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Abstract

In this paper, we propose the first fully polynomial-time randomized approximation scheme
(FPRAS) for basic queueing networks, closed Jackson networks with single servers. Our algo-
rithm is based on MCMC (Markov chain Monte Carlo) method. Thus, our scheme returns an
approximate solution, of which the size of error satisfies a given error rate. We propose two
Markov chains, one is for approximate sampling, and the other is for perfect sampling based on
monotone coupling from the past algorithm.

1 Introduction

In this paper, we propose a randomized approximation scheme for basic queueing networks, closed
Jackson networks with single servers. Our scheme is based on the MCMC (Markov chain Monte
Carlo) method, and returns an approximate value of the normalizing constant of the steady-state
distribution of the number of customers at nodes. The complexity of our algorithm is bounded by
a polynomial of n and lnK where n is the number of nodes and K is the number of customers in
a network. Thus, our scheme is a (weakly) polynomial time approximation scheme. We propose
two Markov chains, both of which are rapidly mixing. One is for approximate sampling, while the
other is for perfect sampling.

The Jackson network is proposed by Jackson in 1957 [10], and is one of the basic and significant
model in queueing network theory. It is well known that the steady-state distribution of a Jackson
network is a product form [10]. By computing the normalizing constant of the product form solution,
we can obtain significant evaluated value like as through put, rates of utilization of stations, and
so on.

There is well-known Buzen’s algorithm [4], which computes the normalizing constant. However
the running time of Buzen’s algorithm is pseudo-polynomial time that depends on the number of
customers in a closed network. Chen and O’Cinneide [5] proposed a randomized algorithm based
on MCMC, but their algorithm is weakly polynomial-time in some very special cases. Ozawa [18]
proposed a perfect sampler for closed Jackson networks with single servers, however his chain mixes
in pseudo-polynomial-time.

When we construct a randomized approximation algorithm based on MCMC, we need to con-
sider the accuracy of the obtained value. For any given parameter ε and δ, satisfying 0 < ε < 1,
0 < δ < 1, an FPRAS (Fully Polynomial-time Randomized Approximation Scheme) provides an
algorithm which finds an approximate solution Z satisfying

Pr[|Z − A| ≤ εA] ≥ 1 − δ
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where A is the exact solution, and whose running time is bounded by a polynomial of the input
size of the instance (the number of nodes and logarithm of the number of customers), ε−1 and
ln(δ−1) [13].

In this paper, we are concerned with a closed Jackson network with single servers. Thus, we
assume that we are given a strongly connected network, each node has a single server, a class of
customers is unique, and no customer leaves or enters the network. Then we propose an FPRAS
based on MCMC for calculating the normalizing constant. We propose two new Markov chains,
both of which have a product form solution of a closed Jackson network as a unique stationary
distribution. Both of our chains mix in polynomial-time of input size. Here we note that our chains
are not a simulation of a queueing network, but just have a unique stationary distribution which
is the same as a product form solution for a network.

1.1 Product-form Solution

We denote the set of real numbers (non-negative, positive real numbers) by R (R+, R++), and the
set of integers (non-negative, positive integers) by Z (Z+, Z++), respectively. In queueing network
theory, it is well known that a closed Jackson network has a product form solution. Let n ∈ Z++

be the number of nodes and K ∈ Z+ be the number of customers in a closed Jackson network. Let
us consider the set of non-negative integer points

Ξ(K) def.=
{
x = (x1, x2, . . . , xn) ∈ Zn

+ |
∑n

i=1 xi = K
}

in an n − 1 dimensional simplex. We abbreviate Ξ(K) to Ξ, if there is no confusion. Let W be
the transition probability matrix for a closed Jackson network system. Here we note that W is
ergodic, so 1 is an eigenvalue and corresponding eigenvector is unique, excluding constant factor.
Let θ ∈ Rn

++ be an eigenvector for W with corresponding to the eigenvalue 1, i.e., θW = θ.
Given a vector µ = (µ1, µ2, . . . , µn) ∈ Rn

++ of the expected service time on nodes, the steady-state
distribution J : Ξ → R++ for the closed Jackson network is product form defined by

J(x) =
1

G(K)

n∏
i=1

αxi
i

(
≡ 1

G(K)

n∏
i=1

(
θi

µi

)xi
)

where αi
def.= θi/µi and G(K) def.=

∑
x∈Ξ(K)

∏n
i=1 αxi

i is the normalizing constant [10].

2 Randomized Approximation Scheme

In the following we consider a closed Jackson network with n nodes, K customers and parameters
α1, α2, . . . , αn ∈ Z++, which has the product form solution J(x) = (1/G(K))

∏n
i=1 αxi

i for any
x ∈ Ξ(K).

2.1 Rapidly Mixing Markov Chain

Now we propose a new Markov chain MA(K) with state space Ξ(K). A transition of MA(K) from
a current state X ∈ Ξ(K) to a next state X ′ is defined as follows. First, we choose a pair of distinct
indices {j1, j2} uniformly at random. Next, put k = Xj1 + Xj2 , and choose l ∈ {0, 1, . . . , k} with
probability

αl
j1

αk−l
j2∑k

s=0 αs
j1

αk−s
j2

≡
αl

j1
αk−l

j2

∏
j 6∈{j1,j2} α

Xj

j∑k
s=0 αs

j1
αk−s

j2

∏
j 6∈{j1,j2} α

Xj

j
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0
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k+1
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i α
k
j /A

′ α2
i α

k−1
j /A′ · · · αk+1

i α0
j/A

′ 1

Figure 1: A figure of alternating inequalities for a pair of indices (i, j) and a non-negative integer
k. In the figure, A

def.=
∑k

s=0 αs
iα

k−s
j and A′ def.=

∑k+1
s=0 αs

iα
k+1−s
j are normalizing constants.

and set

X ′
i =


l (for i = j1),
k − l (for i = j2),
Xi (otherwise).

The Markov chain MA(K) is irreducible and aperiodic, so ergodic, hence has a unique stationary
distribution. Also, MA(K) satisfies the detailed balance equation, thus the stationary distribution
is the product form solution J(x).

Given a pair of probability distributions ν1 and ν2 on a finite state space Ω, the total variation
distance between ν1 and ν2 is defined by dTV(ν1, ν2)

def.= 1
2

∑
x∈Ω |ν1(x) − ν2(x)|. The mixing time

of an ergodic Markov chain is defined by τ(ε) def.= maxx∈Ξ{min{t | ∀s ≥ t, dTV(π, P s
x) ≤ ε, (0 <

ε < 1)}} where π is the stationary distribution and P s
x is the probability distribution of the chain

at time period s ≥ 0 with initial state x at time period 0. In the following, we discuss the mixing
time of MA(K).

Here, we consider the cumulative distribution function gk
ij : {0, 1, . . . , k} → R+ defined by

gk
ij(l)

def.=

∑l
s=0 αs

i α
k−s
j

Ak
ij

=


αl+1

i −αl+1
j

αk+1
i −αk+1

j

· αk−l
j (αi 6= αj),

l
k+1 (αi = αj),

for l ∈ {0, 1, . . . , k}, where Ak
ij

def.=
∑k

s=0 αs
iα

k−s
j is a normalizing constant. We also define

gk
ij(−1) def.= 0, for convenience. We can simulate the Markov chain MA(K) efficiently by using

the function gk
ij as follows. First, choose a pair {i, j} of indices with the probability 2/(n(n − 1)).

Next, put k = Xi + Xj , generate an uniformly random real number Λ ∈ [0, 1), choose an integer
l satisfying gk

ij(l − 1) ≤ Λ ≤ gk
ij(l), and set X ′

i = l and X ′
j = k − l, keeping the value of the

other indices. We can execute a transition of MA efficiently by employing ordinary binary search
technique.

