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Abstract: We give a sufficient condition for admissibility of generalized Bayes es-
timators of the location vector of spherically symmetric distribution under squared
error loss. Compared to the known results for the multivariate normal case, our suffi-
cient condition is very tight and is close to being a necessary condition. In particular
we establish the admissibility of generalized Bayes estimators with respect to the har-
monic prior and priors with slightly heavier tail than the harmonic prior. We use the
theory of regularly varying functions to construct a sequence of smooth proper priors
approaching an improper prior fast enough for establishing the admissibility. We also
discuss conditions of minimaxity of the generalized Bayes estimator with respect to
the harmonic prior.
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1. Introduction

We consider estimation of the p-dimensional location parameter of a spherically symmetric
distribution. Specifically, let X = (X1, . . . , Xp)′ have a density function f(‖x − θ‖) and
consider estimation of θ with a general quadratic loss function L(θ, δ) = (δ−θ)′Q(δ−θ) =
‖δ − θ‖2

Q for a positive definite matrix Q. The usual minimax estimator X, which is
generalized Bayes, is inadmissible for p ≥ 3 as shown in Stein (1956) in the normal case,
and in Brown (1966) under more general situation, respectively. In the decision-theoretic
point of view, we are interested in proposing admissible estimators dominating X, that
is, minimax admissible estimators. Note that the dominance over X means minimaxity in
our setting because X is minimax with a constant risk. Note also that our results hold
for the location vector of elliptically-contoured distributions, because we are considering
a general quadratic loss function with arbitrary positive definite Q.

In the normal case, there already exists a broad class of admissible minimax estimators.
Baranchik (1970) gave a sufficient condition for minimaxity of a shrinkage estimator of
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the form
δφ(X) = (1 − φ(‖X‖)‖X‖−2)X. (1.1)

Strawderman (1971) found a subclass of proper Bayes estimators of the form (1.1) satisfy-
ing the sufficient conditions for minimaxity. Brown (1971) gave a very powerful sufficient
condition for admissibility of generalized Bayes estimators. Using Brown’s (1971) con-
dition, Berger (1976), Fourdrinier et al. (1998) and Maruyama (1998, 2004) enlarged a
class of admissible minimax estimators which are of the Strawderman type and gener-
alized Bayes. For a subclass of scale mixtures of multivariate normal distributions which
includes multivariate-t distribution, some proper Bayes minimax estimators were proposed
by Maruyama (2003) by using Strawderman’s (1971) techniques.

However, for general spherically symmetric distributions, no minimax admissible esti-
mators of the location vectors have been derived, although for the minimaxity, various
Baranchik-type sufficient conditions of the estimator (1.1) were given by Berger (1975),
Brandwein and Strawderman (1978, 1991) and Bock (1985). The main reason is the lack of
a standard class of generalized or proper Bayes estimators of the form (1.1) like the Straw-
derman type in the normal case, which allows an easy check of the minimaxity condition.
Furthermore no sufficient condition for admissibility of generalized Bayes estimators has
been derived. In this paper, we will provide satisfactory solutions to these problems.

In Section 2, we give preliminary results including the properties of regularly varying
functions and asymptotic behaviors of expected values when ‖θ‖ is sufficiently large. The
former is useful for constructing a very convenient sequence of proper densities g(θ)h2

i (θ),
i = 1, 2, . . ., approaching an improper density g(θ), which is required in applying the
method of Blyth (1951).

In Section 3, we will present a powerful sufficient condition for admissibility of gener-
alized Bayes estimator and in particular show that the generalized Bayes estimators with
respect to the harmonic prior g(θ) = ‖θ‖2−p and with respect to a prior with a slightly
heavier tail

g(θ) = ‖θ‖2−p log(‖θ‖ + c), c > 1, (1.2)

are admissible under mild regularity conditions on f .
In Section 4, we show that the generalized Bayes estimator with respect to the harmonic

prior is written as (
1 −

∫ 1
0 tp−1F (t‖X‖)dt

∫ 1
0 tp−3F (t‖X‖)dt

)
X, (1.3)

where F (u) =
∫ ∞
u sf(s)ds. This form is simple enough to check various sufficient conditions

for minimaxity and we demonstrate that (1.3) is minimax for some f . We believe that (1.3)
is minimax for a broad subclass of spherically symmetric distributions. Notice that the
generalized Bayes estimators with respect to priors except ‖θ‖2−p do not have such simple
forms as far as we know.

Our proof of admissibility is mainly based on the techniques of Brown and Hwang
(1982). Brown and Hwang (1982) considered the problem of estimating the natural mean
vector of an exponential family under a quadratic loss function. Note that the intersection
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of their setting and our setting is the multivariate normal case. Their sufficient condition
for admissibility in the normal case does not however permit g(θ) to diverge to infinity
around the origin like ‖θ‖2−p, while it permits g(θ) ≤ ‖θ‖a with a ≤ 2 − p for sufficiently
large ‖θ‖. Prior to Brown and Hwang (1982), Brown (1971) considered the estimation in
the multivariate normal case and gave a powerful sufficient condition for minimaxity which
are satisfied by the harmonic prior and (1.2), but his proof was based on many advanced
mathematics. Our mathematical tool is much more familiar to the readers. Brown (1971)
also gave sufficient condition for inadmissibility. By using it we see that the generalized
Bayes estimator with respect to ‖θ‖2−p log2(‖θ‖ + 2) is inadmissible. Hence our sufficient
condition for admissibility should be very tight and close to being a necessary condition.

