and Assumption 4.2, we can get the asymptotic approximation of the
entropy of the quantized signal:

H(f, g) :=
∑

j

−pj log pj

=
∑

j

−
∫

Ij

f(φ̃1)dφ̃1 log fjg
−1
j

∼
∫
−f(φ̃1) log

(
f(φ̃1)g−1(φ̃1)

)
dφ̃1

= Hd(f) +
∫
−f(φ̃1) log

(
g−1(φ̃1)

)
dφ̃1, (73)
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whereHd(f) :=
∫ −f(φ̃1) log f(φ̃1)dφ̃1. By using this asymptotic approximation of the entropy (73), we

consider the following problem.

gv(φ̃1) := arg min
g

∫
F(g(φ̃1))dφ̃1 (74)

s.t.H(f, g) = log M (75)

Note thatM is an expected number of quantization steps in the sense of (75).

We can derive the next result.

Theorem 4.2 The solution of (74) is:

gv(φ̃1) = KMσ(φ̃1) (76)

K = expL (77)

L := −H(f)−
∫

f log σ(φ̃1)dφ̃1

=
∫

f(φ̃1) log
f(φ̃1)
σ(φ̃1)

dφ̃1 (78)

Moreover, the optimized value is given by
∫
F(gv(φ̃1))dφ̃1 =

1
12

θ̃2
1K

−2M−2. (79)

Proof We employ the similar technique in [10, 2]. Letλ be a Lagrange multiplier and consider the
minimization problem of the following quantity.

∫
F(g(φ̃1))dφ̃1 + λH(f, g)

=
∫ 1

12
θ̃2
1

(
1

g(φ̃1)

)2

σ2(φ̃1)f(φ̃1)− λf(φ̃1) log
(
g−1(φ̃1)

)
dφ̃1 + λH(f)

=
∫ 1

12
θ̃2
1f(φ̃1)

(
g−2(φ̃1)σ2(φ̃1) + λ log g(φ̃1)

)
dφ̃1 + λH(f) (80)

By applying Eular–Lagrange’s differential equation, we get

∂

∂g

(
g−2σ2(φ̃1) + λ log g

)
= −2g−3σ2(φ̃1) + λg−1

= constant. (81)

Fix the constant to be zero, then,

g =
(

2
λ

) 1
2

σ(φ̃1), (82)

and by substituting it forH(f, g), we get

H(f, g) =
∫
−f log g−1fdφ̃1

= log
(

2
λ

) 1
2

+
∫
−f log

f

σ(φ̃1)
dφ̃1

= log M. (83)

Therefore,

(
2
λ

) 1
2

= exp

(∫
f log

f

σ(φ̃1)
dφ̃1 + log M

)
, (84)
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and (76) is derived. By substitutinggv for the objective integral, the following is derived.
∫ 1

12
θ̃2
1g
−2
v (φ̃1)σ2(φ̃1)f(φ̃1)dφ̃1 =

1
12

θ̃2
1

λ

2

=
1
12

θ̃2
1K

−2M−2 (85)

Note 4.4 Interesting fact is that the optimalgv is a simple linear function ofσ(φ̃1). The constant coefficient
is also linear to the number of the quantization stepsM . On the other hand, the convergence rate of the
minimized variance of the quantization error term isM−2 and this fact is common with the fixed-rate
quantization.

Note 4.5 Whenfφ̃ is a multidimensional normal distribution andn is large as discussed in Note 4.2, by
using (70),

L ∼ −H(f)− log(σon
1
2 ),

K ∼ exp(−H(f)) · (σon
1
2 )−1,

and

gv(φ̃1) = KMσ(φ̃1)

∼ M · exp(−H(f)) · (σon
1
2 )−1 · σon

1
2

= M · exp(−H(f))

∫
F(gv(φ̃1))dφ̃1 ∼ 1

12
θ̃2
1 exp(2H(f))nσ2

oM
−2

=
1
12

θ̃2
12eπnσ4

oM
−2 ∼ 0.4533πθ̃2

1nσ4
oM

−2. (86)

The comparison of (71) and (86) tells us that the case of the variable-rate optimal coding attains about a half
magnitude of the variance of the quantization error compared withgf for fixed-rate quantization.

5 Pre-quantizer Noise Case

In Section 2, we showed two forms of exogenius noisew as (1) and (2). In the case of (1), the relationship
between noise error term∆W and the quantization error term∆E is simple since they are independent and
we can simply evaluate their magnitude separately. On the other hand, in the case of the pre-quantizer noise
(2), although which is more realistic case, the effects of noise and quantization on the identification error are
complexly correlated each other and their evaluation is not straightforward. This shows the necessity of the
analysis on the effect of the correlation between noise and quantization on the parameter error for the case
of (2).

For the system (2), we definêy and the erroreq between̂y andy as follows.

