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Abstract

In this article we study the simultaneous estimation of the means in Poisson decom-
posable graphical models. We derive some classes of estimators which improve on the
maximum likelihood estimator under the normalized squared losses. Our estimators are
based on the argument in Chou[3] and shrink the maximum likelihood estimator depend-
ing on the marginal frequencies of variables forming a complete subgraph of the conditional
independence graph.

Keywords and phrases : chordal graph, contingency table, decomposable graph, decomposable
Poisson model, inadmissibility, perfect sequence, simultaneous estimation, shrinkage estima-
tion, unbiased estimation of risk difference.

1 Introduction

Suppose we have I independent Poisson observations x1, . . . , xI with unknown mean parameters
λ1, . . . , λI . Consider the problem of estimating λ = (λ1, . . . , λI) under the loss

L(λ, λ̂) =
I∑

i=1

1

λi

(λi − λ̂i)
2.

The usual estimator is x = (x1, . . . , xI)
′ which is both the maximum likelihood and the uni-

formly minimum variance unbiased estimator. For I = 1 x is known to be admissible(See
Brown and Hwang[2] for example). Since Clevenson and Zidek[4] proved the inadmissibility of
x for I ≥ 2 and derived the class of estimators which improve on x under the above loss, the
estimation of λ in higher dimensions has received considerable attention and a lot of research
have been devoted to this problem.

∗hara@geosys.t.u-tokyo.ac.jp
†takemura@stat.t.u-tokyo.ac.jp
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Tsui and Press[19] derived improved estimators under k-normalized squared error loss,
Lk(λ, λ̂) =

∑p
i=1(λ̂i−λi)

2/λk
i . Hwang[12] generalized the identity of Hudson[11] and derived an

unbiased estimator of the difference of two risk functions between the MLE and the improved
estimators. Hwang[12] also extended the problem to the estimation of the mean parameters of
a subclass of discrete exponential families which includes Poisson distribution and derived some
estimators which dominate the MLE by using the identity. Chou[3] gave classes of improved
estimators for a wider class of discrete exponential families. In the setting of simultaneous
prediction of Poisson random variables, Komaki[14] derived fundamental results on admissibility
under the Kullback-Leibler loss. Other important results in this field may be found in Ghosh
and Parsian[8], Ghosh, Hwang and Tsui[7], Ghosh and Yang[9], Johnstone[13], Tsui[18] etc.

The present paper considers the problem of estimating the means in Poisson decomposable
graphical models. Consider a J-way layout contingency table. Let ∆ = {1, . . . , J} be the set
of variables which corresponds to the set of vertices in the conditional independence graph.
Denote the number of levels for δ ∈ ∆ by Iδ. We assume that Iδ ≥ 2 for all δ. We express the
set of levels of δ by Iδ = {1, . . . , Iδ}. Each cell of the table is the element i = (iδ)δ∈∆ of the
whole cells I,

i ∈ I, I =
∏

δ∈∆

Iδ.

Let the marginal cell and the set of the marginal cells for V ⊂ ∆ be expressed by iV and IV ,
respectively. For the vector of the cell frequencies x = {x(i)}i∈I ∈ Z|I| the marginal frequency
for iV is denoted by x(iV ). Define x+ = x(i∅) =

∑
i∈I x(i).

The Poisson decomposable graphical model is expressed as follows,

x(i) ∼ Po(λ(i)), λ(i) = λ

∏
C∈C α(iC)∏

S∈S α(iS)ν(S)
, (1)

∑

iC∈IC

α(iC) = 1,
∑

iS∈IS

α(iS) = 1,

where C is the set of cliques of the corresponding decomposable conditional independence
graph G and S is the set of minimal vertex separators S with multiplicities ν(S) in any perfect
sequence. x(i) are supposed to be independent with respect to i ∈ I. We note that the above
definition includes the case where G is disconnected. For the disconnected G, we suppose that
∅ ∈ S and that ν(∅) = νG − 1, where νG is the number of connected components of G. In
this article we address the problem of the simultaneous estimation of λ = {λ(i)}i∈I under the
following normalized squared loss function

L(λ, λ̂) =
∑

i∈I

1

λ(i)
(λ(i) − λ̂(i))2 (2)

from the decision theoretic viewpoint.
When G is complete, (1) corresponds to a saturated model. A series of results on the shrink-

age estimation of multivariate Poisson means which were inspired by Clevenson and Zidek[4]
correspond to this setting.

The model (1) with S = {∅} and C = {{1}, . . . , {J}} is called Poisson multiplicative model.
Recently Hara and Takemura[10] studied the estimation of the means in the Poisson multi-
plicative models and derived some classes of estimators improving on the MLE by using the
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argument in Clevenson and Zidek[4] and Chou[3]. Hara and Takemura[10] also showed the
inadmissibility of the MLE in the three way decomposable graphical model which corresponds
to the decomposable graph in Figure 1.

1 2 3

Figure 1: 3-way decomposable model

In this paper we extend the results of Hara and Takemura[10] to the general Poisson de-
composable models (1) and give the classes of estimators improving on the MLE under the
loss function (2). The paper is organized as follows. In Section 2 we summarize basic facts on
the Poisson decomposable graphical models and decomposable graphs. In Section 3 we present
some classes of estimators which dominate the MLE in the Poisson decomposable model (1).
In Section 4 we give examples of improved estimators for some decomposable models. Section 5
gives Monte Carlo studies which confirm the theoretical results of the dominance relationship.

2 Basic facts on the Poisson decomposable graphical mod-

els and the decomposable graphs

2.1 Notation

In this section we define some notations which we use in the following argument. Mostly we fol-
low the notation of Lauritzen[15]. In what follows we assume that the graph G is decomposable
(chordal) and not complete.

For a subset of vertices V ⊂ ∆ let G(V ) be the subgraph induced by V . C(V ), S(V ) and
ν(S, V ) for S ∈ S(V ) represent the set of the cliques, the set of the minimal vertex separators
and the multiplicity of S in G(V ), respectively.

Define IV for V ⊂ ∆ as
IV =

∏

δ∈V

Iδ

and I∅ ≡ 1. Let adj(δ,G) be the set of vertices which are adjacent to δ ∈ ∆ in G.
For a set of cliques C∗ ⊂ C, define ∆(C∗) by ∆(C∗) =

⋃
C∈C∗ C. We note that C∗ ⊂ C(∆(C∗))

but in general C∗ 6= C(∆(C∗)). For example ∆ and C of the graph in Figure 2 is

∆ = {1, 2, 3, 4, 5}, C = {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}},

respectively. If we set C∗ as C∗ = {{1, 2, 3}, {1, 4, 5}}, ∆(C∗) = ∆. Thus C(∆(C∗)) = C ) C∗.
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1

2 3 4 5

Figure 2: A decomposable graph with five vertices

2.2 Basic facts on the Poisson decomposable models

In this section we summarize some basic facts on the Poisson decomposable model (1). The
joint probability function of x is

Pr(x) =
∏

i∈I

λ(i)x(i)

x(i)!
e−λ(i)

= e−λλx+
∏

i∈I

1

x(i)!
×

∏
C∈C α(iC)x(iC)

∏
S∈S α(iS)ν(S)x(iS)

.

