
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Reversing Iterations:
IO Swapping Leads You There And Back Again

Akimasa Morihata, Kazuhiko Kakehi,
Zhenjiang Hu, and Masato Takeichi

METR 2005–11 May 2005

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Reversing Iterations:

IO Swapping Leads You There And Back Again

Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu, and Masato Takeichi

Department of Mathematical Informatics
Graduate School of Information Science and Technology

University of Tokyo
{Akimasa Morihata, kaz, hu, takechi}@mist.i.u-tokyo.ac.jp

May, 2005

Abstract

TABA (There And Back Again) [DG02], proposed by Danvy and Goldberg, is a special but powerful
programming pattern where a recursive function traverses lists at return time. They showed the TABA
programs, but neither derivation nor manipulation of the TABA programs were presented. We propose
a novel program transformation rule called IO swapping. The rule swaps input and output values of
functions and introduces iteration at return times. Using this rule three stories of TABA are played out
in this paper: systematic derivation of a basic TABA program; manipulation of TABA programs including
palindrome through function fusion; and extension of the rule to deal with circular dependency of inputs
and outputs like repmin function, introduced by Bird [Bir84], and with structures other than lists like
binary trees.

1 Introduction

TABA (“There And Back Again”) [DG02], proposed by Danvy and Goldberg, is a special but powerful
programming pattern where a recursive function traverses lists at return time. Their idea is that
the recursive calls get us there (typically to a empty list) and the returns get us back again while
traversing the list. A typical example is the symbolic convolution function cnv which accepts two
lists, [x0, x1, . . . , xn] and [y0, y1, . . . , yn], and computes a new list [(x0, yn), (x1, yn−1), . . . , (xn, y0)].
This can be naively specified as follows.

cnv :: [a] -> [b] -> [(a,b)]
cnv x y = zip x (reverse y)

Being straightforward, this definition is not satisfactory: The list y is traversed by reverse to produce
an intermediate list which will be again traversed by zip. A clever TABA program, which avoids
generation of the intermediate list, is as follows.

cnv x y = let (r,[]) = walk x in r
where walk [] = ([],y)

walk (a:x’) = let (r,b:y’) = walk x’
in ((a,b):r,y’)

This program uses an auxiliary function walk which exhibits a bit unusual behavior. When the input
x is empty, walk uses the input y directly as a return value, and his return value will be traversed
together while traversing x. Indeed this program is much different from the initial specification, but it
actually computes symbolic convolution without the need of extra memory other than resulting data.
Other examples such as the palindrome program in Section 4 may be more complex.

1



TABA is truly tricky. It would be interesting to see whether there is a systematic way that may
lead us to write such TABA programs. A set of clever TABA programs Danvy and Goldberg [DG02]
gave is not satisfactory: They showed the TABA programs, but neither derivation nor manipulation
of the TABA programs were presented. It seems like a still picture; we enjoy it, but we could not know
where it came from, what it is, and where it will go. One may wish to use TABA-like computations
and to manipulate such a new kind of iteration, i.e., iteration over some return values.

In this paper, we show that we can make this still picture to a motion picture by program calcu-
lation [BdM96], an transformational approach to carrying programs from naive definitions to efficient
ones. Our TABA Trilogy has the following three plots, which are the main contributions of this paper.

• We propose a novel program transformation rule called IO swapping, which swaps input and output
values of a function and introduces iteration at return times. We show it enables systematic
derivation of a function cnv by program calculation.

• We demonstrate how to manipulate TABA programs. Function cnv is a generic function and we
can get variety of functions by fusing other functions to cnv. We demonstrate the derivation of
efficient palindrome-detecting function and confirm this.

• We extend IO swapping rule and give more and more power. Extended IO swapping gives a
constraint to be able to manipulate functions which has circular dependency of inputs and outputs.
IO swapping jumps out of lists: We show that IO swapping can deal not only lists, but also other
data structures, for example binary tree.

Along with this introduction, the next Section 2, which briefly reviews notations and explains a
known fusion law used in our derivation, forms the prologue. Section 3 figures out where TABA
came from, by introducing a novel program transformation rule named IO swapping for deriving the
standard TABA form. Section 4 portrays what TABA is through manipulation of TABA programs.
Section 5 foresees where TABA will go, by generalizing the IO swapping rule and show manipulations
of more confusing functions. As the epilogue, we discuss about related work in Section 6, and conclude
the TABA story in Section 7.

2 Preliminary

In this section, we briefly explain our notational conventions and an important and general law for
program derivation.

2.1 Notations

Throughout the paper we use the notation of the functional programming language Haskell [Bir98].
Some syntactic notations we use in this paper are as follows. The symbol \ is used instead of λ
for λ-expressions, and the identity function, for example, is written as (\x -> x). The symbol .
denotes function composition, i.e., (f.g) x = f(g x). In this paper, we use many standard Haskell
functions, whose informal definitions are given in Figure 1. We also assume that the structured data
we are treating are finite.

2.2 Fusion Law

Functional programming languages provide a constructive way of programming, namely development
of larger programs through composition of smaller and simpler functions. To improve efficiency of
such compositional programming style, function fusion plays an important role, which fuses function
composition into a single function and eliminates intermediate data structures passed between them.
In this paper we will make an intensive use of the following fusion law [Bir89].