Brown (1979) considered a more general problem than ours: estimation of θ for a general
density p(x − θ) and a general loss function W (δ − θ). He conjectured that the prior
g(θ) ∼ ‖θ‖a with a ≤ 2 − p for sufficiently large ‖θ‖ leads to admissibility, regardless of
the density p and the loss W . Hence our results support Brown (1979)’s conjecture for the
case of elliptically-contoured family and a general quadratic loss function.

Finally we notice that the most important key for our proof for admissibility is the
construction of a very convenient sequence hi(θ) for approximating g(θ) by g(θ)hi(θ)2.
Brown and Hwang (1982) used

hi(θ) =





1 ‖θ‖ ≤ 1
1 − log ‖θ‖/ log i 1 ≤ ‖θ‖ ≤ i

0 ‖θ‖ > i.

This hi(θ) is not differentiable at ‖θ‖ = 1 and truncated at ‖θ‖ = i, which makes handling
and extension difficult for our purposes. Our hi(θ) given in Section 2 is smoother and not
truncated. We believe that our hi(θ) is very useful for showing admissibility of generalized
Bayes estimators in various problems.

2. Preliminaries

In this section we prepare a sequence of proper densities using the theory of regularly
varying functions and give some results on asymptotic behaviors of expected values when
the location parameter diverges to infinity. For the theory of regularly varying and slowly
varying functions the readers are referred to Geluk and de Haan (1987) and Bingham et al.
(1987).

2.1. Regularly varying functions

A Lebesgue measurable function f : R+ → R which is eventually positive is called regularly
varying if for some α ∈ R

lim
x→∞

f(tx)
f(x)

= tα, ∀t > 0. (2.1)
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We sometimes use the notation f ∈ RVα. The number α in the above is called the index
of regular variation. A function satisfying (2.1) with α = 0 is called slowly varying.

Let β : R+ → R+ be positive, twice continuously differentiable, monotone decreasing,
integrable (i.e.

∫ ∞
0 β(r)dr < ∞) and regular varying with index −1. A typical β(η) is

1
η + c

1
{Logn(η + c)}2

n−1∏

i=0

1
Logi(η + c)

, (2.2)

where n is a positive integer, Log0(η + c) ≡ 1,

Logi(η + c) = log log · · · log︸ ︷︷ ︸
i

(η + c), i ≥ 1,

and c is chosen such that Logn(c) > 0. Note that for (2.2)
∫ ∞

η
β(r)dr =

1
Logn(η + c)

.

The following results for β(η) satisfying the above assumptions are known from the
theory of regularly varying functions.

Lemma 2.1. 1.
∫ ∞
η β(r)dr ∈ RV0 and β′(r) ∈ RV−2.

2. limη→∞ ηβ(η)/
∫ ∞
η β(r)dr = 0, limη→∞ ηβ′(η)/β(η) = −1, and limη→∞ ηβ′′(η)/β′(η) =

−2.

We now define functions Hi(η), i = 1, 2, . . ., based on β(r) by

Hi(η) =

∫ ∞
η e(η−r)/iβ(r)dr

∫ ∞
η β(r)dr

. (2.3)

These functions are very useful for constructing a sequence of proper prior densities ap-
proaching the target improper density in the next section. The properties of Hi are given
in the following theorem.

Theorem 2.1. 1. 0 ≤ H1(η) ≤ H2(η) ≤ · · · ≤ 1. For any fixed η, limi→∞ Hi(η) = 1.
2. For any fixed i, limη→∞

∫ ∞
η β(r)drβ(η)−1Hi(η) = i and hence Hi(η) ∈ RV−1.

3. For any fixed η, limi→∞ H ′
i(η) = 0.

4. |H ′
i(η)| < 2β(η)/

∫ ∞
η β(r)dr for all η > 0.

5. For any ε > 0, there exists η0 such that −1 − ε < ηH ′
i(η)/Hi(η) ≤ 0 for all η ≥ η0

and for all i.

Proof. It is obvious that 0 ≤ H1(η) ≤ 1 and Hi(η) is increasing in i. For fixed η, Hi(η) ↑ 1
by the monotone convergence theorem.

By integration by parts, the numerator of Hi(η) is written as
∫ ∞

η
e(η−r)/iβ(r)dr = iβ(η) + i

∫ ∞

η
e(η−r)/iβ′(r)dr. (2.4)
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Therefore

Hi(η) = i
β(η)∫ ∞

η β(r)dr
+ i

∫ ∞
η e(η−r)/iβ′(r)dr

∫ ∞
η β(r)dr

. (2.5)

(2.5) divided by (2.3) is

1 = i
β(η)

Hi(η)
∫ ∞
η β(r)dr

+ i

∫ ∞
η e−r/iβ′(r)dr
∫ ∞
η e−r/iβ(r)dr

.

For fixed i, the second term of the above equation converges to 0 as η → ∞ by the
L’Hospital theorem. Hi(η) ∈ RV−1 because

∫ ∞
η β(r)dr ∈ RV0 and β(η) ∈ RV−1.

Using (2.4) again, differentiation of the numerator of Hi(η) gives
(∫ ∞

η
e(η−r)/iβ(r)dr

)′
=

1
i

∫ ∞

η
e(η−r)/iβ(r)dr − β(η) =

∫ ∞

η
e(η−r)/iβ′(r)dr.

Therefore

H ′
i(η) =

β(η)
∫ ∞
η e(η−r)/iβ(r)dr

(
∫ ∞
η β(r)dr)2

−
∫ ∞
η e(η−r)/i{−β′(r)}dr

∫ ∞
η β(r)dr

. (2.6)

Note that −β′(r) ≥ 0 by our assumption. Each term of the right hand side of (2.6) is
nondecreasing in i and hence by the monotone convergence theorem

lim
i→∞

H ′
i(η) =

β(η)
∫ ∞
η β(r)dr

(
∫ ∞
η β(r)dr)2

−
∫ ∞
η {−β′(r)}dr
∫ ∞
η β(r)dr

= 0.