Thus xC = {x(iC), iC ∈ IC , C ∈ C} is the complete sufficient statistic for this model. The
dimension of xC is

∑
C∈C IC . xC contains some obvious redundant elements to be minimal

sufficient, but it is notationally convenient to use xC. Following Sundberg[17] and Lauritzen[15],
the marginal probability function of xC is

Pr(xC) = e−λλx+ ·
∏

C∈C
∏

iC∈IC
α(iC)x(iC)

∏
S∈S

∏
iS∈IS

α(iS)ν(S)x(iS)
· t(xC),

where

t(xC) =

∏
S∈S{

∏
iS∈IS

x(iS)!}ν(S)

∏
C∈C

∏
iC∈IC

x(iC)!

and the MLE of λ and α(iC) for C ∈ C are x+ and x(iC)/x+, respectively. Therefore the MLE
of λ is given by

λ̂ML(xC) = {λ̂ML(i, xC)}i∈I ,

λ̂ML(i, xC) =





∏
C∈C x(iC)∏

S∈S x(iS)ν(S)
, if x(iS) 6= 0 for ∀S ∈ S,

0, otherwise.

(3)

The following lemma corresponds to the identity of Hudson[11] and Hwang[12].

Lemma 2.1. For a real valued function g if E|g(xC)| < ∞ and g(xC) = 0 whenever there exists
C ∈ C and iC ∈ IC such that x(iC) < m, then

E

[
1

λ(i)m
g(xC)

]
= E

[
t(xC + mei

C)

t(xC)
g(xC + mei

C)

]
, (4)
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where ei
C = {ei(jC), jC ∈ IC , C ∈ C} is the

∑
C∈C IC-dimensional vector such that

ei(jC) =

{
1, for jC = iC ,
0, otherwise

for all jC ∈ IC, C ∈ C.

Proof.

E

[
1

λm(i)
g(xC)

]
=

∑

C∈C

∑

jC∈IC

1

λm(i)
g(xC)Pr(xC)

=
∑

C∈C

∑

jC∈IC

{
g(xC)e

−λλx+−m ·
∏

C∈C α(iC)x(iC)−m

∏
S∈S α(iS)ν(S)(x(iS)−m)

×
∏

C∈C
∏

jC 6=iC
α(jC)x(jC)

∏
S∈S

∏
jS 6=iS

α(jS)ν(S)x(jS)
· t(xC)

}

=
∑

C∈C

∑

jC∈IC

t(xC + mei
C)

t(xC)
g(xC + mei

C)Pr(xC)

= E

[
t(xC + mei

C)

t(xC)
g(xC + mei

C)

]
.

From this lemma with m = −1 and g(xC) = 1, λ̂ML(x) is found to be the uniformly minimum
variance unbiased estimator of λ. We note that (4) with m = 1 is expressed by

E

[
1

λ(i)
g(xC)

]
= E

[
t(xC + ei

C)

t(xC)
g(xC + ei

C)

]

= E

[
1

λ̂ML(i,xC + ei
C)

g(xC + ei
C)

]
. (5)

Let the bijection σ : {1, 2, . . . , J} 7→ ∆ be a perfect elimination scheme (e.g. Blair and Peyton[1])
of vertices in G. For 1 ≤ j ≤ J define ∆(σ, j) ⊂ ∆ as

∆(σ, j) = {σ(j), σ(j + 1), . . . , σ(J)}.

The following lemmas are required to derive the class of improved estimators.

Lemma 2.2. Suppose x(iS) 6= 0 for all S ∈ S. Then

λ̂ML(i∆(σ,j),xC) =
∑

i′:i′
∆(σ,j)

=i∆(σ,j)

λ̂ML(i′, xC)

=

∏
C∈C(∆(σ,j)) x(iC)

∏
S∈S(∆(σ,j)) x(iS)ν(S,∆(σ,j))

.
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Lemma 2.3. Suppose x(iS) 6= 0 for all S ∈ S. Then

∑

i′:i′
∆(σ,j)

=i∆(σ,j)

λ̂ML(i′, xC + ei′

C ) ≥
∏

C∈C(∆(σ,j))(x(iC) + 1)
∏

S∈S(∆(σ,j))(x(iS) + 1)ν(S,∆(σ,j))

= λ̂ML(i∆(σ,j),xC + ei
C).

The proofs of the Lemma 2.2 and 2.3 are given in the Appendix.

2.3 Some preparations on the decomposable graphs

In this section we prepare some lemmas on the decomposable graphs required for the argument
in the following section.

Suppose |C| = K. Let C1, C2, . . . , CK be a perfect sequence of the cliques in G. We write
Hk = C1 ∪ · · · ∪ Ck, k = 1, . . . , K and Sk = Hk−1 ∩ Ck, k = 2, . . . , K. Then S = {S2, . . . , SK},
where each S ∈ S is repeated ν(S) times. For any Sk there exists k′ < k such that Sk ⊂ Ck′ .
This condition is known as the running intersection property of the perfect sequence.

Let CS = {Ci ∈ C | Ci ⊃ S} = {Ck1 , . . . , Ckq}, 1 ≤ k1 < · · · < kq ≤ K, be the set of cliques
which includes S. We note that Ck1 , . . . , Ckq is a subsequence of the perfect sequence. Then
we obtain the following lemma.

Proposition 2.1. S decomposes G(∆(CS)) into ν(S) + 1 connected components.

Darroch, Lauritzen and Speed[5] and Letac and Massam[16] state this proposition but the
proof is not given. Since this proposition is essential for the present paper, we give the proof
of Proposition 2.1 in a series of lemmas.

Lemma 2.4. For a perfect sequence C1, C2, . . . , CK and k ≤ K, define the set of cliques Ck by
Ck = {C1, C2, . . . , Ck}. Then C1, C2, . . . , Ck is a perfect sequence of G(∆(Ck)).

Proof. When k = K, the lemma is trivial. Assume k < K. Since C1, C2, . . . , Ck satisfies the
running intersection property, it suffices to show that C(∆(Ck)) = Ck. Suppose C(∆(Ck)) 6= Ck.
Since C(∆(Ck)) ⊃ Ck, there exists a clique A such that A ∈ C(∆(Ck)) \ Ck. From the fact
that ∆(C(∆(Ck))) = ∆(Ck) and the maximality of cliques, A satisfies A ⊂ ∆(Ck) and A * Cj

for j = 1, . . . , k and there exists Sk′ , k′ > k such that Sk′ ⊃ A and Sj + A for j < k′.
Thus Sk′ satisfies Sk′ * Cj for j < k′. This contradicts the running intersection property of
C1, C2, . . . , CK .

Lemma 2.5. Ck1 , . . . , Ckq is a perfect sequence of G(∆(CS)).

Proof. First we show that CS = C(∆(CS)). Suppose CS 6= C(∆(CS)). Then there exists
a clique C ∈ C(∆(CS)) \ CS such that C ⊂ ∆(CS) = ∆(C(∆(CS))) and C + S. However any
vertex in ∆(CS)\S is adjacent to all vertices in S from the completeness of cliques. This implies
C ⊃ S for all C ∈ C(∆(CS)), which contradicts the assumption that CS 6= C(∆(CS)). Thus
CS = C(∆(CS)).

