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Abstract

We used the Wayland method, a method for detecting the determinism
from a time series, in surrogate data analysis and found a puzzling phe-
nomenon: random shuffle surrogates showed more “determinism” than the
original data, which is generated from a purely deterministic system with
small noise. We propose herewith that this phenomenon may occur because
of observation noise, dynamical noise, or high dimensionality of the system.

Nonlinear time series analysis has greatly progressed for the last two decades.
One of the main aims is to find evidence that a given time series is generated by
deterministic chaos. There are several key features of deterministic chaos, one of
them being determinism in spite of apparent randomness. For detecting determin-
ism from a time series, there are several proposed methods [1, 2]. Among them, a
simple and easy-to-use one, which is widely used, is the method of Wayland [2].

We report herewith using an example of wind data a seemingly puzzling phe-
nomenon that the Wayland method regards some datasets as less deterministic than
their randomly shuffled surrogates, and discuss some possible reasons for this.

First, we summarize the method proposed by Waylandet al. [2] for detecting
determinism in a time series. Suppose that a scalar time series{st}N

t=1 is given.
Let τ be the time lag, andd, the embedding dimension. Then we form delay coor-
dinatesxt by (st, st−τ , · · · , st−(d−1)τ )T . We call{xt}N

t=(d−1)τ+1 the experimental
attractor.

Choose the numberl of integers between(d − 1)τ + 1 andN − 1. Call this
set of integersT . Forxt of t ∈ T , find the numberk of the nearest neighbors from
the experimental attractor as follows: Labeling thei-th nearest neighbor forxt as
xni(t) (i ≥ 1), select the nearest neighbors so that|ni(t) − t| > τ . For notational
convenience, we define thatn0(t) = t.
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Figure 1: An example of the wind data

For eachxni(t), we look at its imagexni(t)+m and take the translation vector,

vi(t) = xni(t)+m − xni(t). (1)

In this paper we usem = 1. To quantify this notion, let us define the average of
the translation vectorsv(t) as follows:

v(t) =
1

k + 1

k∑
i=0

vi(t). (2)

Using these vectors, we define the translation errore(t) as

e(t) =
1

k + 1

k∑
i=0

‖vi(t)− v(t)‖2

‖v(t)‖2
. (3)

The translation errore(t) yields the fractional spread in the displacements ofxni(t)

relative to the average displacementv(t).
We find the median ofe(t) overT , and declare it to be a test statistic for de-

terminism. Waylandet al. demonstrated that the test statistic is close to 0 if a time
series is deterministic and the test statistic is about 1 if a time series is random.
Here, we setk = 4 andl = 100, and chooseτ using the first minimum value of
the mutual information [3].

We applied surrogate data analysis with the Wayland statistic to a time series
of wind. The wind was measured by an anemometer at 50Hz on the top of the
building of Institute of Industrial Science, The University of Tokyo in Komaba,
Tokyo, at 14:00 JST, on 18 August 2004, for 1 hour. A part of this time series is
shown in Fig. 1. We confirmed using the method of Kennel [4] that this part of the
time series is stationary.

For this data, we generated 39 randomly shuffled surrogates [5] and compared
them with the original data by calculating the Wayland statistic. Figure 2 shows
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Figure 2: Result of surrogate data analysis. For each embedding dimension, the
solid lines show the minimum and maximum Wayland statistics obtained from 39
randomly shuffled surrogates, and symbol+, Wayland statistic obtained from the
original data.

the result. We observed that for each embedding dimension, the Wayland statistic
obtained from the original data is greater than the maximum value of those from the
39 randomly shuffled surrogates. This means that the randomly shuffled surrogates
are more deterministic than the original data, that should not be correct.

Judging from the nature of the wind, there are three possible reasons that
caused this puzzling phenomenon: observation noise, dynamical noise, and the
high dimensionality.

First, we tested whether observation noise caused the reverse rejection. We
used the Lorenz’63 model [6], which is defined as

dx
dt = −ax + ay
dy
dt = −xz + bx− y
dz
dt = xy − cz,

(4)

where(a, b, c) = (10, 28, 8/3). We used the fourth order Runge-Kutta method [7]
to integrate the system with a step size of0.001. During integration, we observed
thex-coordinate every 0.01 unit time and obtained a scalar time series with a length
of 10 000. We then added observational noise to the data, which follows Gaussian
distributionN(0, (0.1σo)2) with a mean of0 and a standard deviation of0.1σo,
whereσo is the standard deviation for the original clean data.

The result of the surrogate data analysis is shown in Fig. 3. Since in all the em-
bedding dimensions the Wayland statistic of the original data is greater than those
of the surrogates, observation noise could be the reason for the reverse rejection.