Furthermore we have

∣∣H ′
i(η)

∣∣ <

∣∣∣∣∣
β(η)

∫ ∞
η e(η−r)/iβ(r)dr

(
∫ ∞
η β(r)dr)2

∣∣∣∣∣ +

∣∣∣∣∣

∫ ∞
η e(η−r)/i{−β′(r)}dr

∫ ∞
η β(r)dr

∣∣∣∣∣

< 2β(η)/
∫ ∞

η
β(r)dr.

Dividing (2.6) by (2.3), we have

η
H ′

i(η)
Hi(η)

= η

(∫ ∞
η −β′(r)dr
∫ ∞
η β(r)dr

−
∫ ∞
η e−r/i{−β′(r)}dr
∫ ∞
η e−r/iβ(r)dr

)
(2.7)

>
ηβ(η)∫ ∞

η β(r)dr
−

∫ ∞
η e−r/i{−rβ′(r)/β(r)}β(r)dr

∫ ∞
η e−r/iβ(r)dr

>
ηβ(η)∫ ∞

η β(r)dr
− sup

r>η

−rβ′(r)
β(r)

.

By 2 of Lemma 2.1 the right hand side converges to −1. This implies that for any ε > 0
there exists η0 such that ηH ′

i(η)/Hi(η) > −1 − ε for all η ≥ η0 and for all i. Finally by



Y.Maruyama and A.Takemura/Admissibility for spherical family 6

the covariance inequality (Lemma 6.6, Chapter 5 of Lehmann and Casella (1998)) we will
prove that H ′

i(η)/Hi(η) ≤ 0 for sufficiently large η independent of i. By 2 of Lemma 2.1

η2
(

β′(η)
β(η)

)′
= η

β′′(η)
β′(η)

η
β′(η)
β(η)

−
(

η
β′(η)
β(η)

)2

→ (−2)(−1) − (−1)2 = 1.

This shows that, β′(η)/β(η) is eventually monotone nondecreasing. Hence by redefining η0

if necessary, we can assume that β′(η)/β(η) is monotone nondecreasing for η ≥ η0. Then
∫ ∞

η
e(η−r)/i

(
−β′(r)

β(r)

)
β(r)∫ ∞

η β(r′)dr′
dr

≥
∫ ∞

η
e(η−r)/i β(r)∫ ∞

η β(r′)dr′
dr ×

∫ ∞

η

(
−β′(r)

β(r)

)
β(r)∫ ∞

η β(r′)dr′
dr.

Comparing this to the first equality in (2.7), we see that H ′
i(η)/Hi(η) ≤ 0 for η ≥ η0 and

for all i.

2.2. Asymptotic behavior of expectations

In the next section, we need evaluation of an asymptotic behavior of expectation

Ex[ρ(θ)] =
∫

Rp
ρ(θ)f(‖θ − x‖)dθ

for sufficiently large ‖x‖, where a random vector θ has the density function f(‖θ − x‖).
This is the expected value with respect to the posterior distribution. Interchanging the
roles of x and θ, in this subsection, we consider the asymptotic behavior of expectation

Eθ[ρ(X)] =
∫

Rp
ρ(x)f(‖x − θ‖)dx

for sufficiently large ‖θ‖, where a random vector X has the density function f(‖x − θ‖).
We believe that this does not confuse the readers.

We discuss some notations used in the following. In addition to the Euclidean norm
‖x‖2 = x2

1 + · · ·+ x2
p, we consider the norm ‖x‖2

d = d2
1x

2
1 + · · ·+ d2

px
2
p. For convenience we

assume, without loss of generality, that d1 ≥ · · · ≥ dp ≥ 1. Under this assumption

‖x‖ ≤ ‖x‖d ≤ d1‖x‖. (2.8)

By introducing this norm our results hold for elliptically-contoured distributions. The
gradient of ρ(x) is denoted by

∇ρ(x) = (
∂

∂x1
ρ(x), . . . ,

∂

∂xp
ρ(x))′.

We also write ∇jρ(x) = (∂/∂xj)ρ(x). Finally we write cp = 2πp/2/Γ(p/2).
Now we make the following regularity conditions on the density f and the function ρ.
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F1 There exist r0 > 0, L > 0, and s > 1, such that rp+sf(r) ≤ L for all r ≥ r0.
B1 ρ(x) is written as ρ(x) = %(‖x‖d), where %(r) is continuously differentiable in r > 0.
B2 There exists r1 ≥ 1 and 0 ≤ t2 ≤ t1 such that %(r) > 0 and −t1 ≤ w%′(r)/%(r) ≤ −t2

for all r ≥ r1.

Note that

∇ρ(x) =
%′(‖x‖d)
‖x‖d

(d2
1x1, . . . , d

2
pxp)′

and

‖∇ρ(x)‖ =
|%′(‖x‖d)|

‖x‖d
(d4

1x
2
1 + · · · + d4

px
2
p)

1/2 ≤ d1|%′(‖x‖d)|.

The following lemma is useful. The proof based on the integration of (log %(r))′ =
%′(r)/%(r) is easy and omitted.

Lemma 2.2. Under the assumption B2

(z/y)−t1 ≤ %(z)/%(y) ≤ (z/y)−t2

for any z > y ≥ r1. Moreover

lim sup
y→∞

sup
αy≤z≤βy

%(z)/%(y) ≤ α−t1

for any 0 < α < 1 < β.

We now state the following theorem concerning the asymptotic behavior of Eθ[ρ(X)]
for large ‖θ‖.