Next we show that Ck1 , . . . , Ckq is perfect. Since C1, . . . , CK is perfect, for each l ≥ 2 there
exists a k < kl such that Skl

⊂ Ck ∈ C. Since Ckl
⊃ S, we have

Ck ⊃ Skl
=

kl−1⋃

j=1

(Cj ∩ Ckl
) ⊇ (Ck1 ∩ Ckl

) ⊇ S,
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which implies Ck ∈ CS. Thus the subsequence Ck1 , . . . , Ckq also satisfies the running intersection
property. This proves the lemma.

Lemma 2.6. S(∆(CS)) = {Skl
: l ≥ 2} and the multiplicity of S in G(∆(CS)) is ν(S).

Proof. From Lemma 2.5

Skl
=

kl−1⋃

j=1

(Cj ∩ Ckl
) =

l−1⋃

m=1

(Ckm ∩ Ckl
)

for 1 ≤ l ≤ q. Thus the proof is completed.

From Lemma 2.5 and 2.6 there exists the sequence of indices k̃0, k̃1, . . . , k̃ν(S) such that k̃0 <

· · · < k̃ν(S), k̃0 = k1 and Sk̃m
= S for m = 1, . . . , ν(S). Define Cl

S and νl, l = 1, . . . , q, by

Cl
S = {Ck0 , Ck1 , . . . , Ckl

}, νl = max{m|k̃m ≤ kl},

respectively. From Lemma 2.4 and 2.6 Ck1 , . . . , Ckl
is a perfect sequence of G(∆(Cl

S)) and νl is
the multiplicity of S in G(∆(Cl

S)). Proposition 2.1 is obtained from the following lemma with
l = q.

Lemma 2.7. S decomposes G(∆(Cl
S)) into νl + 1 connected components for l = 1, . . . , q.

Proof. We prove this lemma by induction on l. For l = 1 the lemma is trivial. Suppose
that p ≥ 2 and that the lemma holds for l ≤ p. Then there exists νp +1 connected components
of ∆(Cp

S) \ S. Denote them by ΓS
1 , . . . , ΓS

νp+1.
If Skp+1 = S, then νp+1 = νp + 1 and Ckl′

∩ Ckp+1 = S for all l′, 1 ≤ l′ ≤ p. This implies

ΓS
m ∩ (Ckp+1 \ S) = ∅ for all 1 ≤ m ≤ νp + 1. Thus S decomposes ∆(Cp+1

S ) into the following
νp+1 + 1 connected components, ΓS

1 , ΓS
2 , . . . , ΓS

νp+1 and ΓS
νp+1+1 = Ckp+1 \ S.

In the case where Skp+1 6= S, νp+1 is equal to νp. Since Skp+1 ⊃ S, there exists l′, 1 ≤ l′ ≤ p
such that

Skp+1 ⊂ Ckl′ ∈ CS, (Ckp+1 \ S) ∩ (Ckl′ \ S) 6= ∅. (6)

Then Ckp+1 \S and Ckl′
\S are connected. If there are two cliques Ckp1

and Ckp2
satisfying (6),

it is necessary for them to satisfy that

(Ckp1
\ S) ∩ (Ckp2

\ S) ⊃ (Skl+1
\ S) 6= ∅.

Thus Ckp1
\ S and Ckp2

\ S are connected and they belong to the same connected component.
Let ΓS

1 be the connected component. Then Ckp+1 satisfies

Ckp+1 ∩ ΓS
1 6= ∅ and Ckp+1 ∩ ΓS

m = ∅

for 2 ≤ m ≤ νp + 1. Hence S decomposes ∆(Cp
S) into ΓS

1 ∪ (Ckp+1\S), ΓS
2 , . . . , ΓS

νp+1 = ΓS
νp+1+1.

This completes the proof.

We have completed the proof of Proposition 2.1. We present two additional lemmas needed
later.
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Lemma 2.8. For any C ∈ C, there exists a perfect elimination scheme σ and j, 1 ≤ j ≤ J ,
such that

∆(σ, j) = {σ(j), . . . , σ(J)} = C. (7)

Proof. The proof is by induction on the number of vertices J . The lemma is trivial if
J ≤ 3. Suppose J > 3 and assume that the lemma holds for all decomposable graphs with
fewer than J vertices.

Since G is decomposable and is not complete, G has at least two non-adjacent simplicial
vertices(see Dirac[6]). Thus there exists a simplicial vertex δ such that δ /∈ C. C(∆ \ {δ})
includes C and then from the inductive assumption G(∆\{δ}) has a perfect elimination scheme
σ∆\{δ} : {1, 2, . . . , J − 1} 7→ ∆ \ {δ} and for some j, 2 ≤ j ≤ J ,

{σ∆\{δ}(j − 1), . . . , σ∆\{δ}(J − 1)} = C.

If we set σ(1) = δ and σ(l) = σ∆\{δ}(l − 1), l = 2, . . . , J , then σ satisfies (7). The proof is
completed.

From Proposition 2.1 S ∈ S decomposes ∆(CS) into ν(S)+1 connected components. Denote
them by ΓS

1 , ΓS
2 , . . . , ΓS

ν(S)+1. Let C(S,G) be the class of ν(S) + 1 cliques in CS such that

C(S,G) =
{{

C1, . . . , Cν(S)+1

}
| C1 ∈ C(ΓS

1 ∪ S), . . . , Cν(S)+1 ∈ C(ΓS
ν(S)+1 ∪ S)

}
. (8)

We note that the cliques in {C1, . . . , Cν(S)+1} ∈ C(S,G) satisfy Cj ∈ C for j = 1, . . . , ν(S) + 1
and Cj ∩ Ck = S for j 6= k. Then we obtain the following lemma.

Lemma 2.9. For any S ∈ S and C̃ ∈ C(S,G), there exists a perfect elimination scheme σ and
j, 1 ≤ j ≤ J , such that

G(∆(C̃)) = G(∆(σ, j)). (9)

We give the proof of this lemma in the Appendix.

3 Improved estimation of the means in the decompos-

able models for connected graphs

In this section we give some classes of estimators improving on λML under the loss function
(2). We introduce the following class of Chou[3]-type estimators,

λ̂φV ,γ = {λ̂φV ,γ(i)}i∈I ,

λ̂φV ,γ(i) = λ̂ML(i, xC)

(
1 − φV (x(iV ))

(x(iV ) + β)γ+1

)
, (10)

where V is a set of vertices such that G(V ) is complete, i.e., V ⊂ C for some C ∈ C. β > 0 and
γ ≥ 0 are the constants. Suppose that φV (x) is nondecreasing and satisfies

0 ≤ φV (x)

(x + β)γ+1
≤ 1 (11)
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for all nonnegative integer x.
By using (5), the difference between two risk function of λ̂ML and λ̂φV ,γ is expressed by

R(λ, λ̂ML) − R(λ, λ̂φV ,γ)

= E[L(λ, λ̂ML) − L(λ, λ̂φV ,γ)]

=
∑

i∈I

E

[
1

λ(i)

{
(λ̂ML(i,xC) − λ(i))2 − (λ̂φV ,γ(i) − λ(i))2

}]

=
∑

i∈I

E

[
2

λ(i)
λ̂ML(i, xC)