2



id x = x
fst (a,b) = a
snd (a,b) = b
head [x0,x1,. . .,xn] = x0
tail [x0,x1,. . .,xn] = [x1,x2,. . .,xn]
[x0,x1,. . .,xm,. . .,xn] !! m = xm
take m [x0,x1,. . .,xm,. . .,xn] = [x0,x1,. . .,xm−1]
drop m [x0,x1,. . .,xm,. . .,xn] = [xm,xm+1,. . .,xn]
length [x0,x1,. . .,xn] = n+1
reverse [x0,x1,. . .,xn] = [xn,xn−1,. . .,x0]
map f [x0,x1,. . .,xn] = [f x0,f x1,. . .,f xn]
zip [x0,x1,. . .,xn] [y0,y1,. . .,yn] = [(x0,y0),(x1,y1),. . .,(xn,yn)]
foldr f e [x0,x1,. . .,xn] = f x0 (f x1 (· · · (f xn e)· · · ))
foldl f e [x0,x1,. . .,xn] = f (· · · (f (f e x0) x1)· · · ) xn
and x = foldr (&&) True x
div n m = bn/mc

Figure 1: Informal definitions of standard functions

theorem 1 (Fold Promotion)
f . foldr (⊕) e = foldr (⊗) e’
provided that f e = e’ and f (a ⊕ y) = a ⊗ (f y) hold for all a and y.

This theorem indicates that finding a proper operator ⊗ is enough for fusing programs. Such
calculation over programs, which is often referred as calculational programming [BdM96] (or program
calculation) is a powerful tool, as we later see TABA-styled functions can be formally derived using
calculational programming.

3 Deriving TABA Programs

We shall show that the TABA program for the symbolic convolution function cnv can be systematically
derived, based on the standard fusion transformation together with a new transformation called IO
swapping.

3.1 IO Swapping for foldl

The new and effective transformation rule proposed in this paper is IO swapping, which changes the
view of functions; literally “thinking upside down” about treatments of data structure. We start by
seeing how the familiar accumulative function foldl defined by

foldl f e [] = e
foldl f e (a:x) = foldl f (f e a) x

can be turned into an accumulation-free variant by IO swapping. Though it is often the case that
elimination of accumulation involves changes in semantics and complexity, the obtained program
through IO swapping keeps the meaning while avoiding degradation of computational complexity.

Our idea is to move some information from the input to the output so that accumulative computation
on the input can be replaced by reconstruction of the output. To do so, we introduce the following
function foldl’

foldl’ f e y x = (drop #y x, foldl f e (take #y x))

3



which uses an additional parameter y to control how much of the input x of foldl to be moved to
the output (the first component of the result of foldl’). Here #y denotes the length of y. It is easy
to recognize the relation between foldl and foldl’.

foldl f e x = let ([],r) = foldl’ f e x x in r

Now we can derive an efficient program for foldl’ by the following calculation.

foldl’ f e [] x ⇒ (x,e)

foldl’ f e (a:y) x
= (drop #(a:y) x, foldl f e (take #(a:y) x))
⇒ { by definition of take, drop and (#) }

(tail (drop #y x), foldl f e ((take #y x)++[x!!#y]))
⇒ { by a lemma: foldl f e (y++[b]) = f (foldl f e y) b }

(tail (drop #y x), f (foldl f e (take #y x)) (x!!#y))
⇒ { by a lemma: head (drop n x) = x !! n for 0 ≤ n < #x }

(tail (drop #y x), f (foldl f e (take #y x)) (head (drop #y x)))
⇒ { by definition: foldl’ f e y x = (drop #y x, foldl f e (take #y x)) }

let (b:z,r) = foldl’ f e y x in (z, f r b)

We exploit some lemmas about take, drop, (#), foldl during the above calculation. These properties
are easily proved by induction (therefore their proofs are omitted). Now that a new definition of foldl
is in hand, we call the new foldl as foldl n to be distinguishable from ordinary foldl, which is
summarized as follows.

foldl n f e x = let ([],r) = foldl’ f e x x in r
where foldl’ f e [] x = (x, e)

foldl’ f e (a:y) x = let ((b:z), r) = foldl’ f e y x
in (z, f r b)

This implementation of foldl’ has redundant variables. We can see that the first, the second and
the forth arguments (namely f, e and x, respectively) are kept unchanging during all computation
steps. The third argument is necessary for pattern-matching, though its value is not reflected for
computing the resulting value. Deleting these unchanged arguments and renaming some variables
gives the following concise definition.

foldl n f e x = let ([],r) = foldl’ x in r
where foldl’ [] = (x, e)

foldl’ (b:y) = let ((a:x’), h) = foldl’ y
in (x’, f h a)

We summarize these results of derivation as the following theorem.

theorem 2 (IO Swapping for foldl)
The functions foldl and foldl n are defined as follows.

foldl f e [] = e
foldl f e (a:x) = foldl f (f e a) x

foldl n f e x = let ([],r) = foldl’ x in r
where foldl’ [] = (x, e)

foldl’ (b:y) = let ((a:x’), r’) = foldl’ y
in (x’, f r’ a)

Then for all x, f, and e, foldl and foldl n are equivalent.

4



[]
?

[3]¾3 ?

[2,3]¾2 ?

[1,2,3]¾1

[1,2,3]

?

e

?
f e 1

?
f(f e 1)2

?
f(f(f e 1)2)3

?

6

Return
values

Arguments

'

&

$

%
foldl

[]
6

[3]
6

[2,3]
6

[1,2,3]
6

[1,2,3] []
?

[3]¾1 ?

[2,3]¾2 ?