Theorem 2.2. Assume F1, B1 and B2. Then, for a = 0 or 1, and j = 1, . . . , p, there
exists ε > 0 such that

‖θ‖ε−a
d

∣∣∣Eθ[Xa
j ρ(X)] − θa

j ρ(θ)
∣∣∣ < Cρ(θ) (2.9)

for sufficiently large ‖θ‖d if s > max(1, t1 − a − p, t1 − t2) and
∫ 1
0 rp+a−1|%(r)|dr < ∞.

Moreover C depends on ρ (or %) only through %(r1), t1, t2 and
∫ r1
0 rp+a−1|%(r)|dr.

Proof. Note that
Eθ[Xa

j ρ(X)] − θa
j ρ(θ) = Eθ[Xa

j (ρ(X) − ρ(θ))].

Fix 0 < ν < 1. Define

Vν = {x : ‖x − θ‖ ≤ ν‖θ‖}
V ′

ν = {x : (1 − ν)‖θ‖ ≤ ‖x‖ ≤ (1 + ν)‖θ‖}
V ′′

ν = {x : d−1
1 (1 − ν)‖θ‖d ≤ ‖x‖d ≤ d1(1 + ν)‖θ‖d}.
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By (2.8) Vν ⊂ V ′
ν ⊂ V ′′

ν . Then

‖θ‖ε−a
d

∣∣∣E[Xa
j (ρ(X) − ρ(θ))]

∣∣∣

≤ ‖θ‖ε−a
d

∫

Vν

‖x‖a
d |ρ(x) − ρ(θ)| f(‖x − θ‖)dx

+ ‖θ‖ε−a
d

∫

V C
ν

‖x‖a |ρ(x) − ρ(θ)| f(‖x − θ‖)dx

≤ ‖θ‖ε
d sup

x∈V ′′
ν

(‖x‖d

‖θ‖d

)a ∫

Vν

|ρ(x) − ρ(θ)| f(‖x − θ‖)dx

+ ‖θ‖ε−a
d ρ(θ)

∫

V C
ν

‖x‖af(‖x − θ‖)dx

+ ‖θ‖ε−a
d

∫

V C
ν

‖x‖a|ρ(x)|f(‖x − θ‖)dx

= I1 + I2 + I3. (say) (2.10)

Consider the first integral I1. supx∈V ′′
ν

(‖x‖d/‖θ‖d)
a ≤ da

1(1 + ν)a. If s > 1, then m1 =∫
Rp ‖x − θ‖f(‖x − θ‖)dx is finite. Therefore for ‖θ‖d ≥ d1(1 − ν)−1r1 we have

‖θ‖ε
d

∫

Vν

|ρ(x) − ρ(θ)| f(‖x − θ‖)dx

= ‖θ‖ε
d

∫

Vν

|(x − θ)′∇ρ(x∗)|f(‖x − θ‖)dx, x∗ ∈ Vν

≤ m1‖θ‖ε
d sup

x∈Vν

‖∇ρ(x)‖

≤ m1d1‖θ‖ε
d sup

x∈Vν

|%′(‖x‖d)|

≤ m1d1‖θ‖ε−1
d sup

x∈V ′′
ν

‖θ‖d

‖x‖d
sup

x∈V ′′
ν

%(‖x‖d)
%(‖θ‖d)

sup
x∈V ′′

ν

‖x‖d|%′(‖x‖d)|
%(‖x‖d)

× ρ(θ)

= t1m1d
2+t1
1 (1 − ν)−t1−1‖θ‖ε−1

d × ρ(θ)

≤ t1m1d
2+t1
1 (1 − ν)−t1−1 × ρ(θ) (0 < ε < 1).

Therefore we have I1 ≤ C1ρ(θ), where C1 = (1 + ν)at1m1d
2+t1+a
1 (1 − ν)−t1−1.

Now we consider the integral outside of Vν . We only consider ‖θ‖ ≥ max(d1ν
−1r0, r1).

Then for x ∈ V C
ν

‖x − θ‖ ≥ ν‖θ‖ ≥ νd−1
1 ‖θ‖d ≥ r0.
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Therefore for the second term I2, omitting ρ(θ), we have

‖θ‖ε−a
d

∫

V C
ν

‖x‖af(‖x − θ‖)dx ≤ ‖θ‖ε−a
d

∫

V C
ν

(‖x − θ‖a + ‖θ‖a)f(‖x − θ‖)dx

≤ cpL‖θ‖ε−a
d

∫ ∞

ν‖θ‖
{r−s+a−1 + ‖θ‖a

d r−s−1}dr

= cpL‖θ‖ε−a
d

(
(ν‖θ‖)−s+a

s − a
+ ‖θ‖a

d

(ν‖θ‖)−s

s

)

≤ cpL
ds

1

νs

(
νad−a

1

s − a
+

1
s

)
‖θ‖ε−s

d .

Hence if s > 1, then I2 ≤ C2ρ(θ), where C2 = cpL(d1/ν)s
{
(ν/d1)a(s − a)−1 + 1/s

}
.

We have seen that I1 and I2 are bounded from above assuming only s > 1.
The third term I3 of (2.10) is more problematic. Write

I3 = ‖θ‖ε−a
d

∫

V C
ν

‖x‖a|ρ(x)|f(‖x − θ‖)dx

≤ ‖θ‖ε−a
d

(∫

V C
ν ∩{‖x‖d<r1}

+
∫

V C
ν ∩{r1≤‖x‖d≤‖θ‖d}

+
∫

V C
ν ∩{‖x‖d>‖θ‖d}

)
‖x‖a|ρ(x)|f(‖x − θ‖)dx

= I31 + I32 + I33. (say)

We take care of I33 first. Since %(r) is monotone nonincreasing for r ≥ r1, ρ(x) ≤ ρ(θ) for
‖x‖d > ‖θ‖d. Therefore as above we have

I33 ≤ ‖θ‖ε−a
d ρ(θ)

∫

V C
ν

‖x‖af(‖x − θ‖)dx ≤ C2ρ(θ).