To explain the mechanism of the reverse rejection caused by observation noise,
we argue that there is a scaling law between the Wayland statistic and the level of
observation noise.

3



0 5 10 15 20 25 30
0.6
0.7

1

2

3

4
5
6
7
8
9

Embedding dimension

W
ay

la
nd

 s
ta

tis
tic

Figure 3: 39 randomly shuffled surrogates are generated for time series of
Lorenz’63 model, contaminated by observation noise, and compared using Way-
land statistic. The solid lines show the minimum and maximum Wayland statistics
obtained from 39 surrogates, and symbol+, that of original data.

Suppose that{yt}N
t=1 is a clean deterministic scalar time series and contam-

inated by observational noise{ηt}N
t=1. Therefore, now the observed time series

{st}N
t=1 has the relationst = yt + ηt for eacht. We assume that for eacht, the

noiseηt follows Gaussian distributionN(0, σ2) with a mean of0 and a standard
deviation ofσ.

Let

ṽi(t) =


yni(t)+1 − yni(t)

yni(t)+1−τ − yni(t)−τ
...

yni(t)+1−(d−1)τ − yni(t)−(d−1)τ

 , (5)

and

ṽ(t) =
1

k + 1

k∑
i=0

ṽi(t). (6)

Letting [ṽ(t)]j and [v(t)]j the j-th components of̃v(t) and v(t), respectively,
we have[v(t)](j−1) = sni(t)+1−jτ − sni(t)−jτ = (yni(t)+1−jτ − yni(t)−jτ ) +
(ηni(t)+1−jτ − ηni(t)−jτ ). Thus

vi(t) = ṽi(t) +


ηni(t)+1 − ηni(t)

ηni(t)+1−τ − ηni(t)−τ
...

ηni(t)+1−(d−1)τ − ηni(t)−(d−1)τ

 . (7)
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Hence, the average translationv(t) is written as

v(t) = ṽ(t) +



∑k

i=0
(ηni(t)+1−ηni(t)

)

k+1∑k

i=0
(ηni(t)+1−τ−ηni(t)−τ )

k+1
...∑k

i=0
(ηni(t)+1−(d−1)τ−ηni(t)−(d−1)τ )

k+1


. (8)

Assume that eachni(t) is separate from the others in terms of time. Then,
for eachj, the sum

∑k
i=0(ηni(t)+1−jτ − ηni(t)−jτ ) follows Gaussian distribution

N(0, 2(k+1)σ2). Therefore 1
k+1

∑k
i=0(ηni(t)+1−jτ−ηni(t)−jτ ) followsN(0, 2σ2

k+1).
Because2σ2/(k + 1) is small ifk is large enough, we can approximate it to be

1
k + 1

k∑
i=0

(ηni(t)+1−jτ − ηni(t)−jτ ) ≈ 0, (9)

and then we havev(t) ≈ ṽ(t).
Next we calculatee(t). By definition, we have

e(t)

≈ 1
k + 1

k∑
i=0

‖vi(t)− ṽ(t)‖2

‖ṽ(t)‖2

=
1

(k + 1)‖ṽ(t)‖2

k∑
i=0

d−1∑
j=0

[
([ṽi(t)]j − [ṽ(t)]j)2

+2(ηni(t)+1−jτ − ηni(t)−jτ )([ṽi(t)]j − [ṽ(t)]j)

+(ηni(t)+1−jτ − ηni(t)−jτ )
2
]
,

where[ṽi(t)]j denotes thej-th components of̃vi(t). Taking the mean ofe(t) over
all ηt’s, we have

E[e(t)] ≈
∑k

i=0(‖ṽi(t)− ṽ(t)‖2 + 2dσ2)
(k + 1)‖ṽ(t)‖2

.

Letting

ẽ(t) =
1

k + 1

k∑
i=0

‖ṽi(t)− ṽ(t)‖2

‖ṽ(t)‖2
, (10)

we obtain

E[e(t)] ≈ ẽ(t) +
2dσ2

‖ṽ(t)‖2
. (11)

The translation error̃e(t) can be different from the statistic we may obtain
from a clean time series because nearest neighbors selected can be different due
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Figure 4: Relation between Wayland statistic and noise levelσ of observation
noise, in example of Lorenz’63 model. The solid line is mean, the broken lines
are mean± standard deviation of 100 realizations.

to observation noise. However, if the noise level is moderate, selected points are
still the neighbors ofxt, and the value of̃e(t) is expected to be close to the one we
may obtain from a clean time series. Hence, we regardẽ(t) as approximately equal
to the statistic we may obtain from a clean time series, as far as the noise level is
moderate.