φV (x(iV ))

(x(iV ) + β)γ+1
(λ̂ML(i, xC) − λ(i))

− 1

λ(i)

{
λ̂ML(i, xC)

φV (x(iV ))

(x(iV ) + β)γ+1

}2
]

=
∑

i∈I

E

[
2φV (x(iV ) + 1)

(x(iV ) + β + 1)γ+1
λ̂ML(i, xC + ei

C) −
2φV (x(iV ))

(x(iV ) + β)γ+1
λ̂ML(i, xC)

−
{

φV (x(iV ) + 1)

(x(iV ) + β + 1)γ+1

}2

λ̂ML(i, xC + ei
C)

]

=
∑

iV ∈IV

E

[
2φV (x(iV ) + 1)

(x(iV ) + β + 1)γ+1
λ̂ML(iV , xC + ei

C) −
2φV (x(iV ))

(x(iV ) + β)γ+1
λ̂ML(iV , xC)

−
{

φV (x(iV ) + 1)

(x(iV ) + β + 1)γ+1

}2

λ̂ML(iV ,xC + ei
C)

]
, (12)

where
λ̂ML(iV ) =

∑

i′:i′V =iV

λ̂ML(i′).

(12) implies that

R̂d(λ̂φV ,γ) =
∑

iV ∈IV

R̂d(iV , λ̂φV ,γ),

where

R̂d(iV , λ̂φV ,γ) = 2

{
φV (x(iV ) + 1)

(x(iV ) + β + 1)γ+1
λ̂ML(iV , xC + ei

C) −
φV (x(iV ))

(x(iV ) + β)γ+1
λ̂ML(iV ,xC)

}

−
(

φV (x(iV ) + 1)

(x(iV ) + β + 1)γ+1

)2

λ̂ML(iV ,xC + ei
C) (13)

is an unbiased estimator of R(λ, λ̂ML)−R(λ, λ̂φV ,γ). Thus in order to examine the dominance
of λ̂φV ,γ over λ̂ML, it suffices to show that φV (·) satisfies R̂d(iV , λ̂φV ,γ) ≥ 0.

Let CV be the set of the cliques which include V . Define ICV
by

ICV
= max

C∈CV

IC\V .

Then we obtain the following theorem.
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Theorem 3.1. If φV (·) satisfies

0 ≤ φV (x) ≤ min
(

2ICV
− 2γ − 2, 2β − 2γ, (x + β)γ+1

)
(14)

for all nonnegative integer x, λ̂φV ,γ dominates λ̂ML under the loss function (2).

Proof. By applying Lemma 2.2, 2.3 with ∆(σ, j) = C ∈ CV and Lemma 2.8, we have

λ̂ML(iV ,xC) = x(iV ),

λ̂ML(iV ,xC + ei
C) ≥

∑

i′C :i′V =iV

(x(iC) + 1)

= x(iV ) + IC\V

for all C ∈ CV . Thus from the definition of ICV

λ̂ML(iV ,xC + ei
C) ≥ x(iV ) + ICV

.

Define B as B = x(iV ) + β + 1. Then from (13)

R̂d(iV , λ̂φV ,γ)

=
φV (x(iV ) + 1)

Bγ+2

(
2B − φV (x(iV ) + 1)

Bγ

)
λ̂ML(iV , xC + ei

C) −
φV (x(iV ))

(B − 1)γ+1
λ̂ML(iV , xC)

≥ φV (x(iV ) + 1)

Bγ+2(B − 1)γ+1

{
(B − 1)γ+1

(
2B − φV (x(iV ) + 1)

Bγ

)
(x(iV ) + ICV

)

−2Bγ+2x(iV )

}

≥ φV (x(iV ) + 1)

B(B − 1)γ+1

{(
2(B − (γ + 1)) − φV (x(iV ) + 1)

)
(x(iV ) + ICV

) − 2Bx(iV )
}

=
φV (x(iV ) + 1)

B(B − 1)γ+1

{(
2ICV

− 2γ − 2 − φV (x(iV ) + 1)
)
x(iV )

+
(
2β − 2γ − φV (x(iV ))

)
ICV

}
. (15)

The second inequality follows from the fact that (B − 1)γ+1 ≥ Bγ+1 − (γ + 1)Bγ for γ ≥ 0 and
the assumption (11). The right hand side of (15) is always nonnegative under the condition
(14), which completes the proof.

So far we considered any V ⊂ ∆ such that V is a proper subset of some clique in G. We
can obtain wider conditions on φV to dominate the MLE, if V is a subset of a minimal vertex
separator. Consider any of the following three condition,

(i) V is a minimal vertex separator, i.e. V ∈ S

(ii) There exists a minimal vertex separator S such that V ⊂ S

(iii) V = ∅, i.e. x(iV ) = x+.

10



For each of these cases we derive wider class of estimators, which dominate the MLE.
We begin with the case (i) where V ∈ S. Define IC(V,G) by

IC(V,G) = max
C̃∈C(V,G)

∑

C∈C̃

IC\V , (16)

where C(V,G) is given in (8). Then we obtain the following theorem.

Theorem 3.2. Suppose V is a minimal vertex separator in G. If φV (·) satisfies

0 ≤ φV (x) ≤ min
(

2(IC(V,G) − ν(V )) − 2γ − 2, 2β − 2γ, (x + β)γ+1
)

(17)

for all nonnegative integer x, then λ̂φV ,γ dominates λ̂ML under the loss function (2).

Proof. By using Lemma 2.2, 2.3 with ∆(σ, j) = ∆(C̃) and Lemma 2.9, we have

λ̂ML(iV ,xC) = x(iV ),

λ̂ML(iV ,xC + ei
C) ≥

∑

C∈C̃

∑

i′C :i′V =iV

∏
C∈C̃(x(i′C) + 1)

(x(iV ) + 1)ν(V )

=

∏
C∈C̃(x(iV ) + IC\V )

(x(iV ) + 1)ν(V )

≥ x(iV ) +
∑

C∈C̃

IC\V − ν(V )

for all C̃ ∈ C(V,G). The last inequality follows from Lemma 3.2 in Hara and Takemura[10].
Thus from the definition of IC(V,G)

λ̂ML(iV ,xC + ei
C) ≥ x(iV ) + IC(V,G) − ν(V ). (18)

Define B as B = x(iV ) + β + 1. In the same way as (15)

R̂d(iV , λ̂φV ,γ)

=
φV (x(iV ) + 1)

Bγ+2

(
2B − φV (x(iV ) + 1)

Bγ

)
λ̂ML(iV ,xC + ei

C) −
φV (x(iV ))

(B − 1)γ+1
λ̂ML(iV , xC)

≥ φV (x(iV ) + 1)

Bγ+2(B − 1)γ+1

{
(B − 1)γ+1

(
2B − φV (x(iV ) + 1)

Bγ

)
(x(iV ) + IC(V,G) − ν(V ))

−2Bγ+2x(iV )

}

≥ φV (x(iV ) + 1)

B(B − 1)γ+1

{(
2(B − (γ + 1)) − φV (x(iV ) + 1)

)
(x(iV ) + IC(V,G) − ν(V )) − 2Bx(iV )

}

=
φV (x(iV ) + 1)

B(B − 1)γ+1

{(
2(IC(V,G) − ν(V )) − 2γ − 2 − φV (x(iV ) + 1)

)
x(iV )

+
(
2β − 2γ − φV (x(iV ))

)
(IC(V,G) − ν(V ))

}
. (19)

The right hand side of (19) is always nonnegative under the condition (17), which completes
the proof.
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Remark 3.1. We note that |C̃| = ν(V ) + 1 for all C̃ ∈ C(V,G) and V ∈ S from (8). Since we
assumed that Iδ ≥ 2 for all δ ∈ ∆, we have

IC(V,G) − ν(V ) ≥
∑

C∈C̃

IC\V − ν(V )

= IC̃\V +
∑

C 6=C̃

(IC\V − 1)

> IC̃\S

for all C̃ ∈ C̃ and C̃ ∈ C. This implies IC(V,G) − ν(V ) ≥ ICV
. Thus the class (17) is wider than

(14).