Next we consider I31. For ‖θ‖ ≥ max(d1ν
−1r0, r1) and x ∈ V C

ν

f(‖x − θ‖) ≤ L‖x − θ‖−p−s ≤ Lν−p−s‖θ‖−p−s ≤ Ldp+s
1 ν−p−s‖θ‖−p−s

d .

Therefore
I31 ≤ ‖θ‖ε−a

d Ldp+s
1 ν−p−s‖θ‖−p−s

d

∫

‖x‖d≤r1

‖x‖a
d ρ(x)dx.

Note that by simple change of variables we have

∂

∂r

∫

‖x‖d≤r
dx = cp,dr

p−1, cp,d = cp

p∏

i=1

d−1
i .

Then ∫

‖x‖d≤r1

‖x‖a
d ρ(x)dx = cp,d

∫ r1

0
rp+a−1|%(r)|dr.
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Therefore
I31 ≤ ‖θ‖ε−a−p−s

d × Ldp+s
1 ν−p−scp,d

∫ r1

0
rp+a−1|%(r)|dr.

On the other hand for ‖θ‖d ≥ ‖θ‖ ≥ r1, ρ(θ) = %(‖θ‖d) is bounded from below as

%(r1)rt1
1 ‖θ‖−t1

d ≤ %(‖θ‖d).

Therefore I31 ≤ C31‖θ‖ε−a−p−s+t1
d ρ(θ), where

C31 = %(r1)−1r−t1
1 Ldp+s

1 ν−p−scp,d

∫ r1

0
rp+a−1|%(r)|dr.

Hence if s > t1 − a − p, then we can choose ε > 0 such that

I31 ≤ C31ρ(θ).

Finally we consider I32. %(r) ≤ %(r1)rt2
1 r−t2 for r ≥ r1. Therefore

I32 ≤ ‖θ‖ε−a
d

∫

r1≤‖x‖d≤‖θ‖d

‖x‖a
d ρ(x) f(‖x − θ‖)dx

≤ ‖θ‖ε−a
d Ldp+s

1 ν−p−s‖θ‖−p−s
d %(r1)rt2

1

∫

r1≤‖x‖d≤‖θ‖d

‖x‖−t2+a
d dx

= ‖θ‖ε−a−p−s
d × Ldp+s

1 ν−p−s%(r1)rt2
1 cp,d ×

∫ ‖θ‖d

r1

rp+a−t2−1dr.

Consider the integral Q =
∫ ‖θ‖d
r1

rp+a−t2−1dr. If p + a − t2 < 0, then

Q ≤ 1
t2 − a − p

r
−(t2−a−p)
1 ≤ 1

t2 − a − p
.

Therefore as in the case of I31, for some C32 we have I32 ≤ C32ρ(θ) if s > t1 − a − p. If
p + a − t2 = 0, then Q ≤ log(‖θ‖d). Even in this case, if s > t1 − a − p, we can choose
ε > 0 such that ‖θ‖ε−a−p−s+t1

d Q is bounded. On the other hand, if p + a − t2 > 0, then
Q = O(‖θ‖p+a−t2

d ) and we need s > t1 − t2 to choose ε such that I32 ≤ C32ρ(θ).
We have now confirmed that if s > max(1, t1 − a − p, t1 − t2), there exist ε > 0 and C,

such that (2.9) folds for ‖θ‖ ≥ max(d1ν
−1r0, r1).

In the next section, we also consider the expectation E[ρ(Y )] where Y ∼ F (‖y−θ‖)/Cf

and Cf = {πp/2/Γ(p/2 + 1)}
∫ ∞
0 zp+1f(z)dz. F (·)/Cf is a probability density function
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because
∫

Rp
‖y − θ‖αF (‖y − θ‖)dy =

∫

Rp
‖y‖α{

∫

‖y‖
sf(s)ds}dy

= cp

∫ ∞

0
rp−1+α

∫ ∞

r
sf(s)dsdr

= cp

∫ ∞

0
rp+1+α

∫ ∞

1
tf(rt)dtdr

= cp

∫ ∞

1
t{

∫ ∞

0
rp+1+αf(rt)dr}dt

= cp

∫ ∞

1
t−p−1−αdt ·

∫ ∞

0
zp+1+αf(z)dz

=
cp

p + α

∫ ∞

0
zp+1+αf(z)dz.

Therefore we require more restricted s > 2 + max(1, t1 − a − p, t1 − t2) to obtain corre-
sponding results of Theorem 2.2 in the case where Y ∼ F (‖y − θ‖)/Cf .

3. Admissibility

In this section, we give a sufficient condition for admissibility of the generalized Bayes
estimator with respect a the prior density g(θ). The assumptions on g are the following.

G1 g(θ) = G(‖θ‖d), where G(η) is twice continuously differentiable in η > 0.
G2

∫ 1
0 ηp−1G(η)dη < ∞ and

∫ ∞
1 ηp−1G(η)dη = ∞, that is, improperness of g occurs only

at infinity.
G3 G(η) ≤ η1−p(

∫ ∞
η β(r)dr)2/β(η) for η ≥ 1, where β(r) is given in Section 2.1.

G4
∫ 1
0 ηp−1|G′(η)|dη < ∞ .

G5 There exist η1 > 0, 0 ≤ t2 ≤ t1, 0 ≤ t4 ≤ t3, such that −t1 ≤ ηG′(η)/G(η) ≤ −t2 and
−t3 ≤ ηG′′(η)/G′(η) ≤ −t4 for all η ≥ η1.