ŷ := q(y), eq := ŷ − y (87)

The abovêy andeq can be regarded as an imaginary quantized signal and the corresponding quantization
error. The error betweenyo defined in (1) and̂y:

ew := yo − ŷ (88)

can be regarded as an imaginary noise. Therefore, the observed signalyo can be represented by the imaginary
quantized erroreq and the imaginary noiseew as

yo = y + eq + ew. (89)
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In order to evaluate the essential characteristics of the effect of noise on parameter error, here we deal
with the quantity:

V[φ̃1(eq + ew)] = E[φ̃2
1(e

2
q + e2

w + 2eqew)]. (90)

Note that the imaginary quantization erroreq is definitely given on the event iñφ1, on the other hand, the
imaginary noise errorew is probabilistically realized and its distribution density depends onφ̃1. Therefore,
we get

V
[
φ̃1(eq + ew)

]
= E

[
φ̃2

1(e
2
q + e2

w + 2eqew)
]

= E
[
φ̃2

1

(
e2
q(φ̃1) + Eφ̃1

[
e2
w

]
+ 2eq(φ̃1)Eφ̃1

[ew])
)]

, (91)

where
Eφ̃1

[x] :=
∫

xdP (x|φ̃1) (92)

andP (x|φ̃1) is a conditional probability ofx given φ̃1. We here assume thatw is a random noise obeying
uniform distribution of a section[−ε, ε]. Let ȳj be the middle point ofSj for simplicity and we calculate
hereafter two termsEφ̃1

[e2
w] andEφ̃1

[ew] which depend onew in the right hand side of (91).

Assumeφ̃1(i) is in a subsectionIj of width θ̃−1
1 δ (i.e. y(i) ∈ Sj = (dj−1, dj ] of width δ) and satisfies

θ̃1φ̃1 = dj−1+dj

2 + h. Moreover, assume thatε andδ have a relationε = (1
2 + s)δ wheres is an integer for

simplicity of the following analysis andε is enough small such that|dj − dj−1|, |dj+1 − dj |, |dj+2 − dj+1|,
. . . , can be considered to be a constantδ in the region[ȳj − ε, ȳj + ε]. Then, in the caseh > 0, we can
derive

Eφ̃1

[
e2
w

]

= P (θ̃1φ̃1 + w ∈ Sj−s) · e2
w|θ̃1φ̃1+w∈Sj−s

+ P (θ̃1φ̃1 + w ∈ Sj−(s−1)) · e2
w|θ̃1φ̃1+w∈Sj−(s−1)

+ · · ·
+ P (θ̃1φ̃1 + w ∈ Sj+(s−1)) · e2

w|θ̃1φ̃1+w∈Sj+(s−1)
+ P (θ̃1φ̃1 + w ∈ Sj+s) · e2

w|θ̃1φ̃1+w∈Sj+s

+ P (θ̃1φ̃1 + w ∈ Sj+(s+1)) · e2
w|θ̃1φ̃1+w∈Sj+(s+1)

=
∫ −( 1

2
+s−1)δ

−( 1
2
+s)δ+h

((−s)δ)2
1
2ε

d(θ̃1φ̃1 + w) +
∫ −( 1

2
+s−2)δ

−( 1
2
+s−1)δ

((−(s− 1))δ)2
1
2ε

d(θ̃1φ̃1 + w)

+ · · ·+
∫ ( 1

2
+s−1)δ

( 1
2
+s−2)δ

((s− 1)δ)2
1
2ε

d(θ̃1φ̃1 + w) +
∫ ( 1

2
+s)δ

( 1
2
+s−1)δ

(sδ)2
1
2ε

d(θ̃1φ̃1 + w)

+
∫ ( 1

2
+s+1)δ+h

( 1
2
+s)δ

((s + 1)δ)2
1
2ε

d(θ̃1φ̃1 + w)

=
{
(12 + 22 + · · ·+ s2) · 2δ + ((s + 1)2 − s2) · h

} δ2

2ε
= a(s, δ) + b(δ, h) (93)

where

a(s, δ) :=

{(
1
s

)2

+
(

2
s

)2

+ · · ·+
(

s

s

)2
}

1
s + 1

2

· (sδ)2

b(δ, h) := δ · h.

On the contrary, whenh < 0, we can derive

Eφ̃1

[
e2
w

]
= a(s, δ)− b(δ, h). (94)

For the other terms which depends onew, we can also derive the following forh > 0.

Eφ̃1
[ew]
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= P (θ̃1φ̃1 + w ∈ Sj−s) · ew|θ̃1φ̃1+w∈Sj−s
+ P (θ̃1φ̃1 + w ∈ Sj−(s−1)) · ew|θ̃1φ̃1+w∈Sj−(s−1)

+ · · ·
+ P (θ̃1φ̃1 + w ∈ Sj+(s−1)) · ew|θ̃1φ̃1+w∈Sj+(s−1)

+ P (θ̃1φ̃1 + w ∈ Sj+s) · ew|θ̃1φ̃1+w∈Sj+s

+ P (θ̃1φ̃1 + w ∈ Sj+(s+1)) · ew|θ̃1φ̃1+w∈Sj+(s+1)

=
∫ −( 1

2
+s−1)δ

−( 1
2
+s)δ+h

(−s)δ
1
2ε

d(θ̃1φ̃1 + w) +
∫ −( 1

2
+s−2)δ

−( 1
2
+s−1)δ

(−(s− 1))δ
1
2ε

d(θ̃1φ̃1 + w)