The following is a key lemma in this paper.

Lemma 2.1 The function gk
ij satisfies the alternating inequalities,

gk+1
ij (l) ≤ gk

ij(l) ≤ gk+1
ij (l + 1), ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , k}.

Proof: First, we prove the former inequality gk+1
ij (l) ≤ gk

ij(l) as follows,

gk
ij(l)

gk+1
ij (l)

=

∑l
s=0 αs

i α
k−s
j

Ak
ij

·
Ak+1

ij∑l
s=0 αs

iα
k+1−s
j

=

∑k+1
s=0 αs

iα
k+1−s
j

αj
∑k

s=0 αs
i α

k−s
j

=

∑k+1
s=0 αs

iα
k+1−s
j∑k

s=0 αs
i α

k+1−s
j

≥ 1.
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Next, we prove the latter inequality gk
ij(l) ≤ gk+1

ij (l +1) as follows (please see Appendix for detail),

gk+1
ij (l + 1)

gk
ij(l)

=

(∑k
s=0 αs

i α
k−s
j

)(∑l
s=0 αs

i α
k+1−s
j + αl+1

i αk−l
j

)
(∑k

s=0 αs
iα

k+1−s
j + αk+1

i

) (∑l
s=0 αs

iα
k−s
j

)
=

(
αl+1

i αk−l
j

)−1
αj

(∑k
s=0 αs

iα
k−s
j

) (∑l
s=0 αs

iα
k−s
j

)
+

∑k
s=0 αs

iα
k−s
j(

αl+1
i αk−l

j

)−1
αj

(∑k
s=0 αs

i α
k−s
j

)(∑l
s=0 αs

i α
k−s
j

)
+

∑k
s=k−l α

s
iα

k−s
j

≥ 1.

Thus we obtain the claim. ¤
The above alternating inequalities imply the following.

Theorem 2.2 For 0 < ∀ε < 1, the mixing time τ(ε) of Markov chain MA(K) satisfies

τ(ε) ≤ n(n − 1)
2

ln(Kε−1).

Proof: Let G = (Ξ, E) be an undirected simple graph with vertex set Ξ and edge set E defined
as follows. A pair of vertices {x, y} is an edge of G if and only if (1/2)

∑n
i=1 |xi − yi| = 1. Clearly

the graph G is connected. We define the length lA(e) of every edge e ∈ E by lA(e) def.= 1. For each
pair (x, y) ∈ Ξ2, we define the distance dA(x, y) by the length of the shortest path between x and
y on G with respect to lA. Clearly, the diameter of G, defined by maxx,y∈Ξ{dA(x, y)}, is bounded
by K.

We define a joint process (X,Y ) 7→ (X ′, Y ′) for any pair {X,Y } ∈ E . Pick a distinct pair of
indices {i1, i2} uniformly at random. Then set kX = Xi1 + Xi2 and kY = Yi1 + Yi2 , generate a
uniform random number Λ ∈ [0, 1), choose lX and lY satisfying gkX

i1i2
(lX − 1) ≤ Λ < gkX

i1i2
(lX) and

gkY
i1i2

(lY − 1) ≤ Λ < gkY
i1i2

(lY ), and set X ′
i1

= lX , X ′
i2

= kX − lX , Y ′
i1

= lY , and Y ′
i2

= kY − lY .
Now we show that

for any pair {X,Y } ∈ E , E[dA(Y ′, Y ′)] ≤ β · dA(X,Y ), where β = 1 − 2
n(n − 1)

.

Since {X,Y } ∈ E , there exists a distinct pair of indices {j1, j2} satisfying |Xj − Yj | = 1 for
j ∈ {j1, j2}, and |Xj − Yj | = 0 for j 6∈ {j1, j2}.

Case 1: When neither indices j1 nor j2 are chosen, i.e., {i1, i2}∩{j1, j2} = ∅, we put k = Xi1 +Xi2 ,
and it is easy to see that Pr(X ′

i1
= l) = Pr(Y ′

i1
= l) for any l ∈ {0, . . . , k} since Yi1 + Yi2 = k.

Thus X ′
i1

= Y ′
i1

and X ′
i2

= Y ′
i2

hold. Hence dA(X ′, Y ′) = dA(X,Y ).

Case 2: When both indices j1 and j2 are chosen, i.e., {i1, i2} = {j1, j2}, in the same way as Case 1,
both X ′

i1
= Y ′

i1
and X ′

i2
= Y ′

i2
hold. Hence dA(X ′, Y ′) = 0.

Case 3: When exactly one of j1 and j2 is chosen, i.e., |{i1, i2} ∩ {j1, j2}| = 1, without loss of
generality, we can assume that i1 = j1 and that Xi1 = Yi1 + 1. Let k + 1 = Xi1 + Xi2 . Then
Yi1 + Yi2 = k obviously. We parameterize the transition of Markov chain MA(K) with the
uniformly random number Λ ∈ [0, 1) by using the function gk+1

i1i2
and gk

i1i2
. Set Xi1 = l1 such

that gk+1
i1i2

(l1 − 1) ≤ Λ < gk+1
i1i2

(l1) and Yi1 = l2 such that gk
i1i2

(l2 − 1) ≤ Λ < gk
i1i2

(l2) for the
common random number Λ. From Lemma 2.1, the alternating inequalities holds, and we can
see that l1 = l2 or l1 = l2 + 1. In either case, we can set [X ′

i1
= Y ′

i1
+ 1 and X ′

i2
= Y ′

i2
] or

[X ′
i1

= Y ′
i1

and X ′
i2

= Y ′
i2

+ 1]. Hence dA(X ′, Y ′) = dA(X,Y ).
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Considering that Case 2 occurs with probability 2/(n(n − 1)), we obtain that

E[dA(X ′, Y ′)] ≤
(

1 − 2
n(n − 1)

)
dA(X,Y ).

Since the diameter of G is bounded by K, Path Coupling Theorem (Theorem 2.3) implies that the
mixing time τ(ε) of MA(K) satisfies

τ(ε) ≤ n(n − 1)
2

ln(Kε−1).

¤
The Path Coupling Theorem proposed by Bubbly and Dyer is a useful technique for bounding

the mixing time.

Theorem 2.3 (Path Coupling Theorem [3]) Let M be a finite ergodic Markov chain with state

space Ω. Let H = (Ω, E) be a connected undirected graph with vertex set Ω and edge set E ⊆
(

Ω
2

)
.

Let l : E → R++ be a positive length defined on the edge set. For any pair of vertices {x, y} of
H, the distance between x and y, denoted by d(x, y) and/or d(y,x), is the length of a shortest path
between x and y, where the length of a path is the sum of the lengths of edges in the path. Suppose
that there exists a joint process (X,Y ) 7→ (X ′, Y ′) with respect to M whose marginals are a faithful
copy of M and satisfying

0 < ∃β < 1, ∀{X,Y } ∈ E , E[d(X ′, Y ′)] ≤ βd(X,Y ).

Then the mixing time τ(ε) of the Markov chain M satisfies τ(ε) ≤ (1 − β)−1 ln(ε−1D/d) where
d

def.= min{d(x, y) | ∀x,∀y ∈ Ω} and D
def.= max{d(x, y) | ∀x,∀y ∈ Ω}. ¥

The above theorem differs from the original theorem in [3] since the integrality of the edge length
is not assumed. We drop the integrality and introduced the minimum distance d. Theorem 2.3 can
be proved by a slight modification of the original proof.