FG1
∫ 1
0 rp−1f(r)G(r)dr < ∞ and

∫ 1
0 rp−1F (r)|G′(r)|dr < ∞.

We discuss some implications of these assumptions. By 2 of Theorem 2.1 and the as-
sumption G3, g(θ)H2

i (‖θ‖d) for any fixed i is integrable and hence becomes a proper
probability density by standardization. Since Hi(·) approaches 1 as i → ∞, g(θ)H2

i (‖θ‖d)
is a sequence of proper densities approaching g(θ), which is essential for using Blyth’
method.

By Lemma 2.2, G(η) = O(η−t2). Therefore if t2 > p, then g(θ) = G(‖θ‖d) is a proper
prior. Since we are considering an improper g(θ), we assume t2 ≤ p from now on. Then in
Theorem 2.2, t1 − a − p ≤ t1 − p ≤ t1 − t2 and

max(1, t1 − a − p, t1 − t2) = max(1, t1 − t2).

If G(η) is regularly varying, then for any ε > 0, we can choose η0, t1, t2, t3, t4, such that t1−
t2 < ε and t3−t4 < ε. However in G5 we are allowing the case that lim infη→∞ ηG′(η)/G(η)
is strictly less than lim supη→∞ ηG′(η)/G(η). Hence we are dealing with a broader class of
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G(η) than the class of regularly varying functions. It should also be noted that t4 and t3
are not always greater than t2 and t1, respectively. See Geluk and de Haan (1987) for the
detail.

The generalized Bayes estimator δg with respect to the improper density g(θ) is written
as

δg(x) =
∫
Rp θf(‖x − θ‖)g(θ)dθ∫
Rp f(‖x − θ‖)g(θ)dθ

= x +
∫
Rp(θ − x)f(‖x − θ‖)g(θ)dθ∫

Rp f(‖x − θ‖)g(θ)dθ

= x +
∫
Rp F (‖x − θ‖)∇g(θ)dθ∫

Rp f(‖x − θ‖)g(θ)dθ
, (3.1)

which is well-defined if both
∫
Rp F (‖x − θ‖)∇g(θ)dθ and

∫
Rp f(‖x − θ‖)g(θ)dθ are finite

for all x. These are guaranteed by the assumptions. Write

m(ψ|x) =
∫

Rp
ψ(θ)f(‖θ − x‖)dθ

M(ψ|x) =
1

Cf

∫

Rp
ψ(θ)F (‖θ − x‖)dθ.

Then δg is written as

δg(x) = x + Cf
M(∇g|x)
m(g|x)

.

Note that by G1 the j-th element of ∇g is given by

∇jg(θ) = d2
jθj

G′(‖θ‖d)
‖θ‖d

.

We also write
hi(x) = Hi(‖x‖d).

Now we state the following lemma in preparation of our main theorem.

Lemma 3.1. Assume G1–G5, F1, and FG1. If s > 4 + t1 − t2, then there exists ε > 0
such that

‖x‖ε
d |m(g|x) − g(x)| < C1 × g(x) (3.2)

‖x‖ε
d

∣∣∣m(gh2
i |x) − g(x)h2

i (x)
∣∣∣ < C2 × g(x)h2

i (x) (3.3)

‖x‖ε
d

∣∣∣M(gh2
i |x) − g(x)h2

i (x)
∣∣∣ < C3 × g(x)h2

i (x) (3.4)

for all sufficiently large ‖x‖d. Moreover if s > 4 + max(t3 − t4, t3 − p), then there exists
ε > 0 such that

‖x‖ε−1
d |M(∇jg|x) −∇jg(x)| < C4 × G′(‖x‖d)/‖x‖d (3.5)

‖x‖ε−1
d

∣∣∣M(∇jgh2
i |x) −∇jg(x)h2

i (x)
∣∣∣ < C5 × G′(‖x‖d)h2

i (x)/‖x‖d (3.6)

for all sufficiently large ‖x‖d. Furthermore C2, C3, C5 do not depend on i.
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Proof. In Theorem 2.2 we take ρ as g, gh2
i or ρ(x) = G′(‖x‖d)hi(x)2/‖x‖d. For a differen-

tiable l(η), we have

η{l(η)H2
i (η)}′/{l(η)H2

i (η)} = ηl′(η)/l(η) + 2ηH ′
i(η)/Hi(η).

Hence under Assumption G5 and by 5 of Theorem 2.1, we have

− t1 − 2 − ε ≤ η{G(η)H2
i (η)}′/{G(η)H2

i (η)} ≤ −t2

− t3 − 3 − ε ≤ η{G′(η)H2
i (η)/η}′/{G′(η)H2

i (η)/η} ≤ −t4 − 1

for any ε > 0 and η ≥ max(η0, η1). We can therefore think of t1, t3, t4 replaced by t1 + 2,
t3 + 3, t4 + 1, respectively. By Theorem 2.2 for the case a = 0, (3.2), (3.3) and (3.4) are
simultaneously satisfied if

s > 2 + max(1, 2 + t1 − t2) = 4 + t1 − t2.

Similarly by Theorem 2.2 for a = 1, (3.5) and (3.6) are simultaneously satisfied if

s > 2 + max(1, 2 + t3 − t4, t3 + 2 − p) = 4 + max(t3 − t4, t3 − p).

By Lemma 3.1, M(∇g|x)/m(g|x) is finite for all x and hence the risk function of δg is
finite under our assumptions because

R(θ, δg) = E[‖X − θ + CfM(∇g|X)/m(g|X)‖2
Q]

≤ QmaxE[‖X − θ + CfM(∇g|X)/m(g|X)‖2]

≤ 2Qmax {E[‖X − θ‖2] + C2
fE[‖M(∇g|X)/m(g|X)‖2]},

where Qmax is the largest eigenvalue of Q.
Now we state the main theorem of this paper.