[1,2,3]¾3

r

f(f(f e 1)2)3

6

f(f e 1)2

6

f e 1

6

e

6

Return values Arguments

'

&

$

%
foldl n

Figure 2: The models of computation processes of foldl and foldl n

In function foldl’ the initial input list x of foldl n is passed directly as the return value of the
termination condition, and it performs its destruction through pattern-matching in its recursive call.
It is worth noting that it shares with TABA the way to manipulate the given list, namely in a reversed
manner; indeed we are ready derive TABA functions and this will be demonstrated later.

Several remarks are worth making on the implications of this theorem. First pay attention to
how the result is computed using the function parameter f. While f is applied to the accumulation
parameter in the function foldl, it comes to the surface to compute the return value of foldl n. Here
arises a hypothesis: That IO swapping is a rule that produces a kind of inverted function which swaps
the inputs (arguments) and the outputs (return values) of the original function. This is exactly the
essence of IO swapping. If the input list comes syntactically to the position as the output, consumption
of lists in the return value is a natural consequence.

Figure 2 illustrates the computation process of foldl and foldl n. Comparing two figures carefully,
the idea of IO swapping becomes much more obvious: Turning over the the figure of foldl looks almost
the same as that of foldl n! It is possible to liken the input list as a tower where each floor stores
one value except for ground floor holding the special value []. The King lives at the top of this tower;
according to the King’s command to gather values, a servant goes from the top downward to the
ground floor (like the argument) or another servant goes from the ground floor upward to the top (like
the return value). If the King rearranges the values upside-down behind the curtain, what servants
gather up as the result are secretly exchanged. Such a rearrangement of values can take place by
transferring consumption of the list from the argument to the return value: A return value arranges
the values in the list, from the ground floor to the top, providing the reversed, upside-down order of
values.

Have a look again into the definition of foldl n. We can see that foldl n (and its auxiliary function
foldl’) has no accumulation parameters. To resolve this mystery recall the behavior of IO swapping,
namely to flip the inputs and the outputs. Usual foldl has computation on accumulation parameter
and has no computation on its return value. Swapping the argument and the return value of the
ordinary foldl we get an unusual form of foldl (that is foldl n) which has computation on the
return value and has no accumulation parameters. Since what is taking place is just flipping, the
computational complexity of foldl n and foldl is the same.

3.2 Deriving TABA Programs by IO Swapping and Fusion

Now we are going to show how to systematically derive the TABA program for cnv in the introduction,
starting from the following straightforward specification:

5



cnv x y = zip x (reverse y)
where reverse = foldl (\y a -> a:y) []

We assume that x and y have the same length.
Our derivation strategy basically consists of two steps: (1) deriving a TABA program for smaller

functions used in the specification, and (2) deriving bigger a TABA program by promotion a function
into a smaller TABA program. For our case of cnv, we first derive a TABA program for reverse.
Because function reverse is a instance of foldl we can apply IO swapping to reverse and get the
following program:

rev n x = let ([],r) = rev’ x in r
where rev’ [] = (x,[])

rev’ (b:y) = let (a:x’,r’) = rev’ y
in (x’,a:r’)

which can be described in terms of foldr for being suitable for later fusion transformation.

rev n x = snd (foldr (\b (a:x’,r’)->(x’,a:r’)) (x,[]) x)

Now we calculate a TABA program for cnv by promoting the functions into rev n.

cnv x y = zip x (rev n y)
⇒ zip x (snd (foldr (\b (a:x’,r’)->(x’,a:r’)) (y,[]) y))
⇒ snd (id zip (foldr (\b (a:x’,r’)->(x’,a:r’)) (y,[]) y) x)

where id zip (a,y) x = (a, zip x y)

To promote id zip into foldr in the above, we check the following two conditions to apply the fusion
law (Theorem 1).

id zip (y,[]) x ⇒ (y,[])
id zip ((\b (a:x’,r’)->(x’,a:r’)) b (a:x’,r’)) x

⇒ (x’, (head x,a):zip (tail x) r’)
⇒ step b (id zip (a:x’,r’)) x

where step b r x = let (a:x’, r’) = r (tail x)
in (x’, (head x,a):r’)

Therefore, the fusion transformation gives

cnv x y = snd (foldr step (\x->(y,[])) y x)

which is actually the following program after unfolding the foldr.

cnv x y = snd (cnv’ y x)
where cnv’ [] = \x->(y,[])

cnv’ (b:y) = \x->let (a:x’,r’) = cnv’ y (tail x)
in (x’,(head x,a):r’)

Finally, we make the program more concise with some known calculations. First, applying eta-
expansion to remove function values and using the assumption, length of x and y are same, yields the
following program.

cnv x y = let ([],r) = cnv’ y x in r
where cnv’ [] [] = (y,[])

cnv’ (b:y) (d:z) = let (a:x’,r’) = cnv’ y z
in (x’,(d,a):r’)

6



Then, we eliminate constant propagation; during all computation steps, cnv’ does not use the first
argument and always succeeds in pattern-matching, and we can eliminate it.

cnv x y = let ([],r) = cnv’ x in r
where cnv’ [] = (y,[])

cnv’ (d:z) = let (a:x’,r’) = cnv’ z
in (x’,(d,a):r’)

This is what we have seen in the introduction, the efficient TABA program for cnv.

4 Manipulating TABA Programs

In this section, we illustrate more on manipulability of TABA programs, by deriving the efficient
palindrome program as proposed by Danvy and Goldberg [DG02]. We show that cnv, a typical TABA
program, can be fused with other functions in many ways resulting in a more involved TABA program.
This shows that TABA programs are of high generality, and that our method can be of useful guidance
for developing TABA programs.