+ · · ·+
∫ ( 1

2
+s−1)δ

( 1
2
+s−2)δ

(s− 1)δ
1
2ε

d(θ̃1φ̃1 + w) +
∫ ( 1

2
+s)δ

( 1
2
+s−1)δ

sδ
1
2ε

d(θ̃1φ̃1 + w)

+
∫ ( 1

2
+s+1)δ+h

( 1
2
+s)δ

(s + 1)δ
1
2ε

d(θ̃1φ̃1 + w)

=
(2s + 1)δ

2ε
h = h (95)

From the above, we can get the following which is used for the calculation of the right hand side of (91).

e2
q + Eφ̃1

[
e2
w

]
+ 2eq · Eφ̃1

[ew] = (−h)2 + a(s, δ) + |b(δ, h)|+ 2(−h) · h = a(s, δ) + |δ · h| − h2 (96)

When the quantization step width is enough small,φ̃1 is almost constant in a quantization subsection, there-
fore, we get an approximation of the following partial integral of (91):

∫ δ′
2

− δ′
2

φ̃2
1

(
a(s, δ) + |δ · θ̃1h

′| − (θ̃1h
′)2

)
f(φ̃1)θ̃1dh′

= φ̃2
1f(φ̃1)θ̃1




[
a(s, δ) · h′ + 1

2
δ · θ̃1h

′2 − 1
3
θ̃2
1h
′3

] δ′
2

0
+

[
a(s, δ) · h′ − 1

2
δ · θ̃1h

′2 − 1
3
θ̃2
1h
′3

]0

− δ′
2




= φ̃2
1f(φ̃1)θ̃1

(
a(s, δ)δ′ +

1
6
θ̃2
1δ
′3

)
, (97)

whereδ′ := θ̃−1
1 δ andh′ := θ̃−1

1 h.

By using the above result, (91) can be approximated as follows.

E
[
φ̃2

1

(
e2
q(φ̃1) + Eφ̃1

[
e2
w

]
+ 2eq(φ̃1)Eφ̃1

[ew])
)]

∼
∑

φ̃2
1f(φ̃1)θ̃1(a(s, δ) +

1
6
θ̃2
1δ
′2)δ′

∼
∫

φ̃2
1f(φ̃1)(a(s, θ̃1g

−1(φ̃1)) +
1
6
θ̃2
1g
−2(φ̃1))dφ̃1(98)

On the other hand, in the noise-free case we get:

E
[
φ̃2

1

(
e2
q(φ̃1)

)]
+ E

[
φ̃2

1w
2
]
'

∑

j

φ̃2
1f(φ̃1)

∫ δ
2

− δ
2

h2dh +
∫

φ̃2
1f(φ̃1)

1
3
ε3dφ̃1 (99)

=
∑

j

φ̃2
1f(φ̃1)(

1
12

δ2)δ +
∫

φ̃2
1f(φ̃1)

1
3
ε3dφ̃1

'
∫

φ̃2
1f(φ̃1)(

1
12

θ̃2
1g
−2(φ̃1))dφ̃1 +

∫
φ̃2

1f(φ̃1)
1
3
ε3dφ̃1. (100)

The results (98) and (100) show the effect of the pre-quantizer noise.

The term
∫

φ̃2
1f(φ̃1)a(s, θ̃1g

−1(φ̃1))dφ̃1 in (98) is an quantized version of the noise error
∫

φ̃2
1f(φ̃1)1

3ε3dφ̃1

in (100) and we can confirm that the former converges to the latter whenδ → 0. The remainders
∫

φ̃2
1f(φ̃1)(1

6 θ̃2
1g
−2(φ̃1))dφ̃1

and
∫

φ̃2
1f(φ̃1)( 1

12 θ̃2
1g
−2(φ̃1))dφ̃1 in (98) and (100) can be regarded as the equivalent quantization error and

the interesting fact that the former is twice of the latter. This suggests that the pre-quantizer noise equiva-
lently increases the magnitude of the imaginary quantization error twice compared with the post-quantizer
noise case.
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6 Resolution of Quantizer and I/O Data Length

By using the results in the previous sections, we evaluate the magnitudes of the error term∆E and∆W
based on the approach in [20] and then, compare the effects of the resolution of quantizers and the I/O data
length. First, we evaluate the magnitude of(UTU)−1.

Lemma 6.1 [20] Suppose thatu(i) are i.i.d. random variables withE[u(i)] = 0, V[u(i)] = σ2
u, V[u2(i)] =

η. Then, for any reliability indexβ1, where1 − β1 > 0, andσ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

)
> 0, the

following inequality is satisfied.
Prob

(
‖(UTU)−1‖1 ≥ ε1

)
≤ β1 (101)

ε1 :=
1

σ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

) (102)

Whenu(i) has a uniform distribution:ui ∈ [−κ, κ], that is,σ2
u = 1

3κ2, η = 4
45κ4, then,

ε1 =
1

κ2
(

1
3N − n

(√
4
45 + 1

3(n− 1)
) √

N
β1

) .

By employing Lemma 6.1, we can evaluate|∆Ẽ1| in the following theorem.