Theorem 3.1. Assume G1–G5, F1, FG1. Then the generalized Bayes estimator with
respect to g is admissible either if s > 4 + t1 − t2 and t2 > p − 2 or if s > 4 + max(t1 −
t2, t3 − t4, t3 − p) and t2 ≤ p − 2.

Before giving a proof of this theorem we present the following corollary, which was the
motivating case for this paper. It follows from the main theorem by taking β(η) in (2.2).

Corollary 3.1. Assume s > 4. Then the generalized Bayes estimator with respect to
‖θ‖2−p

d

∏n
i=0 Logi(‖θ‖d + c), where n is a nonnegative integer and Logn(c) > 0, is admis-

sible.

In the normal case, Brown (1971)’s sufficient conditions for admissibility and inadmis-
sibility are known. He showed that the generalized Bayes estimator with respect to g is
admissible if

∫

‖x‖d>1
‖x‖2−2p

d {m(g|x)}−1dx (3.7)
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diverges and inadmissible if (3.7) converges. By Lemma 3.1, we see that

(1/2)G(‖x‖d) < m(g|x) < 2G(‖x‖d)

for sufficiently large ‖x‖d and hence that G(η) ≤ η2−p ∏n
i=0 Logi(η + c) leads to admissi-

bility and G(η) ≥ η2−p ∏n−1
i=0 Logi(η + c)Log2

n(η + c) leads to inadmissibility. Therefore our
sufficient condition in Theorem 3.1 is very close to being necessary. Now we give a proof
of Theorem 3.1.

Proof of Theorem 3.1. Let δgi denote the Bayes estimator with respect to the proper prior
density g(θ)h2

i (θ). Then the Bayes risk difference of δg and δgi with respect to the density
g(θ)h2

i (θ) is written as

∆ =
∫

Rp
[R(θ, δg) − R(θ, δgi)] g(θ)h2

i (θ)dθ

=
∫

Rp

∫

Rp
[‖δg − θ‖2

Q − ‖δgi − θ‖2
Q]f(‖x − θ‖)g(θ)h2

i (θ)dθdx

=
∫

Rp

{
[‖δg‖2

Q − ‖δgi‖2
Q]

∫

Rp
f(‖x − θ‖)g(θ)h2

i (θ)dθ

− 2(δg − δgi)Q′
∫

Rp
θf(‖x − θ‖)g(θ)h2

i (θ)dθ

}
dx

=
∫

Rp
‖δg − δgi‖2

Q

∫

Rp
f(‖x − θ‖)g(θ)h2

i (θ)dθdx

= C2
f

∫

Rp

∥∥∥∥∥
M(∇g|x)
m(g|x)

− M(∇{gh2
i }|x)

m(gh2
i |x)

∥∥∥∥∥

2

Q

m(gh2
i |x)dx

= C2
f

∫

Rp

∥∥∥∥∥
M(∇g|x)
m(g|x)

− M(∇gh2
i |x)

m(gh2
i |x)

− M(g∇h2
i |x)

m(gh2
i |x)

∥∥∥∥∥

2

Q

m(gh2
i |x)dx.

In the same way as in Brown and Hwang (1982), we have

∆ ≤ 2C2
fQmax

∫

Rp

∥∥∥∥∥
M(∇g|x)
m(g|x)

− M(∇gh2
i |x)

m(gh2
i |x)

∥∥∥∥∥

2

m(gh2
i |x)dx

+ 2C2
fQmax

∫

Rp

∥∥∥∥∥
M(g∇h2

i |x)
m(gh2

i |x)

∥∥∥∥∥

2

m(gh2
i |x)dx

= 2C2
fQmax(Bi + Ai). (say)

Using the Cauchy-Schwartz inequality for Ai, we have

Ai = 4
∫

Rp
‖M(ghi∇hi|x)‖2 {m(gh2

i |x)}−1dx

≤ 4
∫

Rp

M(gh2
i |x)

m(gh2
i |x)

M(g‖∇hi‖2|x)dx.
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Both M(gh2
i |x) and m(gh2

i |x) at x = 0 are clearly finite. By (3.3) and (3.4), we have

lim
‖x‖→∞

M(gh2
i |x)

m(gh2
i |x)

= 1

uniformly in i. This implies that there exists c1 such that M(gh2
i |x)/m(gh2

i |x) < c1 for all
x and for all i. Then

Ai ≤ 4c1

∫

Rp
M(g‖∇hi‖2|x)dx

= 4c1

∫

Rp
{1/Cf}F (‖x − θ‖)dx

∫

Rp
g(θ)‖∇hi(θ)‖2dθ

= 4c1

∫

Rp
g(θ)‖∇hi(θ)‖2dθ.

By 4 of Theorem 2.1 we have ‖∇hi(θ)‖ < 2d1β(‖θ‖d)/
∫ ∞
‖θ‖d

β(r)dr and by G3

∫

Rp
g(θ)

{
β(‖θ‖d)∫ ∞

‖θ‖d
β(r)dr

}2

dθ ≤
∫

Rp
‖θ‖1−p

d β(‖θ‖d)dθ < ∞.

Furthermore ‖∇hi(θ)‖ → 0 as i → ∞ by 3 of Theorem 2.1. Therefore by the dominated
convergence theorem Ai converges to 0 as i → ∞.