2.2 Monte Carlo Integration

In this section, we give an FPRAS for calculating the normalizing constant G(K) of product form
solution for a closed Jackson network. Our approximation scheme is a standard Jerrum-Sinclair
type recursive algorithm [13, 12] but we should be careful at some points.

Here we suppose that K ≥ 1 and arrange the indices of nodes in network satisfying the following
condition.

Condition 1 α1 = maxi αi.

We define a set Ξ′(K) ⊂ Ξ(K) by Ξ′(K) def.=
{
x ∈ Ξ(K) | x1 ≥

⌈
K
n

⌉}
. Let G′(K) def.=

∑
x∈Ξ′(K)

∏n
i=1 αxi

i ,
then it is not difficult to see that Condition 1 implies G′(K)/G(K) ≥ 1/n.

Considering that αi (∀i ∈ {1, 2, . . . , n}) is independent of K, it is easy to see that

G′(K) =
∑

x∈Ξ′(K)

(
α
dK/ne
1 · (

∏n
i=2 αxi

i ) · αx1−dK/ne
1

)
=

∑
x∈Ξ(K−dK/ne)

(
α
dK/ne
1 · (

∏n
i=2 αxi

i ) · αx1
1

)
= α

dK/ne
1 · G(K − dK/ne).
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Thus, we can compute G(K) by

G(K) =
G(K)
G′(K)

· αdK/ne
1 · G(K − dK/ne)

if we know the value of G(K)/G′(K) and G(K − dK/ne). By applying the above recursively,
G(0) = 1 implies that

G(K) = G(0)
R∏

j=1

G(Kj−1)
G(Kj)

=
R∏

j=1

(
α

Kj−1−Kj

1 · G(Kj−1)
G′(Kj−1)

)
= αK

1

R−1∏
j=0

G(Kj)
G′(Kj)

,

where we define K0
def.= K, and Kj

def.= Kj−1 −
⌈

Kj−1

n

⌉
for j = 1, 2, . . ., while Kj ≥ 0, and let

R ∈ Z++ be the minimum index satisfying KR = 0.

Lemma 2.4 The number of recursions R satisfies that R ≤ n lnK + 1 for any K ∈ Z++.

Since we already have an approximate sampler via the Markov chain MA(K), we only need to
estimate G(Kj)/G′(Kj) for j ∈ {0, 1, . . . , R−1} by the Monte Carlo method. The whole algorithm
is as follows,

Algorithm 1 (Randomize Approximation Scheme with approximate sampler)

Step 1. Set j = 1, K ′ = K.
While K ′ ≥ 1,

do→
Generate QA samples, each of which is obtained by simulating MA(K ′) for TA(K ′) steps.
Let Uj be the number of samples which satisfy x1 ≥ K ′/n.
Set Zj := (Uj + 1)/(QA + 1).

Set K ′ := K ′ −
⌈

K′

n

⌉
and set j := j + 1.

←od
Step 2. Set Z := αK

1

∏
j(1/Zj). Output Z.

Our algorithm generates QA samples by simulating MA(Kj) for TA(Kj) steps for each sample.

By setting QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) =
⌈

n(n−1)
2 ln 6nRK′

ε

⌉
, we obtain the following

theorem.

Theorem 2.5 If we set QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) =
⌈

n(n−1)
2 ln 6nRK′

ε

⌉
, then our

randomized approximation scheme (Algorithm 1) returns Z satisfying

Pr [|Z − G(K)| ≤ εG(K)] ≥ 1 − δ.

In the proof of above theorem, we need the following modified Chernoff bound [14].

Lemma 2.6 Let Xi (1 ≤ i ≤ M) be i.i.d. random variables such that Xi = 1 with probability p,
and Xi = 0 with probability 1 − p. Let U =

∑M
i=1 Xi and 0 < λ < 1. If M ≥ (4 + 2

√
3)/pλ, then

Pr
[∣∣∣∣ U + 1

M + 1
− p

∣∣∣∣ ≥ λp

]
≤ 2e−

1
4
λ2Mp

hold.
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Also we can estimate the error of bias.

Theorem 2.7 If we set QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) = dn(n−1)
2 ln 6nRK′

ε e, then the bias
of the expectation of the obtained approximate solution is bounded as follows,

|E[Z] − G(K)|
G(K)

≤ ε

4
+ Re−120R2ε−2 ln(2R/δ) ≤

(
1
4

+
1

1036

)
ε.

Proofs of the above results appear in Appendix section.

3 Perfect Sampler

3.1 Monotone Coupling from the Past

Here we review CFTP briefly. Suppose that we have an ergodic Markov chain M with a finite
state space Ω and a transition matrix P . The transition rule of the Markov chain X 7→ X ′ can be
described by a deterministic function φ : Ω× [0, 1) → Ω, called update function, as follows. Given
a random number Λ uniformly distributed over [0, 1), update function φ satisfies that Pr(φ(x,Λ) =
y) = P (x, y) for any x, y ∈ Ω. We can realize the Markov chain by setting X ′ = φ(X, Λ). Clearly,
update functions corresponding to the given transition matrix P are not unique. The result of
transitions of the chain from the time t1 to t2 (t1 < t2) with a sequence of random numbers
λ = (λ[t1], λ[t1 + 1], . . . , λ[t2 − 1]) ∈ [0, 1)t2−t1 is denoted by Φt2

t1
(x,λ) : Ω × [0, 1)t2−t1 → Ω where

Φt2
t1

(x,λ) def.= φ(φ(· · · (φ(x, λ[t1]), . . . , λ[t2 − 2]), λ[t2 − 1]). We say that a sequence λ ∈ [0, 1)|T |

satisfies the coalescence condition, when ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0
T (x,λ).

Suppose that there exists a partial order “º” on the set of states Ω. A transition rule expressed
by a deterministic update function φ is called monotone (with respect to “º”) if ∀λ ∈ [0, 1),
∀x,∀y ∈ Ω, x º y ⇒ φ(x, λ) º φ(y, λ). We also say that a chain is monotone if the chain has a
monotone update function. Here we suppose that there exists a unique pair of states (xmax, xmin)
in partially ordered set (Ω,º), satisfying xmax º x º xmin, ∀x ∈ Ω.

With these preparations, a standard monotone Coupling From The Past algorithm is expressed
as follows.

Algorithm 2 (Monotone CFTP Algorithm [19])

Step 1. Set the starting time period T := −1 to go back, and set λ be the empty sequence.
Step 2. Generate random real numbers λ[T ], λ[T + 1], . . . , λ[dT/2e − 1] ∈ [0, 1), and insert them
to the head of λ in order, i.e., put λ := (λ[T ], λ[T + 1], . . . , λ[−1]).
Step 3. Start two chains from xmax and xmin, respectively, at time period T , and run each chain
to time period 0 according to the update function φ with the sequence of numbers in λ. (Here we
note that every chain uses the common sequence λ.)
Step 4. [ Coalescence check ] The state obtained at time period 0 is denoted by Φ0

T (x,λ).
(a) If ∃y ∈ Ω, y = Φ0

T (xmax, λ) = Φ0
T (xmin, λ), then return y.

(b) Else, update the starting time period T := 2T , and go to Step 2.