Theorem 6.1 For the system (1) with the optimal quantizerq(y) defined by (3)∼ (5), (42)∼ (45), assume
Assumption 3.1. Then, for reliability indicesβ1, β2, a length of dataN and the number of quantization
levels2M in [−θ̃1κ, θ̃1κ], where1 − β1 − β2 > 0, M À K ′, whereK ′ is defined in (56), andσ2

φ̃1
N −

n
√

N
β1

(√
η + (n− 1)σ2

φ̃1

)
> 0, whereσφ̃1

= 1
3κ2, the following inequality holds.

Prob
(
|∆Ẽ1| ≤ ε1ε2

)
≥ 1− β1 − β2 (103)

ε1 :=
1

σ2
φ̃1

N − n
√

N
β1

(√
η + (n− 1)σ2

φ̃1

) , ε2 :=
A

1
2 κ2

M −K ′

√
nN

β2
(104)

From this theorem, we know that the convergence rate of the error term|∆Ẽ1| has an order ofM−1 at
sufficiently largeM and ofN−1/2. Approximately, the total amount of information on the quantized output
transmitted from identified systems to the observers is aboutN log2 2M using a binary coding. Therefore,
under a constraint of such a total amount of information, a largeM is preferable to largeN . Of course,
this fact is valid only for the error term∆E1 and the situation is different for the noise error term∆W . We
introduce the result for∆W in the following proposition.

Proposition 6.1 [20] Suppose thatu(i) andw(i) are i.i.d. random variables withE[u(i)] = 0, V[u(i)] =
σ2

u, andV[w(i)] = σ2
w, respectively. Then, for reliability indicesβ1, β2, and a length of dataN , where

1− β1 − β2 > 0, andσ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

)
> 0, the following inequality holds.

Prob(‖∆W‖∞ ≤ ε1ε2) ≥ 1− β1 − β2 (105)

ε1 :=
1

σ2
uN − n

√
N
β1

(√
η + (n− 1)σ2

u

) , ε2 := σuσw

√
nN

β2
(106)

By combining Theorem 6.1 and Proposition 6.1, we conclude there exists a trade-off between∆E and∆W
for reducing the total identification error under the constraint of the amount of information transmitted from
the identified systems to the observers.
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7 Conclusion

In this paper, we showed that the optimal quantizers for system identification can be derived analytically and
their basic properties were investigated with a simple MA model. The results of this paper are summarized
as follows:

1) When the regressor vector obeys a kind of uniform distribution, the optimal quantization problem for
system identification is reduced to a recursive minimization of 1-variable rational function (Section 3).

2) This quantizer is coarse around the origin of the output and goes to be dense apart from the origin
(Section 3).

3) General cases of the distribution of regressor vector can be dealt under a condition of high resolution
quantizer by introducing a notion of the density of quantization subsections (Section 4).

4) The above optimization problem is reduced to a minimization of a functional and the solution can be
given by solving Eular–Lagrange’s differential equation (Section 4).

5) The pre-quantizer noise equivalently increases the magnitude of the quantization error twice compared
with the post-quantizer noise.

6) Under a limitation of the total quantity of information of the quantized I/O data, there exists a trade-off
between the magnitudes of the quantization error and noise error.

In this paper, we restrict the model to SISO MA model. For more realistic situation, we should extend
the results to a) ARMA model, or MIMO system, b) quantized input signal, c) on-line system identification,
adaptive control, and these are left to the future work.
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A Appendix

Proposition A.1 (Chebyshev’s inequality (see [12]))Letx be an independent random variable andProb
(
x2

)
=

σ2
x. Then for anyc > 0,

Prob(|x− E[x]| ≥ cσx) ≤ 1
c2

. (107)

Proof of Lemma 2.1

The left hand side of (26) is extended as:

E




(
N∑

i=1

φ̃k(i)e(φ̃1(i))

)2

 = E

[
N∑

i=1

φ̃2
k(i)e

2(φ̃1(i))

]
+ E

[
N∑

i=1

φ̃k(i)e(φ̃1(i))φ̃k(i + 1)e(φ̃1(i + 1))

]
+ · · ·

= NE
[
φ̃2

ke
2(φ̃1)

]
+ 2(N − 1)E

[
φ̃ke(φ̃1)φ̃k+1e(φ̃2)

]
+ · · · . (108)

In (108), terms of the form E
[
φ̃he(φ̃i)φ̃je(φ̃k)

]
appear and in general, when (25) holds, E

[
φ̃he(φ̃i)φ̃je(φ̃k)

]

can be calculated as follows.
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In the case ofh 6= i 6= j 6= k,

E
[
φ̃he(φ̃i)φ̃je(φ̃k)

]
=

∫
φ̃he(φ̃i)φ̃je(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃hdφ̃idφ̃jdφ̃k

=
∫

e(φ̃i)φ̃je(φ̃k)
(∫

φ̃hf(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃h

)
dφ̃idφ̃jdφ̃k

=
∫

e(φ̃i)φ̃je(φ̃k)× 0× dφ̃idφ̃jdφ̃k

= 0, (109)

and also in the case ofh = i 6= j 6= k,

E
[
φ̃he(φ̃i)φ̃je(φ̃k)