4.1 A Small Example

In Section 3.2, we have shown the derivation of a TABA program for cnv. In fact, cnv captures a
typical form of TABA programs, and can be used to write various kinds of functions. It should be
interesting to see more about how to derive a new TABA programs from smaller ones. Our strategy of
manipulation of the TABA function is to exploit function fusion—fusing functions to cnv to produce
new TABA programs.

Recall the function rev n, which is obtained by IO swapping.

rev n x = let ([],r) = rev’ x in r
where rev’ [] = (x,[])

rev’ (b:y) = let (a:x’,r’) = rev’ y
in (x’,a:r’)

We may choose another way to get the above definition, with an assumption that we have in hand
the TABA program for cnv. Let us derive rev n from cnv. From the definition

cnv x y = zip x (reverse y)

we extract reverse x as follows.

reverse x ⇒ map snd (zip x (reverse x))
⇒ map snd (cnv x x)

We use this equation as our specification of reverse, and try to fuse map with cnv to obtain rev n.

reverse x = map snd (cnv x x)
⇒ map snd (snd (foldr (\a (b:y’,r)->(y’,(a,b):r)) (x,[]) x))
⇒ snd (id map snd (foldr (\a (b:y’,r)->(y’,(a,b):r)) (x,[]) x))

where id map f (a,b) = (a, map f b)

Now we apply Theorem 1 to fuse the above id map with foldr. With checking the following
conditions

reverse x ⇒ snd (foldr(\a (b:y’,r)->(y’,b:r)) (x,[]) x)

(id map snd) (x,[]) ⇒ (x,[])
(id map snd) ((\a (b:y’,r)->(y’,(a,b):r)) a (b:y r)

⇒ (y’, b:map snd r)
⇒ (\a (b:y’,r)->(y’,b:r)) ((id map snd) ((b:y’),r))

7



we get

reverse x = snd (foldr (\a (b:y’,r)->(y’,b:r)) (x,[]) x)

which is exactly rev n in the form of foldr.
This process indicates that derivation of TABA programs through specification using cnv and

function fusion is a successful approach. In the next subsection we develop a much more complicated
example of palindrome.

4.2 Palindrome

Danvy and Goldberg [DG02] riddle in the beginning of their paper: “Given a list of length n, where n
is not known in advance, determine whether this list is palindrome in dn/2e recursive calls and with
no auxiliary list.” Let us see this riddle is solved with calculation.

We may start by solving the problem in a straightforward way without being concerned with its
efficiency. We check whether a list is palindrome or not by turning up from the latter half center of
the list, zipping it with the first half, and checking whether all elements are the same.

palindrome x
= and (map (\(a,b)->a==b) (zip (take (div (length x) 2) x)

(reverse (drop (div (length x) 2) x))))

Here, for simplicity we assume the length of the list is even. Replacing the zip-reverse pattern with
cnv gives

palindrome x
= and (map (\(a,b)->a==b) (cnv (take (div (length x) 2) x)

(drop (div (length x) 2) x)))

Now the problem is how to manipulate cnv, which is not trivial because we have to fuse functions from
both front and back of cnv. To manipulate cnv, Danvy and Goldberg [DG02] proposed a theorem
similar to the warm fusion law [LS95], but their theorem cannot cope with this problem. It is nice to
see later that the existing program calculation techniques are enough here.

Our derivation of an efficient program for palindrome consists of the following three main steps.

1. Define the following functions to extract subexpressions in the definition of palindrome:

alleq = and.(map (\(a,b)->a==b))
takehalf x = take (div (length x) 2) x
drophalf x = drop (div (length x) 2) x

and derive efficient definitions for them by fusion transformation. Since this derivation is not special,
we give the results only. If you want to know the detailed calculation, see Appendix.

alleq ⇒ foldr (\(a,b) r->a==b && r) True
takehalf x ⇒ foldr’ (\a r x->head x:r (tail x)) (\x->[]) x x
drophalf x ⇒ foldr’ (\a r x->r (tail x)) id x x

Here foldr’ is defined below, being equipped with the same fusion law as foldr [HIT96].

foldr’ f e [] = e
foldr’ f e (a:b:x) = f (a,b) (foldr’ f e x)

2. Apply fusion transformation to merge functions with cnv from both front and back. Here gives a
big picture of the fusion calculation.

8



palindrome x
= alleq (cnv (takehalf x) (drophalf x))
⇒ { TABA form for cnv }
alleq (snd (foldr (\a (b:y’,r)->(y’,(a,b):r))

(drophalf x, []) (takehalf x)))
⇒ { swap alleq and snd by defining id alleq (a,x) = (a, alleq x) }
snd (id alleq (foldr (\a (b:y’,r)->(y’,(a,b):r))

(drophalf x, []) (takehalf x)))
⇒ { fuse the underlined part, similar to what we did in Section 4.1 }
snd (foldr (\a (b:y’,r’)->(y’,a==b && r’))

(drophalf x, True) (takehalf x)))
⇒ { define alleqcnv x y = foldr (\a (b:y’,r’)->(y’,a==b && r’)) (x,True) y }
snd (alleqcnv (takehalf x) (drophalf x))

⇒ { by the efficient definition for takehalf }
snd (alleqcnv (foldr’ (\a r x->head x:r (tail x)) (\x->[]) x x)

(drophalf x))
⇒ { fuse the underlined composition }
snd (foldr’ (\a r x y-> let (b:y,r’) = r (tail x) y

in (y’, head x==b && r’))
(\x y->(y,True)) x x (drophalf x))

⇒ { by the efficient definition for drophalf }
snd (foldr’ (\a r x y-> let (b:y,r’) = r (tail x) y

in (y’, head x==b && r’))
(\x y->(y,True)) x x (foldr’ (\a r x->r (tail x)) id x x))