Theorem 3.1 (Monotone CFTP Theorem [19]) Suppose that a Markov chain defined by an update
function φ is monotone with respect to a partially ordered set of states (Ω,º), and ∃xmax,∃xmin ∈ Ω,
∀x ∈ Ω, xmax º x º xmin. Then the monotone CFTP algorithm (Algorithm 2) terminates with
probability 1, and obtained value is a realization of a random variable exactly distributed according
to the stationary distribution. ¥

Theorem 3.1 gives a (probabilistically) finite time algorithm for infinite time simulation.
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3.2 Monotone Markov Chain

In this section we propose new Markov chain MP. The transition rule of MP is defined by
the following update function φ : Ξ × [1, n) → Ξ. For a current state X ∈ Ξ, the next state
X ′ = φ(X,λ) ∈ Ξ with respect to a random number λ ∈ [1, n) is defined by

X ′
i =


l (for i = bλc),
k − l (for i = bλc + 1),
Xi (otherwise),

where k = Xbλc + Xbλc+1 and l ∈ {0, 1, . . . , k} satisfies

gk
bλc(bλc+1)(l − 1) < λ − bλc ≤ gk

bλc(bλc+1)(l).

Our chain MP is a modification of MA, obtained by restricting to choose only a consecutive pair
of indices. Clearly, MP is ergodic. The chain has a unique stationary distribution J(x) defined in
Section 2.

In the following, we show the monotonicity of MP. Here we introduce a partial order “º” on Ξ.
For any state x ∈ Ξ, we introduce cumulative sum vector cx = (cx(0), cx(1), . . . , cx(n)) ∈ Zn+1

+

defined by

cx(i) def.=
{

0 (for i = 0),∑i
j=1 xj (for i ∈ {1, 2, . . . , n}).

For any pair of states x, y ∈ Ξ, we say x º y if and only if cx ≥ cy. Next, we define two special

states xmax, xmin ∈ Ξ(K) by xmax
def.= (K, 0, · · · , 0) and xmin

def.= (0, . . . , 0,K). Then we can see
easily that ∀x ∈ Ξ(K), xmax º x º xmin.

Theorem 3.2 Markov chain MP is monotone on the partially ordered set (Ξ(K),º), i.e., ∀λ ∈
[1, n), ∀X, ∀Y ∈ Ξ(K), X º Y ⇒ φ(X,λ) º φ(Y, λ).

Outline of proof: We say that a state X ∈ Ξ covers Y ∈ Ξ (at j), denoted by X · Â Y (or
X ·Âj Y ), when

Xi − Yi =


+1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

We show that if a pair of states X,Y ∈ Ξ satisfies X ·Âj Y , then ∀λ ∈ [1, n), φ(X,λ) º φ(Y, λ).
We denote φ(X,λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For any index i 6= bλc, it is easy to see
that cX(i) = cX′(i) and cY (i) = cY ′(i), and so cX′(i)− cY ′(i) = cX(i)− cY (i) ≥ 0 since X º Y . We
can show that cX′(bλc) ≥ cY ′(bλc), with considering the following three cases, Case 1 [bλc 6= j − 1
and bλc 6= j + 1], Case 2 [bλc = j − 1], and Case 3 [bλc = j + 1].

For any pair of states X,Y satisfying X º Y , it is easy to see that there exists a sequence of
states Z1, Z2, . . . , Zr with appropriate length satisfying X = Z1 ·Â Z2 ·Â · · · ·Â Zr = Y . Then
applying the above property repeatedly, we obtain that φ(X,λ) = φ(Z1, λ) º φ(Z2, λ) º · · · º
φ(Zr, λ) = φ(Y, λ). ¤

Since MP is a monotone chain, we can design a perfect sampler based on monotone CFTP. We
could also employ Wilson’s read once algorithm [20] and Fill’s interruptible algorithm [7, 8], each
of which also gives a perfect sampler.
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3.3 Expected Running Time

Here, we assume a condition, which gives expected polynomial time monotone CFTP algorithm.

Condition 2 Parameters are arranged in non-increasing order i.e., α1 ≥ α2 ≥ · · · ≥ αn.

The following is a main result of this paper.

Theorem 3.3 Under Condition 2, the expected running time of our perfect sampler is bounded by
O(n3 lnK), where n is the number of nodes and K is the number of customers in a closed Jackson
network.

We can show Theorem 3.3 by estimating the expectation of coalescence time T∗ ∈ Z++ defined by
T∗

def.= min{t > 0 | ∃y ∈ Ξ, ∀x ∈ Ξ, y = Φ0
−t(x,Λ)}. Note that T∗ is a random variable.

Outline of proof: Let G = (Ξ, E) be the graph defined in the proof of Theorem 2.2 in Section 2.
For each edge e = {X,Y } ∈ E , there exists a unique pair of indices j1, j2 ∈ {1, 2, . . . , n} called the
supporting pair of e, satisfying

|Xj − Yj | =
{

1 for j ∈ {j1, j2},
0 otherwise.

We define the length of lP(e) of an edge e = {X,Y } ∈ E by lP(e) def.= (1/(n − 1))
∑j∗−1

i=1 (n − i),
where j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair of e. Note that 1 ≤ mine∈E lP(e) ≤
maxe∈E lP(e) ≤ n/2. For each pair X,Y ∈ Ξ, we define the distance dP(X,Y ) be the length of a
shortest path between X and Y on G. Clearly, the length between xmax and xmin is bounded by
Kn. Here we denote X ′ = φ(X,λ) and Y ′ = φ(Y,Λ) with uniform real random number Λ ∈ [1, n),
then Condition 2 implies

E[dP(X ′, Y ′)] ≤
(

1 − 1
n(n − 1)2

)
dP(X,Y )

for any pair {X,Y } ∈ E , and we can prove the claim. ¥

4 Concluding Remarks

We proposed FPRAS for closed Jackson networks with single servers. Our scheme is based on
MCMC, and we proposed two rapidly mixing Markov chains. One is for approximate sampling,
while the other is for perfect sampling. Though we omit the details, we can also construct an
FPRAS using the perfect sampler in the same way as with the approximate sampler. At that time,
we can show that it suffices to take 36nR2ε−2 ln(2R/δ) samples in each iteration.

One of future works is to extend our FPRAS to closed Jackson networks with multiple serves.
Extension to closed BCMP networks is another.
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APPENDIX

A Proofs

Lemma 2.1 The function gk
ij satisfies the alternating inequalities,

gk+1
ij (l) ≤ gk

ij(l) ≤ gk+1
ij (l + 1), ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , k}.

Proof: First, we prove the former inequality gk+1
ij (l) ≤ gk

ij(l) as follows,

gk
ij(l)

gk+1
ij (l)

=

∑l
s=0 αs

iα
k−s
j

Ak
ij

Ak+1
ij∑l

s=0 αs
i α

k+1−s
j

=
Ak+1

ij

αjAk
ij

=

∑k+1
s=0 αs

iα
k+1−s
j

αj
∑k

s=0 αs
i α

k−s
j

=

∑k+1
s=0 αs

iα
k+1−s
j∑k

s=0 αs
i α

k+1−s
j

≥ 1.