As d
‖v(t)‖2 > 0, the average ofe(t) will increase if the variation of the noise

increases. The formula Eq. (11) also suggests that we may avoid the increase of
E[e(t)] if we make‖ṽ(t)‖ greater, or if we usem > 1.

To verify the formula in Eq. (11) numerically, we used a time series generated
from the Lorenz’63 model. We observed the x-coordinate of the Lorenz’63 model
every 0.01 unit time and obtained a time series with a length of 10 000. The
tested noise levelsσ are0, 0.005σo, 0.01σo, · · · , 0.1σ0 whereσo is the standard
deviation for the original time series. To find the Wayland statistic, we usedd = 3.
Figure 4 shows the result. In this example, we observed a linear relation between
the Wayland statistic andσ2, whenσ2 is small. When the noise level is high, the
average of the Wayland statistic is greater than one.

Using the scaling law shown in Eq. (11), the reverse rejection can be explained
as follows: When applied to data without temporal correlation, or randomly shuf-
fled surrogates, the Wayland statistic tends to be about 1. On the other hand, be-
cause of the scaling law in Eq. (11), the Wayland statistic of the original data can
be greater than 1.

For the second hypothesis, we tested whether dynamical noise could cause
the reverse rejection. We added dynamical noise to the Lorenz’63 model in the
following way: 

dx
dt = −ax + ay + lnσxηx
dy
dt = −xz + bx− y + lnσyηy
dz
dt = xy − cz + lnσzηz,

(12)
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Figure 5: Result of surrogate data analysis for data generated from Lorenz’63
model, contaminated with dynamical noise. For each embedding dimension, sym-
bol + shows Wayland statistic of original data, and the solid lines, the minimum
and maximum obtained from 39 surrogates.

whereln is the level of dynamical noise,σx, σy, andσz are the standard deviation
of clean data for each coordinate, andηx, ηy, andηz are the normal distribution
N(0, 12). We setln = 100, integrated the system using the fourth order Runge-
Kutta method [7] with a step size 0.001 and observed thex-coordinate every 0.01
unit time to obtain a scalar time series with a length of 10 000. With this data, we
generated 39 randomly shuffled surrogates and compared them to the original data
using the Wayland statistic.

The result, shown in Fig. 5, also exhibits the reverse rejection. Therefore,
dynamical noise can also be a reason for the reverse rejection.

We found numerically using the Lorenz’63 model that there is a scaling law
between the Wayland statistic and the level of dynamical noise. We used the noise
level ln = 10, 20, · · · , 100. For each noise level, we generated 20 time series with
a length of 10 000 and calculated the Wayland statistic. With the results shown in
Fig. 6, we observed a linear relation between the Wayland statistic andl2n when the
noise level is low.

As the scaling law holds, the reverse rejection caused by dynamical noise is
similar to that of observation noise.

Lastly, we examined the third hypothesis: whether the high dimensionality of
the system causes the reverse rejection. To test this hypothesis, we used Lorenz’96
model [8], which is a toy model of the atmosphere. In the Lorenz’96 model, there
are the numberI of large scale variablesxi and the numberI × J of small scale
variablesyj,i. Using these variables, the equations are defined as

dxi

dt
= xi−1(xi+1 − xi−2)− xi + F − hxc

b

J∑
j=1

yj,i (13)
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Figure 6: Relation between Wayland statistic and level of dynamical noise. For
each noise level, the solid line shows mean, and the broken lines, mean± standard
deviation of 20 realizations.

dyj,i

dt
= cbyj+1,i(yj−1,i − yj+2,i)− cyj,i +

hyc

b
xi, (14)

where we used the following cyclic boundary conditions:

xI+i = xi, yj+J,i = yj,i+1, yj−J,i = yj,i−1. (15)

We usedI = 40, J = 5, F = 8, b = 10, c = 10, hx = 1, andhy = 1. We observed
y11 every 0.05 unit time to obtain a scalar time series with a length of 20 000. Using
this as the original data, we generated 39 randomly shuffled surrogates. The result,
shown in Fig. 7, shows the reverse rejection. Hence, high dimensionality can cause
the reverse rejection.

Given a dataset of finite length, we cannot distinguish a high dimensional sys-
tem from a system with dynamical noise. As a result, the reverse rejection can
occur for the same reason as that for the dynamical noise.

This study was partly supported by the Industrial Technology Research Grant
Program in 2003, from the New Energy and Industrial Technology Development
Organization (NEDO) of Japan.
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