]
=

∫
φ̃he(φ̃h)φ̃je(φ̃k)f(φ̃h, φ̃j , φ̃k)dφ̃hdφ̃jdφ̃k

=
∫

φ̃he(φ̃h)e(φ̃k)
(∫

φ̃jf(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃j

)
dφ̃hdφ̃k

=
∫

φ̃he(φ̃h)e(φ̃k)× 0× dφ̃hdφ̃k

= 0. (110)

On the other hand,h = j 6= i 6= k or i = k 6= j 6= k is not the case of (108). Finally in the case ofh = j,
i = k,

E
[
φ̃he(φ̃i)φ̃je(φ̃k)

]
= E

[
φ̃2

he2(φ̃i)
]
. (111)

The other cases are essentially equal to one of the above cases (for example, the caseh = k 6= i 6= j is
equal to the caseh = i 6= j 6= k).

From the above calculations, we get the following:

E




(
N∑

i=1

φ̃k(i)e(φ̃1(i))

)2

 = NE

[
φ̃2

ke
2(φ̃1)

]
. (112)

Proof of Lemma 2.2

The outline of the proof is similar to that of Lemma 2.1 and we evaluate the value of E
[
φ̃he(φ̃i)φ̃je(φ̃k)

]

for each possible case.

Let Ii, Ij , Ih, or Ik be a quantized subsection of the axis ofφ̃i, φ̃j , φ̃h, or φ̃k respectively and define a
subset in the space ofφ :

I :=
{
φ̃i, φ̃j , φ̃h, φ̃k|φ̃i ∈ Ii, φ̃j ∈ Ij , φ̃h ∈ Ih, φ̃k ∈ Ik

}
.

Moreover letφ̃i, φ̃j , φ̃h, and φ̃k be the quantized values which are middle points ofIi, Ij , Ih, andIk

respectively. The partial integral of E
[
φ̃he(φ̃i)φ̃je(φ̃k)

]
restricted to this subset is

∫

I
φ̃he(φ̃i)φ̃je(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃hdφ̃idφ̃jdφ̃k. (113)

Let 2∆φ̃ be the width of the largest side of the possible rectangulars parallelepiped inφ̃, then, in the case of
h 6= i 6= j 6= k,

∫

I
φ̃he(φ̃i)φ̃je(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃hdφ̃idφ̃jdφ̃k

=
∫

φ̃h∈Ih,φ̃j∈Φj

φ̃hφ̃j

(∫

φ̃i∈Ii,φ̃k∈Ik
e(φ̃i)e(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃idφ̃k

)
dφ̃hdφ̃j
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=
∫

φ̃h∈Ih,φ̃j∈Ij
φ̃hφ̃j

(∫

φ̃i∈Ii
(φ̃i − φ̃i)(Hi + Ki(φ̃i − φ̃i) + O((φ̃i − φ̃i)2))dφ̃i

×
∫

φ̃k∈Ik
(φ̃k − φ̃k)(Hk + Kk(φ̃k − φ̃k) + O((φ̃k − φ̃k)2))dφ̃k

)

× (Hh + Kh(φ̃h − φ̃h) + O((φ̃h − φ̃h)2))(Hj + Kj(φ̃j − φ̃j) + O((φ̃j − φ̃j)2))dφ̃hdφ̃j

= φ̃hφ̃jHhHjKiKk
24

32
∆φ̃8 + O(∆φ̃9), (114)

and similarly, in the case ofh = i 6= j = k,

∫

I
φ̃he(φ̃i)φ̃je(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃hdφ̃idφ̃jdφ̃k = φ̃hφ̃iφ̃jφ̃kHiHkKhKj

24

32
∆φ̃8 + O(∆φ̃9). (115)

On the other hand, in the case ofh = i = j = k,
∫

I
φ̃he(φ̃i)φ̃je(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃hdφ̃idφ̃jdφ̃k

=
∫

φ̃i∈Ii,φ̃j∈Ij ,φ̃k∈Ik

(∫

φ̃h∈Ih
φ̃2

he2(φ̃h)(Hh + Kh(φ̃h − φ̃h) + O((φ̃h − φ̃h)2))dφ̃h

)

× (Hi + Ki(φ̃i − φ̃i) + O((φ̃i − φ̃i)2))(Hj + Kj(φ̃j − φ̃j) + O((φ̃j − φ̃j)2))

× (Hk + Kk(φ̃k − φ̃k) + O((φ̃k − φ̃k)2))dφ̃idφ̃jdφ̃k

= φ̃h

2
φ̃iφ̃jφ̃kHhHiHjHk

24

3
∆φ̃6 + O(∆φ̃7) (116)

and similarly, in the case ofh = j 6= i = k,

∫

I
φ̃he(φ̃i)φ̃je(φ̃k)f(φ̃h, φ̃i, φ̃j , φ̃k)dφ̃hdφ̃idφ̃jdφ̃k = φ̃h

2
φ̃jφ̃kHhHiHjHk

24

3
∆φ̃6 + O(∆φ̃7). (117)

The above show that, when∆φ̃→ 0, the rate of convergence of (114) and (115) to 0 is faster than that of
(116) and (117), therefore, we get the following:

E




(
N∑

i=1

φ̃k(i)e(φ̃1(i))

)2

 →

∆ymax→0
NE

[
φ̃2

ke
2(φ̃1)

]
. (118)

Lemma A.1

ψ(r) := kr5 − 18(1− r)5 + 45(1 + r)2(1− r)3 + 5(1− r)7(1 + r)−2 (119)

has only one local minimum inr ∈ (0, 1) when0 < k.