Next we consider the case (ii) where there exists at least one minimal vertex separator S ∈ S
such that V ⊂ S. We note that such V may itself be a minimal vertex separator.

1 2

3

4

5

Figure 3: 5-way decomposable model (a)

For example S of the graph in Fig 3 is {{2}, {2, 5}}. {2} is itself a minimal vertex separator
and is also a subset of {2, 5}.

Define SV as follows,
SV = {S ∈ S | S ⊇ V }.

Then we obtain the following theorem.

Theorem 3.3. Suppose V ⊂ S for some S ∈ S. Define I∗
V by

I∗
V = max

S∈SV

IS\V (IC(S,G) − ν(S)), (20)

where I∅ = IV \V ≡ 1. If φV (·) satisfies

0 ≤ φV (x) ≤ min
(

2I∗
V − 2γ − 2, 2β − 2γ, (x + β)γ+1

)
(21)

for all nonnegative integer x, λ̂φV ,γ dominates λ̂ML under the loss function (2).

Proof. Define S∗
V by

S∗
V = argmax

S∈SV

IS\V (IC(S,G) − ν(S)).

12



From (18) we have

λ̂ML(iV ,xC + ei
C) ≥

∑

i′
S∗

V
:i′V =iV

{
x(iS∗

V
) + (IC(S∗

V ,G) − ν(S∗
V ))

}

= x(iV ) + IS∗
V \V (IC(S∗

V ,G) − ν(S∗
V )).

Let B be B = x(iV ) + β + 1. In the same way as (19)

R̂d(iV , λ̂φV ,γ) ≥ φV (x(iV ) + 1)

B(B − 1)γ+1

{(
2IS∗

V \V (IC(S∗
V ) − ν(S∗

V )) − 2γ − 2 − φV (x(iV ) + 1)
)
x(iV )

+
(
2β − 2γ − φV (x(iV ))

)
IS∗

V \V (IC(S∗
V ) − ν(S∗

V ))
}

.

When φV satisfies (21), R̂d(iV , λ̂φV ,γ) ≥ 0, which completes the proof.

Remark 3.2. We note that

max
C∈CV

IC\V = max
S∈SV

max
C∈CV

IC\SIS\V

≤ max
S∈SV

IS\V (IC(S,G) − ν(S))

= I∗
V .

The inequality follows from the argument in Remark 3.1. Thus the class (21) is wider than
(14) in Theorem 3.1. Even in the case where V ∈ S,

I∗
V = max

S∈SV

IS\V (IC(S,G) − ν(S))

≥ IS\V (IC(S,G) − ν(S))

from the fact that V ∈ SV , that is, the class (21) is wider than (17). Thus we may as well
apply Theorem 3.3 to such V . If V ∈ S and there exist no minimal vertex separators S ∈ S
such that V ⊂ S, Theorem 3.2 should be applied.

Define I∗ as
I∗ = max

S∈S
IS(IC(S,G) − ν(S)). (22)

From the result of Theorem 3.3 with V = ∅, we can obtain the following result.

Theorem 3.4. If φ(·) satisfies

0 ≤ φ(x) ≤ min
(

2I∗ − 2γ − 2, 2β − 2γ, (x + β)γ+1
)
, (23)

then

λ̂φ,γ = λ̂ML

(
1 − φ(x+)

(x+ + β)γ+1

)

dominates λ̂ML under the loss function (2).

13



1 2 3

4

5

Figure 4: 5-way decomposable model (b)

From Theorem 3.2 to 3.4 we obtained wider classes of improved estimators than the class of
Theorem 3.1 corresponding to the case (i) to (iii), respectively. Consider the following other
two cases,

(iv) V /∈ S is a union of some minimal vertex separators.

(v) V includes a simplicial vertex.

We give an example of the case (iv). C and S of the graph in Figure 4 are {{1,2},{2,3,4},{3,5}}
and {{2}, {3}}, respectively. If we set V = {2, 3}, then V is a subset of the clique {2, 3, 4} and
is the union of the minimal vertex separators {2} and {3}.

Since V is supposed to be a subset of a clique of G or V = ∅, in view of Lemma A.1 in the
Appendix, V necessarily belongs to any of the above (i) to (v). Thus Theorem 3.1 should be
applied only to the cases (iv) and (v).

4 Examples

4.1 3-way model of Figure 1

As mentioned in the Section 1, Hara and Takemura[10] derived the improved estimators in the
3-way model in Figure 1. In this model C = {{1, 2}, {2, 3}}, S = {{2}}. Then the model (1) is
expressed by

λ(i) = λ
α(i12)α(i23)

α(i2)
.

Consider the class of estimators (10) with V = {2} and apply Theorem 3.2 to this model. Since
ν({2}) = 1 and IC({2},G) = I1 + I3, the condition (17) on φV (·) = φ2(·) is written by

0 ≤ φ2(x) ≤ min
(

2(I1 + I3) − 2γ − 2, 2β − 2γ, (x + β)γ+1
)
. (24)

Next we set V = {∅} and apply Theorem 3.4 to this model. Since I∗ = I2(I1 + I3 − 1), the
class (23) is

0 ≤ φ(x) ≤ min
(

2I2(I1 + I3 − 1) − 2γ − 2, 2β − 2γ, (x + β)γ+1
)
. (25)

(24) and (25) coincide with the results of Theorem 4.1 and 4.3 in Hara and Takemura[10],
respectively.
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Consider the class of estimators (10) with V = {1}. Since {1} is simplicial, we can apply
Theorem 3.1 and obtain the following condition on φV (·) = φ1(·) corresponding to (14),

0 ≤ φ1(x) ≤ min
(

2I2 − 2γ − 2, 2β − 2γ, (x + β)γ+1
)
.

This class is not included in that of Hara and Takemura[10].

4.2 5-way model of Figure 3

For the graph in Figure 3, C = {{1, 2}, {2, 3, 5}, {2, 4, 5}}, S = {{2}, {2, 5}} and ν({2}) =
ν({2, 5}) = 1. The model (1) is expressed by

λ(i) = λ
α(i12)α(i235)α(i245)

α(i2)α(i25)
. (26)

From (3) λ̂ML(i, xC) is

λ̂ML(i, xC) =





x(i12)x(i235)x(i245)

x(i2)x(i25)
, if x(i2) 6= 0 and x(i25) 6= 0,

0, otherwise.