Next, we prove the latter inequality gk
ij(l) ≤ gk+1

ij (l + 1) as follows,

gk+1
ij (l + 1)

gk
ij(l)

=
Ak

ij

Ak+1
ij

∑l+1
s=0 αs

iα
k+1−s
j∑l

s=0 αs
iα

k−s
j

=

(∑k
s=0 αs

i α
k−s
j

)(∑l+1
s=0 αs

i α
k+1−s
j

)
(∑k+1

s=0 αs
iα

k+1−s
j

)(∑l
s=0 αs

iα
k−s
j

)
=

(∑k
s=0 αs

i α
k−s
j

)(∑l
s=0 αs

iα
k+1−s
j + αl+1

i αk−l
j

)
(∑k

s=0 αs
iα

k+1−s
j + αk+1

i

)(∑l
s=0 αs

i α
k−s
j

)
=

(∑k
s=0 αs

i α
k−s
j

)(
αj

∑l
s=0 αs

i α
k−s
j

)
+ αl+1

i αk−l
j

(∑k
s=0 αs

iα
k−s
j

)
(
αj

∑k
s=0 αs

iα
k−s
j

)(∑l
s=0 αs

iα
k−s
j

)
+ αk+1

i

(∑l
s=0 αs

i α
k−s
j

)
=

(
αl+1

i αk−l
j

)−1
αj

(∑k
s=0 αs

i α
k−s
j

)(∑l
s=0 αs

i α
k−s
j

)
+

∑k
s=0 αs

iα
k−s
j(

αl+1
i αk−l

j

)−1
αj

(∑k
s=0 αs

iα
k−s
j

)(∑l
s=0 αs

iα
k−s
j

)
+ αk−l

i αl−k
j

∑l
s=0 αs

i α
k−s
j

=

(
αl+1

i αk−l
j

)−1
αj

(∑k
s=0 αs

iα
k−s
j

)(∑l
s=0 αs

iα
k−s
j

)
+

∑k
s=0 αs

iα
k−s
j(

αl+1
i αk−l

j

)−1
αj

(∑k
s=0 αs

iα
k−s
j

)(∑l
s=0 αs

iα
k−s
j

)
+

∑k
s=k−l α

s
iα

k−s
j

≥ 1.

Thus we obtain the claim. ¤

Lemma 2.4 The number of recursion R satisfies that R ≤ n lnK + 1 for any K ∈ Z++.

Proof: If n = 1, then R = 1 hence we obtain the claim. If n ≥ 2 and K = 1, 2 then R = 1, 2,
respectively, hence we also obtain the claim. In the following, we consider the case n ≥ 2 and
K ≥ 3. We define R′ by

R′ def.= min
{

r

∣∣∣∣ K

(
n − 1

n

)r

< 1
}

,
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then clearly R ≤ R′, since K ′ − dK ′/ne ≤ K ′(n − 1)/n for any K ′ ∈ Z++. Thus it is enough to
show that

K

(
n − 1

n

)n ln K

≤ 1.

With considering lnK > 0,(
n − 1

n

)n ln K

=
((

1 − 1
n

)n)ln K

≤
(

1
e

)ln K

= 1/K.

Thus we obtain the claim. ¤

Theorem 2.5 If we set QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) =
⌈

n(n−1)
2 ln 6nRK′

ε

⌉
, then our

randomized approximation scheme (Algorithm 1) returns Z satisfying

Pr [|Z − G(K)| ≤ εG(K)] ≥ 1 − δ.

Proof: In the following, we denote ωj
def.= G′(Kj)/G(Kj) and ω̂j

def.= E[Uj/QA] for j ∈ {1, 2, . . . , R},
for simplicity.
(i) We show that 1 ≤ ∀j ≤ R, the inequality ω̂j ≥ 1/n − ε/(6nR) holds. By the hypothesis of the
theorem, |ωj − ω̂j | ≤ ε/(6nR). Since ωj ≥ 1/n, we can see that ω̂j ≥ ωj −ε/(6nR) ≥ 1/n−ε/(6nR)
for 1 ≤ j ≤ R.

(ii) We show that |ωj − ω̂j | ≤ εbωj

6R−ε . By using the result of (i), we have

|ωj − ω̂j | ≤
ε

6nR
=

ε

6nR
· 1
ω̂j

· ω̂j ≤
ε

6nR
· ω̂j(

1
n − ε

6nR

) =
ε

6R − ε
· ω̂j .

(iii) We show that Pr[|Zj − ω̂j | > (ε/(6R− ε))] ≤ δ/R. By employing the modified Chernoff bound
in Lemma 2.4, we have

Pr
[∣∣∣ U+1

M+1 − p
∣∣∣ ≥ λp

]
≤ 2e−

1
4
λ2Mp.

By substituting the parameters λ = ε/(6R − ε) and p = ω̂j ≥ 1/n − ε/(6nR), clearly QA ≥
(4 + 2

√
3)/(pλ) holds. We put M = QA = 144nR2ε−2 ln(2R/δ) and U = Uj . Then we obtain that

Zj = Uj+1
QA+1 satisfies

Pr
[
|Zj − ω̂j | > ε

6R−ε ω̂j

]
≤ 2e−( ε

6R−ε)
2 1

4
144nR2ε−2(ln 2R

δ )bωj

≤ 2e−( ε
6R−ε)

2
36nR2ε−2(ln 2R

δ )( 6R−ε
6nR ) ≤ 2e−( 6R

6R−ε)(ln 2R
δ ) ≤ 2e−(ln 2R

δ ) =
δ

R
.

(iv) We show that |(Z1 · · ·ZR)−1 − (ω1 · · ·ωR)−1| ≤ ε(ω1 · · ·ωR)−1 with probability higher than
1 − δ. By the result of (ii), we obtain that

6R − 2ε

6R − ε
· ω̂j ≤ ωj ≤

6R

6R − ε
· ω̂j (1)

By the result of (iii), we obtain that

6R − ε

6R
· Zj ≤ ω̂j ≤

6R − ε

6R − 2ε
· Zj , (2)
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with probability higher than 1 − δ/R. By combining (1) and (2) with considering Zj > 0, ωj and
Zj satisfy

6R − 2ε

6R
≤ ωj

Zj
≤ 6R

6R − 2ε
with probability higher than 1 − δ/R.

The above inequality holds for each 1 ≤ j ≤ R and each Zj follows i.i.d., thus with probability
higher than 1 − δ, the inequalities(

1 − ε

3R

)R
≤ ω1 · · ·ωR

Z1 · · ·ZR
≤

(
1

1 − ε
3R

)R

(3)

hold. The right hand side of inequalities (3) satisfies,(
1

1 − ε
3R

)R

=
(

1 +
ε

3R − ε

)R

≤
(

1 +
ε

3R − 1

)R

≤ e
R

3R−1
ε ≤ e

1
2
ε ≤ 1 + ε

The left hand side satisfies,(
1 − ε

3R

)R
=

(
1

1 − ε
3R

)−R

≥ 1
1 + ε

≥ 1 − ε.

Thus, the inequality (3) is transformed to

1 − ε ≤ ω1 · · ·ωR

Z1 · · ·ZR
≤ 1 + ε

accordingly. Then we have the result that with the probability higher than 1 − δ,

|(Z1 · · ·ZR)−1 − (ω1 · · ·ωR)−1| ≤ ε(ω1 · · ·ωR)−1.

(v) Since αK
1 (ω1 · · ·ωR)−1 = G(K) and αK

1 (Z1 · · ·ZR)−1 = Z, we obtain the desired result that

Pr [|Z − G(K)| ≤ εG(K)] ≥ 1 − δ.

¤

Lemma 2.6 Let Xi (1 ≤ i ≤ M) be i.i.d. random variables such that Xi = 1 with probability p,
and Xi = 0 with probability 1 − p. Let U =

∑M
i=1 Xi and 0 < λ < 1. If M ≥ (4 + 2

√
3)/pλ, then

1. Pr
[
p − U+1

M+1 ≥ λp
]
≤ e−

1
2
λ2Mp,

2. Pr
[

U+1
M+1 − p ≥ λp

]
≤ e−

1
4
λ2Mp, and

3. Pr
[∣∣∣ U+1

M+1 − p
∣∣∣ ≥ λp

]
≤ 2e−

1
4
λ2Mp,

hold.
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Proof: 1. If p − U+1
M+1 ≥ λp then p − U

M ≥ λp. This implies that

Pr
[
p − U + 1

M + 1
≥ λp

]
≤ Pr

[
p − U

M
≥ λp

]
≤ e−

1
2
λ2Mp,

where the last inequality is obtained by Chernoff bound.
2. By using Chernoff bound, the condition M ≥ (4 + 2

√
3)/pλ implies that

Pr
[

U + 1
M + 1

− p ≥ λp

]
≤ Pr

[
U

M
+

1
M

− p ≥ λp

]
= Pr

[
U

M
− p ≥

(
λ − 1

Mp

)
p

]
≤ e−

1
3

“

λ− 1
Mp

”2
Mp = e−

1
3

“

1− 1
Mpλ

”2
λ2Mp ≤ e−

1
4
λ2Mp.