Proof The derivative ofψ(r) is calculated by

dψ(r)
dr

= (1 + r)−3ν(r)

ν(r) := 5k(1 + r)3r4 + 90(1 + r)3(1− r)4 + 90(1 + r)4(1− r)3 − 35(1 + r)(1− r)6 − 10(1− r)7

= (5k − 160)r7 + (15k − 480)r6 + (15k − 240)r5 + (5k + 1040)r4 + 1200r3 − 1200r2 − 160r,

(120)
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therefore, the condition thatdψ(r)
dr has only one zero inr ∈ (0, 1) is equal to that ofν(r). Note that from

(120), we can calculate

dν(r)
dr

= 7(5k − 160)r6 + 6(15k − 480)r5 + 5(15k − 240)r4 + 4(5k + 1040)r3 + 3600r2 − 2400r − 160

(121)
d3ν(r)

dr3
= 210(5k − 160)r4 + 120(15k − 480)r3 + 60(15k − 240)r2 + 24(5k + 1040)r + 7200, (122)

and also

ν(0) = 0, ν(1) = 5k > 0, (123)
dν(0)

dr
= −160 < 0,

dν(1)
dr

= 220k > 0. (124)

Whenk = k′, 0 < k′ ¿ 1, it is known that (122) is concave and

d3ν(0)
dr3

= 7200 > 0,
d3ν(1)

dr3
= −73440 + ε(k′) < 0. (125)

This shows that the sign ofd
3ν(r)
dr3 changes once from positive to negative, that is, the curvature ofdν(r)

dr
changes once from positive to negative, whenr increase from 0 to 1 with enough smallk = k′. From this
fact and (124), whenk = k′, dν(r)

dr has only one zero (denoterz) in r ∈ (0, 1) and the sign ofdν(r)
dr changes

from negative to positive whenr increases. Moreover,dν(r)
dr is convex fromr = 0 to the local mininum

(denotermin) and increases fromrmin to rz. If k ¿/ 1, dν(r)
dr at k′(¿ 1) is added a convex and increasing

function:
(k − k′)(35r6 + 90r5 + 75r4 + 20r3). (126)

Therefore, whenk > 0, dν(r)
dr is convex between 0 andrmin and increases fromrmin to rz. This implies

dν(r)
dr has only one zero between 0 andrz. Of course,dν(r)

dr has no zero betweenrz andr = 1 whenk > 0.

In conclusion,dν(r)
dr has only one zero atr ∈ (0, 1) and also the sign changes once from negative to positive

for all k > 0. With this fact and (123),ν has only one zero atr ∈ (0, 1) and its sign changes from negative
to positive for allk > 0 and we finally conclude the statement of the lemma.

Proof of Lemma 3.1

From Lemma A.1, it is known thatψ1(r1) has only one local minimum inr1 ∈ (0, 1). Moreover, from

ψj(0) = 32, ∀j, ψj(1) = ψmin
j−1, ψmin

0 = 32 or 432

the minimum valueψmin
1 satisfies

ψmin
1 < 32. (127)

Next,ψ2(r2) satisfies
ψ2(0) = 32, ψ2(1) = ψmin

1 < 32,

and alsoψ2(r2) has only one local minimum inr2 ∈ (0, 1). This means

ψmin
1 > ψmin

2 .

Moreover, the termr5
1 andr5

2 is a strictly increasing function in(0, 1]. Therefore, withψmin
0 > ψmin

1 ,

ro
1 < ro

2 < 1. (128)

By repeating the same process, we finally obtain

ro
1 < ro

2 < ro
3 < · · · < 1.
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Next showlimj→∞ ro
j = 1. Let limj→∞ ro

j = r∞. Then,r∞ satisfies

r∞ := arg min
r∈[0,1]

ψ∞(r)

ψ∞(r) := ψmin
∞ r5 − 18(1− r)5 + 45(1 + r)2(1− r)3 + 5(1− r)7(1 + r)−2 (129)

ψmin
∞ := ψ∞(r∞).

Note that ifψmin∞ > 0, ψ∞(r) has also only one local minimum inr ∈ (0, 1). On the other hand, when
ψmin∞ = 0, it is also known thatψ∞(r) is a decreasing function inr ∈ [0, 1] from the proof of Lemma A.1
andminr ψ∞(r) = ψ∞(1). From (129),ψ∞(1) = ψmin∞ , and the minimum is attained atr = 1. This means
r∞ = 1 (andψmin∞ = 0).