Consider the class of estimators (10) with V = {2}. {2} satisfies {2} ∈ S and {2} ⊂ {2, 5} ∈ S.
Thus this case corresponds to the condition (ii) and we can apply Theorem 3.3. From (16) and
(20) I∗

V = I∗
2 = I5(I3 + I4 − 1). Hence the condition (21) on φV (·) = φ2(·) is written by

0 ≤ φ2(x) ≤ min
(

2I5(I3 + I4 − 1) − 2γ − 2, 2β − 2γ, (x + β)γ+1
)
.

Next we consider to take V = ∅. From (22) I∗ in this model is

I∗ = max
(

I25(I3 + I4 − 1), I2(I1 + I5 + max(I3, I4) − 1)
)
.

By applying Theorem 3.4 with this I∗, we can obtain another class.

4.3 The case where the graph is disconnected

When G is disconnected, we suppose that ∅ ∈ S, α(i∅) ≡ 1, iV ∪∅ ≡ iV for V ⊂ ∆ and that
ν(∅) = νG − 1, where νG is the number of connected components. We may consider G as if ∅
were adjacent to all the vertices in ∆.

The model (1) with C = {{1}, . . . , {J}}, |∆| = J , and S = {∅} is called J-way Poisson
multiplicative model. The corresponding conditional independent graph is disconnected set of
vertices as presented in Figure 5.

The model (1) corresponding to the Figure 5 is written by

λ(i) = λ
J∏

j=1

α(ij),
∑

ij∈Ij

α(ij) = 1.

15



1 2 3 4

∅

J

Figure 5: J-way multiplicative model

From (3) the MLE of λ is

λ̂ML(i, xC) =





∏J
j=1 x(ij)

(x+)J−1
, if x+ 6= 0,

0, otherwise.

Hara and Takemura[10] derived the Chou[3]-type estimator improving on the MLE in this
model. Consider the class of improved estimators (10) with V = ∅ and apply Theorem 3.2 to
this model. Since ν(∅) = J and IC(∅,G) =

∑J
j=1 Ij, then the condition (17) on φV (·) = φ(·) is

expressed by

0 ≤ φ(x) ≤ min
(

2
∑J

j=1 Ij − 2γ − 2J, 2β − 2γ, (x + β)γ+1
)
.

This class coincides with the class of Hara and Takemura[10]. By applying Theorem 3.4 we can
also obtain the above class.

1 2 3

4 5 6

∅

Figure 6: 6-way disconnected model

Next we consider the model in Figure 6. This model is composed of two disconnected 3-way
models which is considered in Section 4.1. In this model C = {{1, 2}, {2, 3}, {4, 5}, {5, 6}},
S = {{2}, {5}, ∅} and ν({2}) = ν({5}) = ν({∅}) = 1. Thus the model (1) is written by

λ(i) = λ
α(i12)α(i23)α(i45)α(i56)

α(i2)α(i5)
.

The MLE of λ is

λ̂ML(i, xC) =





x(i12)x(i23)x(i45)x(i56)

x(i2)x(i5)x+
, if x+ 6= 0,

0, otherwise.
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Consider the class of estimators (10) with V = ∅. From (22) I∗ is

I∗ = max
(

I12 + I23 − I2, I45 + I56 − I5, max(I12, I23) + max(I45, I56) − 1
)
.

By applying Theorem 3.4 with this I∗, we can obtain a class of improved estimators.

5 Monte Carlo Studies

We study the risk performance of the proposed estimators for the 5-way decomposable model
corresponding to the graph in Figure 3 through Monte Carlo studies with 100,000 replications.
We consider the following class of estimators

λ̂β,V = λ̂ML

(
1 − β

x(iV ) + β

)
.

This is the class (10) with φV (x(iV )) = β and γ = 0. We set Iδ = I for all δ ∈ ∆ = {1, 2, 3, 4, 5}
and V = ∅, {2} and {2, 5}, which satisfy the conditions (iii), (ii) and (i), respectively. By
applying the corresponding theorem in Section 3, we can obtain the upper bound of β for each
V in order to improve on λ̂ML. Denote the upper bound by βU

V . The theorem which is applied
and βU

V for each V is summarized in Table 1.
The model is expressed by (26). We set α(iC) =

∏
δ∈C α(iδ) for all cliques in this model.

With respect to α(iδ) we considered the following three cases,

• α(iδ) = 1/I for all δ

• α(i2) are unbalanced

• α(i2) and α(i5) are unbalanced, i.e. α(i25) are unbalanced.

We write α(δ) = {α(iδ)}iδ∈Iδ
.

In Table 2 to Table 6 we present the risks of λ̂ML and λ̂β,V with β = βU
V , βU

V /2 and βU
V /4 for

some λ and I = 2, 3. The summary of the experiments is as follows.

• We can confirm the dominance of the proposed estimators over the MLE. As can be
expected from the fact that the proposed estimators shrink the MLE towards zero, we
can see considerable amount of risk reduction when λ is small.

• The improvement is in the inverse proportion to λ.

• When α(iδ) are balanced, λ̂β,∅ shows larger risk reduction.

• When α(iV ), V ∈ {{2}, {2, 5}} vary widely, λ̂β,V shows larger risk reduction as λ gets
large.
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Table 1: The upper bound of β for each V
V Condition Theorem βU

V

∅ (iii) 3.4 2I2(2I − 1) − 2
{2} (ii) 3.3 2I(2I − 1) − 2
{2, 5} (i) 3.2 2(2I − 1) − 2

Table 2: Risks of λ̂ML and λ̂β,V for the model in Figure 3 with balanced α(iδ).

(1) I = 2 and α(iδ) = 1/2

λ
V β 0.1 0.5 1.0 5.0 10.0 50.0 100.0

22 0.165 0.574 1.058 4.146 6.630 12.097 13.161
∅ 11 0.349 0.849 1.421 4.804 7.162 11.782 12.807

5.5 0.949 1.706 2.526 6.780 9.102 12.607 13.271
10 0.369 0.773 1.247 4.311 6.796 12.236 13.247

{2} 5 1.017 1.502 2.052 5.369 7.702 12.113 13.010
2.5 2.780 3.400 4.069 7.732 9.824 12.892 13.431

4 1.380 1.747 2.182 5.073 7.470 12.603 13.447
{2, 5} 2 3.656 4.007 4.409 7.077 9.098 12.771 13.391

1 8.062 8.268 8.478 10.181 11.454 13.425 13.718

λ̂ML 31.567 30.106 28.323 20.972 17.790 14.717 14.362

(2) I = 3 and α(iδ) = 1/3

λ
V β 0.1 0.5 1.0 5.0 10.0 50.0 100.0

88 0.136 0.554 1.073 4.997 9.295 28.822 38.297
∅ 44 0.244 0.735 1.352 5.995 10.799 29.241 37.126

22 0.654 1.418 2.399 9.652 16.362 35.593 41.760
28 0.396 0.813 1.334 5.230 9.491 29.048 38.553

{2} 14 1.212 1.715 2.351 6.979 11.727 30.239 38.006
7 4.000 4.748 5.717 12.402 18.533 36.900 42.676
8 3.090 3.416 3.843 7.246 11.184 30.328 39.706