3. Apply the tupling transformation [Bir84] [HITT97] to avoid twice traversals of the same data
structure x by foldr’ as underlined above.

palindrome x
= let

(y’,([],r)) = foldr’ ((\a r x’ x y->
let (y’,(b:y,r’)) = r (tail x’) (tail x) y
in (y’,(y, head x==b && r’))

(\y’ x y->(y’,(y,True))) x x) y’
in r

To enhance readability, we unfold the definition of foldr’.

palindrome x = let (y’,([],r)) = pld x x x y’ in r
where

pld (a1:b1:x1) (a2:x2) (a3:x3) y = let (y’,(b:y,r’)) = pld x1 x2 x3 y
in (y’,(y, a3==b && r’))

pld [] y’ x’ y = (y’,(y,True))

This program has circular data dependency between output and input as underlined above. But
this is not a problem; we can eliminate the first element of return value and the forth argument
of pld because they do not change during the whole computation steps of palindrome, and this
pseudo-dependency is thus eliminated.

palindrome x = let ([],r) = pld x x x in r
where pld (a1:b1:x1) (a2:x2) (a3:x3) = let (b:y,r’) = pld x1 x2 x3

in (y, a3==b && r’)
pld [] y’ x’ = (y’,True)

9



Noticing that the fact that the second and the third arguments of pld are always the same, we get
the final program.

palindrome x = let ([],r) = pld x x in r
where pld (a1:b1:x1) (a2:x2) = let (b:y,r’) = pld x1 x2

in (y, a2==b && r’)
pld [] y’ = (y’,True)

Our final program is essentially the same as the efficient palindrome detecting function of Danvy
and Goldberg [DG02]. Herewith we have solved their riddle.

5 TABA, and Further More!

So far, we have proposed IO swapping for foldl in Section 3.1 and illustrate its use in derivation of
TABA programs in Section 3.2. In this section, we reinforce the power and generality of IO swapping.
A more general IO swapping will be given to deal with wider class of functions, which may even
have circular dependency between inputs and outputs. We demonstrate the power of IO swapping by
manipulating the known repmin function [Bir84]. As far as we are aware, no useful method has been
proposed to manipulate circular programs like repmin. And furthermore, we generalize IO swapping
from lists to other data structures such as binary trees.

5.1 IO Swapping

The following theorem is a generalization of Theorem 2, being able to deal with a more general and
more powerful recursive function f1 that not only uses an accumulation parameter but also may
contain complicated circular data dependency between the output and input.

theorem 3 (IO Swapping)
The following two functions f1 and f2 are equivalent.

f1 x h0 = let r = f1’ x (g3 r h0) in r
where f1’ [] h = g0 h

f1’ (a:x’) h = let r = f1’ x’ (g2 a r h)
in g1 a r h

f2 x h0 = let ([], h, r’) = f2’ (x, g0 h) in r’
where f2’ ([], r) = (x, g3 r h0, r)

f2’ (b:y, r) = let (a:x’, h, r’) = f2’ (y, g1 a r h)
in (x’, g2 a r h, r’)

proof sketch
To prove this theorem, we define following function f1 .

f1 x h0 = let ([], r) = f1 ’ (x, g3 r h0) in r
where f1 ’ ([], h) = (x, g0 h)

f1 ’ (a:x’, h) = let (b:y,r) = f1 ’ (x’, g2 a r h)
in (y, g1 a r h)

It is obvious that function f1 computes the same value as f1.
We define the set S{f1 ,x,h0}. S{f1,x,h0} contains all pair of arguments and return values of f1 ’ which

appears in the whole reduction step of f1 x h0. Similarly, we define the set S{f2,x,h0} which contains
all pair of arguments and return values of f2’ which appears in the whole reduction step of f2 x h0.
Then following three lemmas hold.

10



Return values Arguments
'

&

$

%
f1

f1’ (a:x’)

f1’ x’
?

a:x’

x’
?

g2

6g1
¾

¾

x

?

g0

6

6

?

[]
?

g3

Return values Arguments
'

&

$

%
f2

f2’
(b:y,r)

f2’ (y,r)

b:y

y
?

x

?

[]
?

?
g1

?

a:x’

x’
6

x

6
[]

6

6

-
-

g0

g3

6g2

66

6

Figure 3: The model of computation process of f1 and f2

1. For all (a1,b1), (a2,b2) ∈ S{f1 ,x,h0}, a1=a2 iff b1=b2.

2. ((x’,h),(y,r)) ∈ S{f1 ,x,h0} iff ((y,r),(x’,h,r’)) ∈ S{f2,x,h0}.

3. If ((x,h0),([],r)) ∈ S{f1 ,x,h0}, for all ((y,r’’),(x’,h,r’)) ∈ S{f2,x,h0}, r’=r.

Proving lemma 1 is easy. We can see that not only first element of argument but also or return
value of f1 ’ specifies the depth of recursive calls.

Proving lemma 2 is a bit difficult. Lemma 1 implies function f1 ’ has its inverse function. Inverse
function of f1 ’ is almost the same as f2’, except for the third element of return value of f2’.
Induction with a care of this fact lets lemma 2 proved.

Lemma 2 prove lemma 3 straightforwardly. Lemma 3 descries almost the same specification of
Theorem 3.