Proof of Lemma 3.2

Consider the subsectionsIj (Sj) andIj+1 (Sj+1), the general case for (34)∼ (41), and from

∫ kj

−kj

(
dj + dj+1

2
+ z

)
(z − hj) dz =

2
3
k3

j − (dj + dj+1)hjkj , (130)

the offsetshj andhj+1 such thatEIj

[
φ̃1 · e(φ̃1)

]
= 0 andEIj+1

[
φ̃1 · e(φ̃1)

]
= 0 are given as

hj =
2
3

1
dj + dj+1

k2
i , kj :=

dj+1 − dj

2
, hj+1 =

2
3

1
dj+1 + dj+2

k2
j+1, kj+1 :=

dj+2 − dj+1

2
.(131)

On the other hand, the variance is calculated as

VIj

[
φ̃1 · e(φ̃1)

]
=

∫ kj

−kj

(
dj + dj+1

2
+ z

)2

(z − hj)
2 dz

= A (dj+1 − dj)
5 + B (dj + dj+1)

2 (dj+1 − dj)
3 , (132)

where

A :=
1

5 · 24
− 1

32 · 23
< 0, B :=

1
3 · 24

> 0. (133)

Therefore,

VIj + VIj+1 = A(dj+1 − dj)5 + B(dj+1 + dj)2(dj+1 − dj)3

+ A(dj+2 − dj+1)5 + B(dj+2 + dj+1)2(dj+2 − dj+1)3 =: Z(dj+1). (134)

From A < 0 andB > 0 and the symmetric structure ofZ(dj+1) except for the terms(dj+1 + dj)2 and

(dj+2 + dj+1)2, it is known thatZ(dj+1) has its minimum atdo >
dj+dj+2

2 . This means|Ij | > |Ij+1|, that
is, |Sj | > |Sj+1|. The same discussion is applicable for arbitrary sectionsIj andIj+1, and we can conclude
the statement is true.

Proof of Lemma 3.3

We show a contradiction of an assumption of
∏∞

j=1
1
ro
j

= γ < ∞. At first, define another quantization

scheme Q’ based on Qopt. In this proof, we refer only to the positive section of the region[−θ̃1κ, θ̃1κ] from
the symmetry of the quantization. The partition scheme of Q’ is the same that of Qopt except for the regions

on φ̃1 corresponding toI1 and
⋃∞

j=m+1 Ij wherem is an appropriate number. Let2km denote the width of

Im. The scheme Q’ divides the regions onφ̃1 corresponding toI1 and
⋃∞

j=m+1 Ij of Qopt uniformly into
small subsections of a width2km and the remainders. Here letI ′j andM ′ denote the subsections of Q’ and

their maximum index respectively. Similar toVI1

[
φ̃1 · e(φ̃1)

]
, define the total varianceV′I1,km

[
φ̃1 · e(φ̃1)

]

in the regionI1 with the quantization scheme Q’. Then,

VI1 −V′I1,km
(135)
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monotonically increases askm → 0. On the other hand,

M ′∑

j=m+1

V′I′j −
∞∑

j=m+1

VIj =: α > 0, (136)

and whenm →∞, α monotonically decreases to 0. From the above two observations, there exists a number
m that satisfies

VI1 −V′I1,km
> α + β (137)

for someβ > 0. Then, from (136) and (137), we derive

M ′∑

j=1

V′I′j + β <
∞∑

j=1

VIj . (138)

For suchm, define

J :=
( |I1|

2km

)
+

(∑∞
j=m+1 |Ij |

2km

)
, (139)

where| · | denotes the width of the subsections. Then, from the assumption
∏∞

j=1
1
ro
j

< ∞, there existsM

such that

M > m− 1 + J,
M∑

j=1

VIj + β >
∞∑

j=1

VIj . (140)

From (138),

M∑

j=1

VIj + β >
m+J∑

j=1

V′I′j + β, (141)

and therefore,

M∑

j=1

VIj >
m+J∑

j=1

V′I′j (142)

Now define

J ′ :=
( |I1|

2km

)
+

(∑M
j=m+1 |Ij |

2km

)
, (143)

then,J ≥ J ′ and

M∑

j=1

VIj >
m+J ′∑

j=1

V′
I′j

. (144)

Note that
M⋃

j=1

Ij =
m+J ′⋃

j=1

I ′j (145)

andM > m + J ′. This means that the number of the quantization levels of Q’ in the subsection
⋃M

j=1 Ij is
less than that of Qopt, and the variance of the former is also less than that of the latter. This contradicts the
optimality of Qopt.

Proof of Lemma 3.4

From Lemma 3.1 and its proof, it is known that whenj →∞, ro
j andψmin

j converge to 1 and 0, respectively.
Therefore, by employing the Taylor series expansion,ψj(r) can be represented by

ψj(r) = ψmin
j−1(1− 5(1− r) + 10(1− r)2 − 10(1− r)3) + 45 · 22(1− r)3 + O((1− r)4) (146)
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nearr = 1 at sufficiently largej. By applying a variable transformation1− r =: ε, we obtain

ψj(ε) = ψmin
j−1(1− 5ε + 10ε2 − 10ε3) + 180ε3 + O(ε4) (147)

at ε → 0. Denote the local minimum ofψj(ε) asεj , thenεj should satisfies

ψmin
j−1(−5 + 20εj − 30ε2j ) + 540ε2j + O(ε3j ) = 0. (148)

From (148), it is easy to verify

εj =
(

1
108

ψmin
j−1

)1/2

+ o

((
ψmin

j−1

)1/2
)

. (149)

On the other hand, from (147),ψmin
j is represented by

ψmin
j = ψmin

j−1(1− 5εj + 10ε2j − 10ε3j ) + 180ε3j + O(ε4j ), (150)

and with (149), we get

ψmin
j − ψmin

j−1 = −5
(

1
108

)1/2

ψmin
j−1

3/2
+ 180

(
1

108

)3/2

ψmin
j−1

3/2
+ O(ψmin

j−1
2
)

= −5 · 3− 5
2 ψmin

j−1

3
2 + O(ψmin

j−1
2
). (151)

With the convergenceψmin
j → 0, we derive the statement of the lemma.