{2, 5} 4 9.782 9.964 10.268 13.157 16.818 33.744 40.819
2 26.919 26.546 26.318 26.585 28.679 41.082 45.424

λ̂ML 239.31 226.97 214.44 148.82 111.08 63.33 56.92
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Table 3: Risks of λ̂ML and λ̂β,V for the model in Figure 3 with unbalanced α(i2)

(1) I = 2 and λ = 1.0

α(2)
V β (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6)

22 1.066 1.064 1.062 1.059
∅ 11 1.445 1.441 1.433 1.424

5.5 2.586 2.578 2.556 2.533
10 1.221 1.237 1.245 1.247

{2} 5 2.015 2.042 2.053 2.051
2.5 4.013 4.061 4.078 4.070

4 2.169 2.185 2.189 2.184
{2, 5} 2 4.410 4.433 4.432 4.416

1 8.518 8.548 8.530 8.492

λ̂ML 28.700 28.699 28.533 28.379

(2) I = 2 and λ = 10.0

α(2)
V β (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6)

22 6.978 6.791 6.692 6.643
∅ 11 7.928 7.518 7.297 7.190

5.5 10.453 9.735 9.342 9.154
10 5.636 6.169 6.523 6.726

{2} 5 6.369 7.003 7.400 7.624
2.5 8.299 9.059 9.500 9.740

4 6.371 6.873 7.201 7.402
{2, 5} 2 8.007 8.511 8.830 9.030

1 10.713 11.051 11.261 11.404

λ̂ML 20.889 19.267 18.351 17.916

(3) I = 2 and λ = 100.0

α(2)
V β (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6)

22 13.603 13.291 13.200 13.161
∅ 11 13.352 12.970 12.861 12.814

5.5 13.881 13.454 13.335 13.282
10 11.583 12.654 13.039 13.195

{2} 5 11.714 12.538 12.843 12.970
2.5 12.611 13.143 13.333 13.407

4 11.929 12.933 13.276 13.404
{2, 5} 2 12.380 13.049 13.277 13.363

1 13.228 13.558 13.668 13.705

λ̂ML 15.047 14.569 14.437 14.378
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Table 4: Risks of λ̂ML and λ̂β,V for the model in Figure 3 with unbalanced α(i2)

(1) I = 3 and λ = 1.0

α(2)
V β (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)

88 1.076 0.545 0.482 0.419
∅ 44 1.364 0.730 0.654 0.579

22 2.440 1.423 1.302 1.182
28 1.326 0.802 0.741 0.679

{2} 14 2.342 1.708 1.635 1.557
7 5.701 4.752 4.644 4.521
8 3.854 3.416 3.361 3.302

{2, 5} 4 10.313 9.986 9.943 9.878
2 26.447 26.622 26.651 26.587

λ̂ML 215.75 227.83 229.77 230.25

(2) I = 3 and λ = 10.0

α(2)
V β (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)

88 9.569 5.050 4.437 3.822
∅ 44 11.681 6.386 5.559 4.744

22 18.762 11.008 9.507 8.045
28 8.811 4.741 4.315 3.857

{2} 14 10.718 6.217 5.777 5.293
7 16.730 10.886 10.396 9.837
8 10.673 6.942 6.520 6.080

{2, 5} 4 16.386 13.077 12.649 12.218
2 28.964 27.589 27.164 26.796

λ̂ML 131.95 176.81 176.70 177.95

(3) I = 3 and λ = 100.0

α(2)
V β (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)

88 39.818 34.014 29.736 26.142
∅ 44 39.739 40.731 34.317 29.450

22 45.414 55.387 46.353 39.747
28 32.944 19.898 20.145 20.076

{2} 14 33.378 20.829 21.347 21.556
7 38.899 26.176 27.296 28.004
8 34.081 21.464 21.644 21.532

{2, 5} 4 36.413 25.378 25.654 25.738
2 42.505 34.945 34.957 35.024

λ̂ML 62.380 105.56 93.761 86.945
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Table 5: Risks of λ̂ML and λ̂β,V for the model in Figure 3 with unbalanced α(i25)

(1) I = 2 and λ = 1.0

α(2) = α(5)
V β (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6)

22 1.066 1.062 1.062 1.059
∅ 11 1.444 1.433 1.433 1.424

5.5 2.581 2.556 2.558 2.534
10 1.220 1.234 1.247 1.248

{2} 5 2.010 2.035 2.059 2.054
2.5 3.996 4.042 4.090 4.074

4 2.120 2.154 2.181 2.182
{2, 5} 2 4.327 4.377 4.422 4.412

1 8.389 8.455 8.519 8.488

λ̂ML 28.508 28.511 28.550 28.390

(2) I = 2 and λ = 10.0

α(2) = α(5)
V β (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6)

22 7.034 6.819 6.705 6.647
∅ 11 8.051 7.580 7.331 7.200

5.5 10.668 9.846 9.406 9.172
10 5.752 6.216 6.544 6.732

{2} 5 6.572 7.092 7.447 7.639
2.5 8.590 9.197 9.576 9.765

4 5.525 6.394 6.989 7.345
{2, 5} 2 7.185 8.030 8.617 8.971

1 9.986 10.608 11.066 11.350

λ̂ML 21.377 19.521 18.504 17.957

(3) I = 2 and λ = 100.0

α(2) = α(5)
V β (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6)

22 13.906 13.385 13.214 13.171
∅ 11 13.715 13.082 12.877 12.826

5.5 14.280 13.578 13.352 13.295
10 11.753 12.719 13.057 13.205

{2} 5 11.959 12.629 12.862 12.981
2.5 12.926 13.253 13.351 13.420

4 10.754 12.394 13.113 13.383
{2, 5} 2 11.308 12.628 13.145 13.347

1 12.374 13.280 13.579 13.699

λ̂ML 15.490 14.706 14.454 14.393

21



Table 6: Risks of λ̂ML and λ̂β,V for the model in Figure 3 with unbalanced α(i25)

(1) I = 3 and λ = 1.0

α(2) = α(5)
V β (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)

88 1.076 1.074 1.073 1.073
∅ 44 1.365 1.359 1.356 1.353

22 2.445 2.423 2.412 2.402
28 1.328 1.329 1.333 1.334

{2} 14 2.348 2.345 2.352 2.353
7 5.716 5.702 5.722 5.722
8 3.852 3.843 3.853 3.847

{2, 5} 4 10.321 10.281 10.301 10.279
2 26.480 26.363 26.397 26.344

λ̂ML 216.19 215.07 214.90 214.60

(2) I = 3 and λ = 10.0

α(2) = α(5)
V β (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)

88 9.595 9.518 9.367 9.305
∅ 44 11.755 11.504 11.034 10.839

22 18.951 18.265 17.003 16.481
28 8.901 9.119 9.350 9.472

{2} 14 10.945 11.227 11.543 11.714
7 17.197 17.661 18.230 18.532
8 10.037 10.482 10.936 11.155

{2, 5} 4 15.543 16.034 16.538 16.801
2 27.776 28.174 28.479 28.704

λ̂ML 133.55 127.57 116.56 112.01

(3) I = 3 and λ = 100.0

α(2) = α(5)
V β (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)

88 40.760 40.201 38.756 38.387
∅ 44 41.287 40.362 37.898 37.250

22 47.539 46.266 42.831 41.916
28 33.548 34.920 37.436 38.440

{ 2 } 14 34.427 35.394 37.262 37.942
7 40.480 41.025 42.276 42.652
8 30.539 32.689 37.378 39.422

{2,5} 4 33.111 34.971 39.008 40.613
2 39.391 40.916 44.151 45.292

λ̂ML 65.520 63.636 58.511 57.134
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Appendix

A Characterization of simplicial vertex

Lemma A.1. The following conditions are equivalent for a decomposable graph G.