Theorem 3 swaps the outputs and inputs of the auxiliary functions. In the definition of function f1,
g1 manages the computation of return value (i.e., output), but it manages the updating computation
of accumulation parameter (i.e., input) in the definition of function f2. In contrast, g2 manages the
computation of the accumulation parameter in function f1 but it manages the computation of return
value in the definition of function f2. These facts reflect swapping of inputs and outputs. We depict
computation process of f1 and f2 in Figure 3.

5.2 Manipulating Circular Programs by IO Swapping

Bird [Bir84] discussed circular programs whose return value is the same as (used as) an input. A
well known example is the repmin function that replaces all element values in a data structure by the
minimum element value. He showed the tree version of repmin but for simplicity we discuss the list
version of repmin.

repmin x = let (r, m) = repmin’ x m in r
where repmin’ (a:x) m = let (r’, m’) = repmin’ x m

in (m:r’, min a m’)
repmin’ [] m = ([], +∞)

The underlined variable m above expresses circularity, that is, the output value is used as the input
value. Function repmin’ returns the minimum value of the list as the second component of the return

11



value, while the minimum value is also the second argument of repmin’ and used for construction of
the output list.

The wonder of this function is “the output value is used as the input value”. Notice that IO swapping
is capable of swapping the output and the input. So think literally about swapping of output and
input in the above phrase, “the input value is used as the output value.” This new phrase describes
behavior of usual functions with no wonder now. To see this, let us apply IO swapping to repmin.

repmin2 x = let ([], r’, m) = repmin2’ x ([], +∞) in r’
where repmin2’ (b:y) (r, m’) = let (a:x, r’, m)= repmin2’ y (m:r, min a m’)

in (x, r’, m)
repmin2’ [] (r, m)= (x, r, m)

We would have expected a result without circularity. The circularity existing in repmin did disap-
pear as expected, but a new circular is produced inside the definition of repmin2 (as in the underlined
place). The reason is simple; IO swapping swaps inputs and outputs, then any use of input value as
output value in repmin will introduce circularity in repmin2.

Even with circularity, function repmin2 has a nice property repmin does not have. That is, the
circularity in repmin2 is local in the sense it has no circularity on top level of function call as repmin.
This makes repmin2 more suitable for manipulation than repmin. Consider, for instance, that we
want to fuse a function with repmin.

g (repmin x)

The top level circularity of repmin prevents g from going into repmin’, because repmin is difficult to
be defined in terms of foldr. In contrast, fusion law applies to

g (repmin2 x)

because function repmin2 has no top level circularity and can be defined in terms of foldr.
Although it does not always hold that IO swapping eliminates top level circularity, the following

theorem indicates that a wide class of functions having circularity at the top are applicable.

theorem 4 (Removing Top Level Circularity)
The following two functions f1 and f2 are equivalent.

f1 x h0 = let r = f1’ x (g3 r h0)
where f1’ [] h = e

f1’ (a:x’) h = let r = f1’ x’ (g2 a r h)
in g1 a r h

f2 x h0 = let ([], h, r’) = f2’ (x, e) in r’
where f2’ ([], r) = (x, g3 r h0, r)

f2’ (b:y, r) = let (a:x’, h, r’) = f2’ (y, g1 a r h)
in (x’, g2 a r h, r’)

proof
It immediately holds from Theorem 3.

5.3 IO Swapping on Trees

We shall generalize IO swapping from lists to other data structures such as trees. Recalling the IO
swapping on lists, we turn over an input list to swap input and output. But what does it mean by
“turning over” a binary tree:

12



data Tree a = Node a (Tree a) (Tree a) | Leaf a

and will the result be still a binary trees? Our answer is “Yes, we can turn over a binary tree and get
a binary tree”. To reach the point, let us think more about what we want. What we should turn over
is not a data structure itself but the order of iteration, that is, function calls. In case of lists, the order
of iteration is the same as that of the input list and we can reverse the order of iteration by turning
over the input list. But, in case of binary trees, the order of iteration is not the same as the input
tree. To resolve this problem, we make use of the fact (in compiler) that the order and circumstances
of function calls are generally captured by the stack frame, and turn over the stack frame to reverse
the order of iteration on data structures.

theorem 5 (IO Swapping on Tree)
The following three functions are equivalent.

f1 (Node n l r) = g1 n (f1 l) (f1 r)
f1 (Leaf n) = g0 n

f2 t = let [r] = f2’ [t] in r
where f2 ((Node n l r):x) = let (lv:rv:xv) = f2’ (l:r:x)

in g1 n lv rv : xv
f2 ((Leaf n):x) = g0 n : f2’ x
f2 [] = []

f3 t = let ([r],[]) = f3’ [t] [] in r
where f3’ (b:y) h = let (rs, a:x) = f3’ (pushChildren b y) (f3’’ a h)

in (rs, pushChildren a x)
f3’ [] h = (h,[t])
f3’’ (Node n l r) (lv:rv:xv) = g1 n lv rv : xv
f3’’ (Leaf n) xv = g0 n : xv
pushChildren (Node n l r) x = l:r:x
pushChildren (Leaf n) x = x

proof sketch
Simple induction proves the equivalence of function f1 and f2. We can think that function f2 iterates
the list which is the result of flattening of the input tree. Applying Theorem 3 to the function iterating
the result of flattening of tree gives function f3.

Starting from function f1, we determine the order of iteration in left-most depth-first fashion and
get function f2, before we turn over the order of iteration to get function f3.

If the input data structures are neither binary trees nor lists, we can similarly construct correspond-
ing variation of IO swapping, by first determining the iteration order, describing the iteration order
using stack, and swapping inputs and outputs. This generic IO Swapping sounds interesting, though
we have not yet found practical use of it.