Proof of Lemma 6.1[20]

The diagonal elements ofUTU are in the form of

u2(−k + 1) + u2(−k + 2) + · · ·+ u2(−k + N).

From the assumption that every signalui is independent, then,

E
[
(UTU)ii

]
= E

[
u2(−k + 1) + u2(−k + 2) + · · ·+ u2(−k + N)

]

=
N∑

j=1

E
[
u2(−k + j)

]

= Nσ2
u. (152)

The variance can be calculated as

V
[
(UTU)ii

]
=

N∑

j=1

V[u(−k + j)2] = Nη. (153)

On the other hand, the non-diagonal elements(UTU)ij (i 6= j) are in the form of

u(−k + 1)u(−l + 1) + u(−k + 2)u(−l + 2) + · · ·+ u(−k + N)u(−l + N), k 6= l.

Then, their expectations are given by

E
[
(UTU)ij

]
= E [u(−k + 1)u(−l + 1) + u(−k + 2)u(−l + 2) + · · ·+ u(−k + N)u(−l + N)]

=
N∑

m=1

E [u(−k + m)u(−l + m)]

= 0. (154)
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The variance is given by noting thatE [(u(k + m)u(l + m))× (u(k + n)u(l + n))] = 0, even ifu(l+m) =
u(k + n) or u(k + m) = u(l + n).

V
[
(UTU)ij

]
= E

[
(u(−k + 1)u(−l + 1) + u(−k + 2)u(−l + 2) + · · ·+ u(−k + N)u(−l + N))2

]

=
N∑

m=1

E
[
u(−k + m)2u(−l + m)2

]
, k 6= l

= Nσ4
u (155)

Here we decomposeUTU as
UTU = (UTU −Nσ2

uI) + Nσ2
uI,

and by employing the norm inequality we obtain

‖UTU‖1 ≥ ‖Nσ2
uI‖1 − ‖UTU −Nσ2

uI‖1. (156)

The value of the first term of the right hand side in (156) isNσ2
u, and in the second term, by employing

Chebyshev’s inequality with (152) and (154), we obtain

Prob


|(UTU −Nσ2

uI)ij | ≥
√

V[(UTU)ij ]
r


 ≤ r,

and

Prob




n∑

j=1

|(UTU −Nσ2
uI)ij | ≥

√
V[(UTU)ii]

r
+ (n− 1)

√
V[(UTU)ij ]

r




= Prob




n∑

j=1

|(UTU −Nσ2
uI)ij | ≥

√
N

r

(√
η + (n− 1)σ2

u

)

 ≤ nr.

Therefore,

Prob


‖UTU −Nσ2

uI‖1 = max
i

∑

j=1

|(UTU −Nσ2
uI)ij | ≥

√
N

r

(√
η + (n− 1)σ2

u

)

 ≤ n2r.

Noting that

‖(UTU)−1‖ =
1

infx
‖UTUx‖
‖x‖

=
1

infx
‖σ2

uNI+(UTU−σ2
uNI)x‖

‖x‖

≤ 1

σ2
uN − supx

‖(UTU−σ2
uNI)x‖

‖x‖
,

this means

Prob


‖(UTU)−1‖1 ≥ 1

Nσ2
u −

√
N
r

(√
η + (n− 1)σ2

u

)


 ≤ rn2.

By denotingβ1 := rn2 for simplicity, we obtain the statement.

Proof of Theorem 6.1

First evaluate the magnitude ofŨTE. Its 1st element(ŨTE)1 is of form

φ̃1(1)e(1) + φ̃1(2)e(2) + · · ·+ φ̃1(N)e(N).

From the independence ofφ̃1(i) and (56), the expectation and the variance of(ŨTE)1 are given as:

E
[
(ŨTE)1

]
= 0, V

[
(ŨTE)1

]
≤ NAκ4(M −K ′)−2
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Then by Chebyshev’s inequality, we obtain

Prob

(
|ŨTE|1 ≥

√
Aκ4N

β2(M − 1)2

)
≤ β2,

for a reliability indexβ2. Combine(ŨTŨ)−1 andŨTE using a norm inequality:

|((ŨTŨ)−1ŨTE)1| ≤ ‖(ŨTŨ)−1‖1|(ŨTE)1|,

and this gives

Prob
(
|((ŨTŨ)−1ŨTE)1| ≤ ε1ε2

)
≥ Prob

(
‖(ŨTŨ)−1‖1 ≤ ε1 and|(ŨTE)1| ≤ ε2

)
.

Therefore we prove the statements.
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