3. By using the result of 1 and 2, clearly we have

Pr
[∣∣∣∣ U + 1

M + 1
− p

∣∣∣∣ ≥ λp

]
= Pr

[
p − U + 1

M + 1
≥ λp

]
+ Pr

[
U + 1
M + 1

− p ≥ λp

]
≤ e−

1
2
λ2Mp + e−

1
4
λ2Mp ≤ 2e−

1
4
λ2Mp.

¤

Theorem 2.7 If we set QA = 144nR2ε−2 ln(2R/δ) and TA(K ′) = dn(n−1)
2 ln(6nRT ′

ε )e, then the
bias of the expectation of the obtained approximate solution is bounded as follows,

|E[Z] − G(K)|
G(K)

≤ ε

4
+ Re−120R2ε−2 ln(2R/δ) ≤

(
1
4

+
1

1036

)
ε.

Proof: Since Z1, . . . , ZR are independent,

E[Z] = αK
1 E

[
R∏

i=1

1
Zi

]
= αK

1

R∏
i=1

E
[

1
Zi

]
.

Now, we have

E
[

1
Zi

]
=

QA∑
Ui=0

QA + 1
Ui + 1

(
QA

Ui

)
ω̂i

Ui(1 − ω̂i)QA−Ui =
1
ω̂i

QA∑
Ui=0

(
QA + 1
Ui + 1

)
ω̂i

Ui+1(1 − ω̂i)QA−Ui

=
1
ω̂i

{
1 − (1 − ω̂i)QA+1

}
.

Let γi
def.= (1 − ω̂i)QA+1, then the equality

E[Z] = αK
1

R∏
i=1

1
ω̂i

(1 − γi) (4)

holds, where we note that 0 ≤ γi < 1. From (4), |G(K) − E[Z]| satisfies

|G(K) − E[Z]| =
∣∣∣αK

1

∏R
i=1

1
ωi

− αK
1

∏R
i=1

1
bωi

(1 − γi)
∣∣∣

= αK
1

∣∣∣∏R
i=1

1
ωi

(1 − γi) +
(∏R

i=1
1
ωi

){
1 −

∏R
i=1(1 − γi)

}
−

∏R
i=1

1
bωi

(1 − γi)
∣∣∣

≤ αK
1

∣∣∣∏R
i=1

1
ωi

−
∏R

i=1
1
bωi

∣∣∣ ∏R
i=1(1 − γi) + αK

1

(∏R
i=1

1
ωi

){
1 −

∏R
i=1(1 − γi)

}
≤ αK

1

(∏R
i=1

1
ωi

) ∣∣∣1 −
∏R

i=1
ωi
bωi

∣∣∣ + αK
1

(∏R
i=1

1
ωi

) {
1 −

∏R
i=1(1 − γi)

}
= G(K)

∣∣∣1 −
∏R

i=1
ωi
bωi

∣∣∣ + G(K)
{

1 −
∏R

i=1(1 − γi)
}

.
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If 1 −
∏R

i=1(ωi/ω̂i) ≤ 0, we have that∣∣∣∣∣1 −
R∏

i=1

ωi

ω̂i

∣∣∣∣∣ =
R∏

i=1

ωi

ω̂i
− 1 ≤

(
1 +

ε

6R − ε

)R

− 1 = 1 +
R∑

k=1

(
R

k

)(
ε

6R − ε

)k

− 1

≤
R∑

k=1

(
R

6R − ε

)k

εk ≤ ε
R∑

k=1

(
1
5

)k

≤ ε
∞∑

k=1

(
1
5

)k

≤ ε

4
,

since R ≥ 1 ≥ ε. Otherwise, 1 −
∏R

i=1(ωi/ω̂i) > 0 implies that∣∣∣∣∣1 −
R∏

i=1

ωi

ω̂i

∣∣∣∣∣ = 1 −
R∏

i=1

ωi

ω̂i
≤ 1 −

(
1 − ε

6R − ε

)R

≤
(

1 +
ε

6R − ε

)R

− 1 ≤ ε

4
.

Thus

|G(K) − E[Z]| ≤ ε

4
G(K) + G(K)

{
1 −

∏R
i=1(1 − γi)

}
.

Since 0 ≤ γi < 1 (∀i), it is easy to show that 1 −
∏R

i=1(1 − γi) ≤
∑R

i=1 γi by induction on R.
Acordingly, we have

1 −
∏R

i=1(1 − γi) ≤
∑R

i=1 γi =
∑R

i=1(1 − ω̂i)QA+1 ≤ R
{
1 −

(
1
n − ε

6nR

)}QA

= R

{
1 −

(
1 − ε

6R

n

)}QA

≤ R

(
1 − 5

6n

)QA

≤ R

(
1 − 5

6n

)144nR2ε−2 ln(2R/δ)

≤ R
(
e−1

) 5
6n

144nR2ε−2 ln(2R/δ) = e−120R2ε−2 ln(2R/δ).

Hence the bias is bounded as follows

|G(K) − E[Z]| ≤ ε

4
G(K) + Re−120R2ε−2 ln(2R/δ)G(K) ≤ G(K)

(ε

4
+ Re−120R2ε−2 ln(2R/δ)

)
.

¤

Theorem 3.2 Markov chain MP is monotone on the partially ordered set (Ξ(K),º), i.e., ∀λ ∈
[1, n), ∀X, ∀Y ∈ Ξ(K), X º Y ⇒ φ(X,λ) º φ(Y, λ).

Proof: We say that a state X ∈ Ξ covers Y ∈ Ξ (at j), denoted by X ·Â Y (or X ·Âj Y ), when

Xi − Yi =


+1 (for i = j),
−1 (for i = j + 1),
0 (otherwise).

We show that if a pair of states X,Y ∈ Ξ satisfies X ·Âj Y , then ∀λ ∈ [1, n), φ(X,λ) º φ(Y, λ).
We denote φ(X,λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For any index i 6= bλc, it is easy to see
that cX(i) = cX′(i) and cY (i) = cY ′(i), and so cX′(i)− cY ′(i) = cX(i)− cY (i) ≥ 0 since X º Y . In
the following, we show that cX′(bλc) ≥ cY ′(bλc).

Case 1: In case that bλc 6= j − 1 and bλc 6= j + 1. If we put k = Xbλc + Xbλc+1, then it is easy to
see that Ybλc + Ybλc+1 = k. Accordingly X ′

bλc = Y ′
bλc = l where l satisfies

gk
bλc(bλc+1)(l − 1) ≤ λ − bλc < gk

bλc(bλc+1)(l),

hence cX′(bλc) = cY ′(bλc).
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Case 2: Consider the case that bλc = j − 1. Let k + 1 = Xj−1 + Xj . Then Yj−1 + Yj = k, since
X ·Âj Y . From the definition of cumulative sum vector,

cX′(bλc) − cY ′(bλc) = cX′(j − 1) − cY ′(j − 1)
= cX′(j − 2) + X ′

j−1 − cY ′(j − 2) − Y ′
j−1 = cX(j − 2) + X ′

j−1 − cY (j − 2) − Y ′
j−1

= X ′
j−1 − Y ′

j−1.