(i) δ ∈ ∆ is simplicial ;

(ii) there is only one clique which includes δ ;

(iii) δ /∈ S for all S ∈ S.

Proof. First we show that (i) ⇔ (ii). Suppose δ ∈ ∆ is simplicial. From the definition of
simplicial vertex the union of δ and adj(δ,G) is a complete subset of ∆ that is maximal with
respect to the inclusive relation, i.e. a clique. Thus there is only one clique which includes
δ. Conversely if we assume (ii) and denote the clique by Cδ, adj(δ,G) = Cδ \ {δ} is complete.
Thus (i) ⇔ (ii).

Next that (ii) ⇔ (iii). Suppose (ii) and let Cδ be the clique. Since G is decomposable, there
exists a perfect sequence of cliques C1, . . . , CK and the corresponding minimal vertex separators
S2, . . . , SK such that

C1 = Cδ, Sk = (
k−1⋃

j=1

Cj) ∩ Ck =
k−1⋃

j=1

(Cj ∩ Ck), k = 2, . . . , K

(See Lemma 2.18 in Lauritzen[15] for example). We note that δ ∩ Ck = ∅ for k ≥ 2. Thus
δ /∈ Sk for all Sk ∈ S. Conversely suppose that there exists two cliques Ca and Cb such that
δ ⊂ Ca ∩ Cb. Then δ has S ∈ S such that δ ⊂ S from the running intersection property of
perfect sequences. Thus the proof is completed.

B The proof of Lemma 2.9

In order to prove Lemma 2.9, we use the following lemma.

Lemma B.1. If G 6= G(∆(C̃)) for C̃ ∈ C(S,G) and S ∈ S, ∆ \ ∆(C̃) includes at least one
simplicial vertex in G.

Proof. The proof is by induction on the number of vertices J . The lemma is trivial if
J ≤ 4. Suppose J > 4 and assume that the lemma holds for all decomposable graphs with
fewer than J vertices.

Suppose that ∆ \∆(C̃) does not include simplicial vertex in G. Let δ ∈ ∆(C̃) be a simplicial
vertex in G. We write Gδ = G(∆\{δ}). Then there exists a C̃ ′ ∈ C(S,Gδ) such that Gδ(∆(C̃ ′)) =
G(∆(C̃) \ {δ}). Since there is only one clique which includes δ from Lemma A.1, adj(δ,G) ∩
(∆\∆(C̃)) = ∅. Thus adj(v,G) = adj(v,G(∆ \{δ})) for any v ∈ ∆ \∆(C̃), which implies v ∈ ∆
is not simplicial in Gδ either. This contradicts the inductive assumption from the fact that
∆ \ ∆(C̃) = (∆ \ {δ}) \ (∆(C̃) \ {δ}) = (∆ \ {δ}) \ ∆(C̃ ′). This proves the lemma.
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Proof of Lemma 2.9 The proof is by induction on the number of vertices J . The lemma
is trivial if J = 2. Suppose J > 2 and assume that the lemma holds for all decomposable graph
with fewer than J vertices.

Suppose that G has J vertices. If G(∆(C̃)) includes all of the simplicial vertices in G,
G(∆(C̃)) = G from Lemma B.1.

In the case where G(∆(C̃)) 6= G, there exists at least one simplicial vertex δ such that
δ /∈ ∆(C̃). Since G(∆ \ δ) has J − 1 vertices, there exist a perfect elimination scheme σ∆\{δ} :
{1, 2, . . . , J − 1} 7→ ∆ \ {δ} and j < J − 1 such that

∆(C̃) = {σ∆\{δ}(j − 1), . . . , σ∆\{δ}(J − 1)}

from the inductive assumption. If we set σ(1) = δ and σ(j) = σ∆\{δ}(j − 1), j = 2, . . . , J , then
σ satisfies (9), which completes the proof.

C The proof of Lemma 2.2 and Lemma 2.3

Proof of Lemma 2.2 As we mentioned in Section 2, the MLE of α(iC) is x(iC)/x+ for
all C ∈ C. Since any cliques and minimal vertex separators in G(∆(σ, j)) are included in
some cliques in C, the MLE of α(iC′) and α(iS′) for all C ′ ∈ C(∆(σ, j)) and S ′ ∈ S(∆(σ, j)) are
x(iC′)/x+ and x(iS′)/x+, respectively. Thus it suffices to show that the conditional independent
graph of ∆(σ, j) is G(∆(σ, j)).

We prove this by induction on j. The lemma is trivial if j = 1. Suppose j0 ≥ 2 and assume
that the lemma holds for j ≤ j0.

σ(j0) is a simplicial vertex in G(∆(σ, j0)). From the Lemma A.1 σ(j0) satisfies σ(j0) /∈ S
for all S ∈ S(∆(σ, j0)). Thus any two of vertices in ∆(σ, j0 + 1) = ∆(σ, j0) \ {σ(j0)} is not
separated by σ(j0). From the global Markov property the conditional independent graph of
∆(σ, j0 + 1) is G(∆(σ, j0 + 1)), which completes the proof.

Proof of Lemma 2.3. Let C1 be the clique which includes σ(1). Then we have

∑

i′:i′
∆(σ,2)

=i∆(σ,2)

λ̂ML(i′, xC + ei′

C ) =
∑

i′:i′
∆(σ,2)

=i∆(σ,2)

∏
C∈C(x(i′C) + 1)∏

S∈S(x(i′S) + 1)ν(S)

=
(x(iC1\{σ(1)}) + Iσ(1))

∏
C 6=C1

(x(iC) + 1)∏
S∈S(x(iS) + 1)ν(S)

≥
(x(iC1\{σ(1)}) + 1)

∏
C 6=C1

(x(iC) + 1)∏
S∈S(x(iS) + 1)ν(S)

=

∏
C∈C(∆(σ,2))(x(iC) + 1)

∏
S∈S(∆(σ,2))(x(iS) + 1)ν(S,∆(σ,2))

= λ̂ML(i∆(σ,2),xC + ei
C)
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By iterating this operation for σ(k), k = 2, . . . , j, in sequence, we obtain as a consequence

∑

i′
∆(σ,j−1)

:i′
∆(σ,j)

=i∆(σ,j)

· · ·
∑

i′:i′
∆(σ,2)

=i∆(σ,2)

λ̂ML(i′, xC + ei′

C ) ≥
∏

C∈C(∆(σ,j))(x(iC) + 1)
∏

S∈S(∆(σ,j))(x(iS) + 1)ν(S,∆(σ,j))

= λ̂ML(i∆(σ,j),xC + ei
C).
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