6 Related Work

We have already argued in the previous sections the relation between our research and TABA. To
observe other aspects of our results, it is worth reviewing the foundation of our research, technique of
attribute grammars [Knu68] [Küh98] [Küh99]. Recall the definition of symbolic convolution function
cnv:

cnv x y = zip x (reverse y)

13



This function involves two kinds of technically challenging compositions: fusion of functions with exis-
tence of accumulation parameters, and fusion of zip-like functions with two recursion parameters. Sev-
eral fusion methods for accumulative functions have been proposed [CDPR99] [Voi02] [Sve02] [Nis04],
and a majority of them employ, as their underlying techniques, attribute grammars. The reason is
that the view point in attribute grammars makes it easy to manipulate accumulation parameters. Our
results also indicate an approach toward fusing zip-like functions, though we have not pursued in this
direction here.

We exploited, during the transformation, the symmetry between the input and the output. An im-
portant characteristic of attribute grammars is symmetry between synthesized attributes and inherited
attributes, which correspond to return values and accumulation (or context) parameters, respectively.
This symmetry enables us to treat two classes of values equally, and it plays an important role for
IO swapping in this paper as well as function fusion with existence of accumulation parameters. As
another advantage, it is also known that circularity in programs can be easily captured in the world
of attribute grammars [Joh87].

Our motivation behind the scene is to construct another bridge between the world of functional
programing and the one of attribute grammars. Existing researches which tried to apply attribute
grammars techniques to functional programming have not fully utilized the benefits of attribute gram-
mars so that they just focused only on one problem domain. Researches about the relationship between
functional programming and attribute grammars in a broader sense also exist [DPRJ96] [FJMM91];
they stayed as generic frameworks where it is often hard to manipulate concrete programs and apply
program transformation. Our result successfully hoists the essence of attribute grammars and imports
it into the functional world as IO swapping.

When we turn our eyes again to TABA, IO swapping is to structurize the production of reverse-
like functions. Under functional treatments, functions producing output data structures in the return
values are considered as better producers than functions producing output data structures in accumu-
lation parameters. IO swapping is therefore of great help as Theorem 2 has shown. The power of IO
swapping, however, is limited for structurizing data flows: We cannot structurize functions which are
not expressed by foldl. Kühnemann et al. proposed more generic method [KGK01] [GKV03], called
deaccumulation. Generality sometimes brings about the price to pay, and in this case they have to
live with an untyped world, introduction of new data type during transformations, and degradation
of efficiency. Once functions fit in the form of foldl IO swapping guarantees transformation without
these troubles.

As the final remark, Danvy and Goldberg [DG02] mention that defunctionalization [DN01] trans-
forms rev n function in Section 3.2, that is one instance of TABA, into usual accumulative reverse
function. Their transformation is somehow accidental. They haven’t figured out what occurred by
that transformation. They haven’t formalized a transformation method which translate from reverse
to rev n, either. From a still picture taken by them, we wrote off in this paper the vivid trilogy where
TABA comes from, what it is and where it will go.

7 Conclusion and Future Work

This paper showed a transformational approach to derive TABA using a new technique called IO
swapping. This novel transformation rule swaps the outputs and inputs of functions. We show not
only the derivation of TABA, but also the manipulation of TABA and the promising future of TABA
by calculational method of which we reinforce the transformation power with IO swapping. Our
approach was to confirm the competence of calculational programming for deriving efficient program
from naive definition through these transformations of programs.

IO swapping truly makes one region of functional programming world clear. We have some knowl-
edge about manipulation of iteration in the return value, circular data dependency of inputs and
outputs, and relationship between lists and other data structures. But here are still some dim re-
gion. For example, the perfect solution of fusion for functions traversing plural data structure, having
circular data dependency, having irregular iteration or production of data structures. More investiga-

14



tion on fusion and exploitation of other transformation techniques are required. We hope that more
algorithms are derived in a systematic manner.

Acknowledgement

We are very grateful to Shin-Cheng Mu and Keisuke Nakano for their inspiring discussions at the
laboratory seminars, and to Olivier Danvy for introducing us the TABA work as well as the fusion
problem in it.

References

[BdM96] Richard Bird and Oege de Moor. Algebras of Programming. Prentice Hall, 1996.

[Bir84] Richard Bird. Using circular programs to eliminate multiple traversals of data. Acta
Informatica, 21:239–250, 1984.

[Bir89] Richard Bird. Algebraic identities for program calculation. Computer Journal, 32(2):122–
126, 1989.

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell. Series in Computer
Science. Prentice Hall, 1998.

[CDPR99] Loic Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Declarative program
transformation: A deforestation case-study. In Proceedings of the International Conference
on Principles and Practice of Declarative Programming, pages 360–377, 1999.

[DG02] Olivier Danvy and Mayer Goldberg. There and back again. In Proceedings of the 7th
ACM SIGPLAN International Conference on Functional programming, ICFP’02, pages
230–234. ACM Press, 2002.

[DN01] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings of the
3rd ACM SIGPLAN international conference on Principles and practice of declarative
programming, PPDP’01, pages 162–174, New York, NY, USA, 2001. ACM Press.

[DPRJ96] Etienne Duris, Didier Parigot, Gilles Roussel, and Martin Jourdan. Attribute grammars
and folds: Generic control operators. Technical Report 2957, INRIA, 1996.

[FJMM91] Maarten M. Fokkinga, Johan Jeuring, Lambert Meertens, and Erik Meijer. A translation
from attribute grammars to catamorphisms. The Squiggolist, 2(1):20–26, 1991.