Thus, it is enough to show that X ′
j−1 ≥ Y ′

j−1. Now suppose that l ∈ {0, 1, . . . , k} satisfies
gk
(j−1)j(l−1) ≤ λ−bλc < gk

(j−1)j(l) for λ. Then gk+1
(j−1)j(l−1) ≤ λ−bλc < gk+1

(j−1)j(l+1), since the

alternating inequalities imply that gk+1
(j−1)j(l − 1) ≤ gk

(j−1)j(l − 1) < gk+1
(j−1)j(l) ≤ gk+1

(j−1)j(l + 1).
Thus we have that if Y ′

j−1 = l then X ′
j−1 = l or l + 1. In other words,(

X ′
j−1

Y ′
j−1

)
∈

{(
0
0

)
,

(
1
0

)
,

(
1
1

)
,

(
2
1

)
, . . . ,

(
k
k

)
,

(
k + 1
k

)}
and X ′

j−1 ≥ Y ′
j−1 in all cases. Accordingly, we have that cX′(bλc) ≥ cY ′(bλc).

Case 3: Consider the case that bλc = j + 1. We can show cX′(bλc) ≥ cY ′(bλc) in a similar way to
Case 2.

For any pair of states X,Y satisfying X º Y , it is easy to see that there exists a sequence
of states Z1, Z2, . . . , Zr with appropriate length satisfying X = Z1 · Â Z2 · Â · · · · Â Zr = Y .
Then applying the above claim repeatedly, we obtain that φ(X,λ) = φ(Z1, λ) º φ(Z2, λ) º · · · º
φ(Zr, λ) = φ(Y, λ). ¤

Theorem 3.3 Under Condition 2, the expected running time of our perfect sampler is bounded
by O(n3 lnK), where n is the number of stations and K is the number of customers in a closed
Jackson network.

To show the above theorem, we need following three lemmas.

Lemma A.1 Under Condition 2, the mixing rate τ of our Markov chain M satisfies

τ ≤ n(n − 1)2(1 + lnKn).

Proof: Let G = (Ξ, E) be an undirected simple graph with vertex set Ξ and edge set E defined
as follows. A pair of vertices {X,Y } is an edge if and only if (1/2)

∑n
i=1 |Xi − Yi| = 1. Clearly,

the graph G is connected. For each edge e = {X,Y } ∈ E , there exists a unique pair of indices
j1, j2 ∈ {1, . . . , n}, called the supporting pair of e, satisfying

|Xi − Yi| =
{

1 (i = j1, j2),
0 (otherwise).

We define the length l(e) of an edge e = {X,Y } ∈ E by l(e) def.= (1/(n − 1))
∑j∗−1

i=1 (n − i) where
j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair of e. Note that 1 ≤ mine∈E l(e) ≤
maxe∈E l(e) ≤ n/2. For each pair X,Y ∈ Ξ, we define the distance d(X,Y ) be the length of a
shortest path between X and Y on G. Clearly, the diameter of G, i.e., max(X,Y )∈Ξ2 d(X,Y ), is
bounded by Kn/2, since d(X,Y ) ≤ (n/2)

∑n
i=1(1/2)|Xi − Yi| ≤ (n/2)K for any (X,Y ) ∈ Ξ2. The

definition of edge length implies that for any edge {X,Y } ∈ E , d(X,Y ) = l({X,Y }).
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We define a joint process (X,Y ) → (X ′, Y ′) as (X,Y ) → (φ(X, Λ), φ(Y,Λ)) with uniform real
random number Λ ∈ [1, n) and the update function φ defined in Subsection 3.2. Now we show that

E[d(X ′, Y ′)] ≤ β · d(X,Y ) where β = 1 − 1/(n(n − 1)2), (5)

for any pair {X,Y } ∈ E . In the following, we denote the supporting pair of {X,Y } by {j1, j2}.
Without loss of generality, we can assume that j1 < j2, and Xj2 + 1 = Yj2 .
Case 1: When bΛc = j2 − 1, we will show that

E[d(X ′, Y ′) | bΛc = j2 − 1] ≤ d(X,Y ) − (1/2)(n − j2 + 1)/(n − 1).

In case j1 = j2 − 1, X ′ = Y ′ with conditional probability 1. Hence d(X ′, Y ′) = 0. In the following,
we consider the case j1 < j2 − 1. Put k′ = Xj2−1 + Xj2 and k′′ = Yj2−1 + Yj2 . Since Xj2 + 1 = Yj2 ,
k′ + 1 = k′′ holds. From the definition of the update function of our Markov chain, we have the
followings,

X ′
j2−1 = l ⇔ [gk′

(j2−1)j2
(l − 1) ≤ Λ − bΛc < gk′

(j2−1)j2
(l)]

Y ′
j2−1 = l ⇔ [gk′+1

(j2−1)j2
(l − 1) ≤ Λ − bΛc < gk′+1

(j2−1)j2
(l)].

Now, the alternating inequalities

0 < gk′+1
(j2−1)j2

(0) = gk′

(j2−1)j2
(0) ≤ gk′+1

(j2−1)j2
(1) ≤ gk′

(j2−1)j2
(1) ≤ · · ·

≤ gk′+1
(j2−1)j2

(k′) ≤ gk′

(j2−1)j2
(k′) = gk′+1

(j2−1)j2
(k′ + 1) = 1,

hold. Thus we have(
X ′

j2−1

Y ′
j2−1

)
∈

{(
0
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)
, . . . ,

(
k′

k′

)
,

(
k′

k′ + 1

)}
.

If X ′
j2−1 = Y ′

j2−1, the supporting pair of {X ′, Y ′} is {j1, j2} and so d(X ′, Y ′) = d(X,Y ). If X ′
j2−1 6=

Y ′
j2−1, the supporting pair of {X ′, Y ′} is {j1, j2−1} and so d(X ′, Y ′) = d(X,Y )−(n−j2+1)/(n−1).

Lemma A.2 (proved later) implies that if αj2−1 ≥ αj2 , then

Pr[X ′
j2−1 6= Y ′

j2−1 | bΛc = j2 − 1] − Pr[X ′
j2−1 = Y ′

j2−1 | bΛc = j2 − 1]

=
∑k′

l=0

(
gk′

(j2−1),j2
(l) − gk′+1

(j2−1),j2
(l)

)
−

∑k′

l=1

(
gk′+1
(j2−1),j2

(l) − gk′

(j2−1),j2
(l − 1)

)
− gk′+1

(j2−1),j2
(0) ≥ 0.

Hence

Pr[X ′
j2−1 = Y ′

j2−1 | bΛc = j2 − 1] ≤ (1/2),
Pr[X ′

j2−1 6= Y ′
j2−1 | bΛc = j2 − 1] ≥ (1/2).

Thus we obtain that

E[d(X ′, Y ′)|bΛc = j2 − 1] ≤ (1/2)d(X,Y ) + (1/2)(d(X,Y ) − (n − j2 + 1)/(n − 1))
= d(X,Y ) − (1/2)(n − j2 + 1)/(n − 1).

Case 2: When bΛc = j2, we can show that E[d(X ′, Y ′)|bΛc = j2] ≤ d(X,Y )+(1/2)(n−j2)/(n−1)
in a similar way to Case 1.
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Case 3: When bΛc 6= j2 − 1 and bΛc 6= j2, it is easy to see that the supporting pair {j′1, j′2} of
{X ′, Y ′} satisfies j2 = max{j′1, j′2}. Thus d(X,Y ) = d(X ′, Y ′).

The probability of appearance of Case 1 is equal to 1/(n − 1), and that of Case 2 is less than
or equal to 1/(n − 1). From the above,

E[d(X ′, Y ′)] ≤ d(X,Y ) − 1
n − 1

· 1
2
· n − j2 + 1

n − 1
+

1
n − 1

· 1
2
· n − j2

n − 1
= d(X,Y ) − 1

2(n − 1)2

≤
(

1 − 1
2(n − 1)2

· 1
max{X,Y }∈E{d(X,Y )}

)
d(X,Y ) =

(
1 − 1

n(n − 1)2

)
d(X,Y ).

Since the diameter of G is bounded by Kn/2, Theorem 2.3 implies that the mixing rate τ satisfies
τ ≤ n(n − 1)2(1 + ln(Kn/2)). ¤

Lemma A.2 When αi ≥ αj > 0, the inequality

k∑
l=0

(
gk
ij(l) − gk+1

ij (l)
)
−

k∑
l=1

(
gk+1
ij (l) − gk

ij(l − 1)
)
− gk+1

ij (0) ≥ 0.

holds.

Proof: We can transform the left-hand side as∑k
l=0

(
gk
ij(l) − gk+1

ij (l)
)
−

∑k
l=1

(
gk+1
ij (l) − gk

ij(l − 1)
)
− gk+1

ij (0)

=
∑k

l=0

(
gk
ij(l) − gk+1

ij (l)
)
−

∑k−1
l=0

(
gk+1
ij (k − l) − gk

ij(k − l − 1)
)
− gk+1

ij (0)

=
∑k−1

l=0

(
gk
ij(l) − gk+1

ij (l) − gk+1
ij (k − l) + gk

ij(k − l − 1)
)

+ 1 − gk+1
ij (k) − gk+1

ij (0),

and we can see that,

1 − gk+1
ij (k) − gk+1

ij (0) = 1 −
Pk

s=0 αs
i αk+1−s

j
Pk+1

s=0 αs
i αk+1−s

j

−
P0

s=0 αs
i αk+1−s

j
Pk+1

s=0 αs
i αk+1−s

j

= αk+1
i

Pk+1
s=0 αs

i αk+1−s
j

− αk+1
j

Pk+1
s=0 αs

i αk+1−s
j

≥ 0,

since αi ≥ αj (Condition 2). Thus it is enough to show that

gk
ij(l) − gk+1

ij (l) − gk+1
ij (k − l) + gk

ij(k − l − 1) ≥ 0 for any l (0 ≤ l ≤ k − 1).

By transforming the left-hand side, we can see that

gk
ij(l) − gk+1

ij (l) − gk+1
ij (k − l) + gk

ij(k − l − 1)

= gk
ij(l) − gk+1

ij (l) −
Pk−l

s=0 αs
i αk+1−s

j
Pk+1

s=0 αs
i αk+1−s

j

+
Pk−l−1

s=0 αs
i αk−s

j
Pk

s=0 αs
i αk−s

j

= gk
ij(l) − gk+1

ij (l) −
(

1 −
Pk+1

s=k−l+1 αs
i αk+1−s

j
Pk+1

s=0 αs
i αk+1−s

j

)
+

(
1 −

Pk
s=k−l αs

i αk−s
j

Pk
s=0 αs

i αk−s
j

)
=

Pl
s=0 αs

i αk−s
j

Ak
ij

−
Pl

s=0 αs
i αk+1−s

j

Ak+1
ij

+
Pk+1

s=k−l+1 αs
i αk+1−s

j

Ak+1
ij

−
Pk

s=k−l αs
i αk−s

j

Ak
ij

=
Pl

s=0 αs
i αk−s

j

Ak
ij

−
Pl

s=0 αs
i αk+1−s

j

Ak+1
ij

+
Pl

s=0 αk+1−s
i αs

j

Ak+1
ij

−
Pl

s=0 αk−s
i αs

j

Ak
ij
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=
(

1
Ak

ij
− αj

Ak+1
ij

)∑l
s=0 αs

iα
k−s
j +

(
αi

Ak+1
ij

− 1
Ak

ij

)∑l
s=0 αk−s

i αs
j

=
Pl

s=0 αs
i αk−s

j

Ak
ijAk+1

ij

(∑k+1
s=0 αs

i α
k+1−s
j −

∑k
s=0 αs

i α
k+1−s
j

)
+

Pl
s=0 αk−s

i αs
j

Ak
ijAk+1

ij

(∑k+1
s=1 αs

iα
k+1−s
j −

∑k+1
s=0 αs

i α
k+1−s
j

)
= 1

Ak
ijAk+1

ij

(
αk+1

i

∑l
s=0 αs

iα
k−s
j − αk+1

j

∑l
s=0 αk−s

i αs
j

)
= 1

Ak
ijAk+1

ij

∑l
s=0

(
αk+1+s

i αk−s
j − αk−s

i αk+1+s
j

)
= 1

Ak
ijAk+1

ij

∑l
s=0

(
αk−s

i αk−s
j

(
α2s+1

i − α2s+1
j

))
≥ 0,

since αi ≥ αj (Condition 2). Thus we obtain the claim. ¤
Next we estimate the expectation of the coalescence time of MP.

Lemma A.3 Under Condition 2, the coalescence time T∗ of MP satisfies E[T∗] = O(n3 lnKn).

Proof: Let G = (Ξ, E) be the undirected graph and d(X,Y ), ∀X, ∀Y ∈ Ξ, be the metric on
G, both of which are defined in the proof of Lemma A.1. We define D

def.= d(xmax, xmin) and
τ0

def.= n(n−1)2(1+ln D). By using the inequality (5) obtained in the proof of Lemma A.1, we have

Pr[T∗ > τ0] = Pr
[
Φ0
−τ0(xmax,Λ) 6= Φ0

−τ0(xmin,Λ)
]

= Pr [Φτ0
0 (xmax,Λ) 6= Φτ0

0 (xmin,Λ)]
≤

∑
(X,Y )∈Ξ2 d(X,Y )Pr [X = Φτ0

0 (xmax,Λ), Y = Φτ0
0 (xmin,Λ)]

= E [d (Φτ0
0 (xmax,Λ), Φτ0

0 (xmin,Λ))] ≤
(

1 − 1
n(n − 1)2

)τ0

d(xmax, xmin)

=
(

1 − 1
n(n − 1)2

)n(n−1)2(1+ln D)

D ≤ e−1e− ln DD =
1
e
.

By the submultiplicativity of coalescence time ([19]), for any k ∈ Z+, Pr[T∗ > kτ0] ≤ (Pr[T∗ > τ0])
k ≤

(1/e)k. Thus

E[T∗] =
∑∞

t=0 tPr[T∗ = t] ≤ τ0 + τ0Pr[T∗ > τ0] + τ0Pr[T∗ > 2τ0] + · · ·
≤ τ0 + τ0/e + τ0/e2 + · · · = τ0/(1 − 1/e) ≤ 2τ0.

Clearly D ≤ Kn, then we obtain the result that E[T∗] = O(n3 lnKn). ¤

Proof of Theorem 3.3: Let T∗ be the coalescence time of our chain. Clearly T∗ is a random
variable. Put m = dlog2 T∗e. Algorithm 2 terminates when we set the starting time period T = −2m

at (m + 1)st iteration. Then the total number of simulated transitions is bounded by 2(20 + 21 +
22 + · · · + 2K) < 2 · 2 · 2m ≤ 8T∗, since we need to execute two chains from both xmax and xmin.
Thus the expectation of total number of transitions of M is bounded by O(E[8T∗]) = O(n3 lnKn).
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