[GKV03] Jürgen Giesl, Armin Kühnemann, and Janis Voigtländer. Deaccumulation — Improving
provability. In Vijay A. Saraswat, editor, Proceedings of the Eighth Asian Computing Sci-
ence Conference, Mumbai, India, volume 2896 of LNCS, pages 146–160. Springer-Verlag,
2003.

[HIT96] Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomorphisms
from recursive definitions. In Proceedings of the 1st ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP’96, Philadelphia, PA, USA, volume 31(6), pages
73–82. ACM Press, New York, 1996.

[HITT97] Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko Takano. Tupling calculation
eliminates multiple data traversals. In Proceedings of the 2nd ACM SIGPLAN Interna-
tional Conference on Functional Programming ICFP’97, Amsterdam, The Netherlands,
pages 164–175. ACM Press, 1997.

15



[Joh87] Thomas Johnsson. Attribute grammars as a functional programming paradigm. In Pro-
ceedings of the 3rd International Conference on Functional Programming Languages and
Computer Architecture, FPCA’87, Portland, Oregon, USA, pages 154–173, 1987.

[KGK01] Armin Kühnemann, Robert Glück, and Kazuhiko Kakehi. Relating accumulative and non-
accumulative functional programs. In Proceedings of the 12th International Conference on
Rewriting Techniques and Applications ,RTA’01, pages 154–168. Springer-Verlag, 2001.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968.

[Küh98] Armin Kühnemann. Benefits of tree transducers for optimizing functional programs. In
Proceedings of the 18th Conference on Foundations of Software Technology & Theoretical
computer Science, FST&TCS’98, pages 146–157, 1998.

[Küh99] Armin Kühnemann. Comparison of deforestation techniques for functional programs and
for tree transducers. In Proceedings of the 4th Fuji International Symposium on Functional
and Logic Programming, FLOPS’99, pages 114–130, 1999.

[LS95] John Launchbury and Tim Sheard. Warm fusion: Deriving build-catas from recursive
definitions. In Proceedings of the 7th ACM SIGPLAN/SIGARCH International Conference
on Functional Programming Languages and Computer Architecture, FPCA’95, La Jolla,
San Diego, CA, USA, pages 314–323. ACM Press, New York, 1995.

[Nis04] Susumu Nishimura. Fusion with stacks and accumulating parameters. In Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM’04, pages 101–112. ACM Press, 2004.

[Sve02] Josef Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions. In
Proceedings of the 7th ACM SIGPLAN International Conference on Functional program-
ming, ICFP’02, pages 124–132. ACM Press, 2002.

[Voi02] Janis Voigtländer. Using circular programs to deforest in accumulating parameters. In
Kenichi Asai and Wei-Ngan Chin, editors, Proceedings of the Asian Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation, Aizu, Japan, pages 126–137.
ACM Press, 2002. Extended version appeared in Higher-Order and Symbolic Computation,
volume 17(1–2), pages 129–163, 2004.

Appendix

We show the derivation of alleq, takehalf and drophalf, which we introduce in Section 4.2. These
functions are defined as follows.

alleq x = and (map (\(a,b)->a==b) x)
takehalf x = take (div (length x) 2) x
drophalf x = drop (div (length x) 2) x

Deriving alleq is trivial. Theorem 1 immediately gives the efficient definition.

map (\(a,b)->a==b) ⇒ foldr (\(a,b) r->(a==b):r) []
alleq x = and (map (\(a,b)->a==b) x)

⇒ { foldr form of map }
and (foldr (\(a,b) r->(a==b):r) [] x)

⇒ { Theorem 1 with checking the following conditions
and [] ⇒ True
and ((\(a,b) r->(a==b):r) (a,b) r) ⇒ (a==b) && and r }

foldr (\(a,b) r->(a==b) && r) True x

16



Derivations of takehalf and drophalf are somewhat technical. We only show about drophalf
because both are almost the same.

First we define drop, length and div by using constructor S corresponding successor and Z corre-
sponding zero as follows.

--data N = S N | Z
drop (S v) (a:x) = drop v x
drop Z x = x
length (a:x) = S (length x)
length [] = Z
--div v 2 = div2 v
div2 (S(S v)) = S (div2 v)
div2 (S Z) = Z
div2 Z = Z

Here we use a special sequence of symbols -- as one line comment.
Fusing div2 (length x) is easy. We can get the result immediately.

--halflen x = div2 (length x)
halflen (a:b:x) = S (halflen x)
halflen (a:[]) = Z
halflen [] = Z

Recognize each two elements of the list as a pair form head of it and the list itself as list of pairwise
elements . Then function halflen is just a instance of foldr on list of pair. We program this
tow-elements-iterating foldr, named foldr’, as follows.

foldr’ f e [] = e
foldr’ f e (a:b:x) = f (a,b) (foldr’ f e x)

Where foldr’ is a partial function, on the even-length list. And halflen is programed by using
foldr’.

halflen = foldr’ (\a r->S r) Z

Function foldr’ is not foldr. But don’t worry. Function foldr’ is equipped with the same fusion
law as foldr[HIT96]. So we can proceed to the next step of derivation.

Next, we fuse drop (halflen x) x.

drophalf x = drop (halflen x) x
⇒ { foldr’ form of halflen }
drop (foldr’ (\a r->S r) Z x) x

⇒ { Theorem 1 with checking the following conditions
drop Z x ⇒ x
drop ((\a r->S r) a r) x ⇒ drop r (tail x) }

foldr’ (\a r x->r (tail x)) id x x

This is what we want, the efficient foldr’ form of drophalf.

17