Next we consider Bi. M(∇g|x) and M(∇gh2
i |x) at x = 0 are zero vectors because g and

h2
i are function of ‖θ‖d. So the integrand of Bi is finite around x = 0. For the asymptotic

property of the integrand of Bi, we need to distinguish two cases: t2 < p−2 and t2 ≥ p−2.
When t2 < p − 2, we can bound the norm in the integrand of Bi from above somewhat
roughly. For s > 4 + t1 − t2, using Lemma 3.1 we have

1
d2

j

∣∣∣∣∣
M(∇jg|x)

m(g|x)
− M(∇jgh2

i |x)
m(gh2

i |x)

∣∣∣∣∣

=
1
d2

j

∣∣∣∣∣
M(∇jg|x)
M(g|x)

M(g|x)
m(g|x)

− M(∇jgh2
i |x)

M(gh2
i |x)

M(gh2
i |x)

m(gh2
i |x)

∣∣∣∣∣

≤ 2
∣∣∣∣
G′(‖x‖d)
G(‖x‖d)

∣∣∣∣ + 2
∣∣∣∣
G′(‖x‖d)
G(‖x‖d)

∣∣∣∣

< c‖x‖−1
d

for all sufficiently large ‖x‖d and for all i. When t2 ≥ p − 2, we have to bound it from
above more strictly. For s > 4 + max(t1 − t2, t3 − t4, t3 − p), by Lemma 3.1, we have

1
d2

j

∣∣∣∣∣
M(∇jg|x)

m(g|x)
− M(∇jgh2

i |x)
m(gh2

i |x)

∣∣∣∣∣

=

∣∣∣∣∣
G′(‖x‖d)

G(‖x‖d)‖x‖d

xj + O(‖x‖1−ε
d )

1 + O(‖x‖−ε
d )

− G′(‖x‖d)
G(‖x‖d)‖x‖d

xj + O(‖x‖1−ε
d )

1 + O(‖x‖−ε
d )

∣∣∣∣∣

< c‖x‖−1−ε
d ,
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for all sufficiently large ‖x‖d and for all i. Moreover m(gh2
i |x) ≤ m(g|x) and m(g|x) <

2G(‖x‖d) all sufficiently large ‖x‖d. Therefore, in both cases, there exist C1, C2 and ε > 0
such that the integrand of Bi is less than

min(C1, C2‖x‖−1−p−ε
d )

for all sufficiently large ‖x‖d. Therefore Bi converges to 0 as i → ∞ by the dominated
convergence theorem, in view of

∫ ∞

0
rp−1 min(C1, C2r

−1−p−ε)dr < ∞.

4. The generalized Bayes estimator with respect to the harmonic prior and
its minimaxity

In this section, we show that the generalized Bayes estimator with respect to the harmonic
prior has a form simple enough to check some sufficient conditions for minimaxity given
in early studies. We demonstrate that it is minimax for some f .

In (3.1), the generalized Bayes estimator can be also written as

δg(x) = x + Cf
∇xM(g|x)

m(g|x)
.

For p ≥ 3 and g(θ) = ‖θ‖2−p, we have

m(g|x) =
∫

Rp
f(‖x − θ‖)‖θ‖2−pdθ =

∫

Rp
f(‖η‖)‖x − η‖2−pdη

= cp−1

∫ ∞

0

∫ π

0
f(λ)(λ2 + 2λr cos ϕ + r2)1−p/2λp−1 sinp−2 ϕdλdϕ

= cp−1r
2
∫ ∞

0

∫ π

0
f(rt)(1 + 2t cos ϕ + t2)1−p/2tp−1 sinp−2 ϕdtdϕ

= cp

(
r2

∫ 1

0
tp−1f(rt)dt + r2

∫ ∞

1
tf(rt)dt

)

= cp

([
−tp−2F (rt)

]1

0
+ (p − 2)

∫ 1

0
tp−3F (rt)dt + F (r)

)

= cp(p − 2)
∫ 1

0
tp−3F (rt)dt, (4.1)

where r = ‖x‖. The fifth equality in the above equation follows from the relation
∫ π

0
(1 + 2t cos ϕ + t2)1−p/2 sinp−2 ϕdϕ = B(p/2 − 1/2, 1/2)min(t2−p, 1),

which is proved in Lemma 4.1 in the end of this section. In the same way, we have

Cf∇xM(g|x) = −xcp(p − 2)
∫ 1

0
tp−1F (rt)dt.
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Hence the generalized Bayes estimator is written as δ∗(X) = (1−φ∗(‖X‖)/‖X‖2)X, where

φ∗(r) = r2

∫ 1
0 tp−1F (rt)dt

∫ 1
0 tp−3F (rt)dt

.

Some properties of the behavior of φ∗(r) are easily derived as follows.

Theorem 4.1. 1. limr→∞ φ∗(r) = (p − 2)E0(‖X‖2)/p.
2. φ∗(r) is nondecreasing in r for any f .
3. φ∗(r)/r2 is nonincreasing in r if F (t){t2f(t)}−1 is nonincreasing.

Proof. φ∗(r) can be written as
∫ r
0 tp−1F (t)dt/

∫ r
0 tp−3F (t)dt and we have

lim
r→∞

φ∗(r) =
∫ ∞
0 tp−1F (t)dt∫ ∞
0 tp−3F (t)dt

=
p − 2

p

∫ ∞
0 tp+1f(t)dt∫ ∞
0 tp−1f(t)dt

=
p − 2

p
E0[‖X‖2].

The derivative of φ∗(r) is calculated as

φ′
∗(r) =

rp−3F (r)
(
∫ r
0 tp−3F (t)dt)2

∫ r

0
(r2 − t2)tp−3F (t)dt,

which is nonnegative for any f . The derivative of φ∗(r)/r2 is calculated as

d

dr

(
φ∗(r)/r2

)
= r

(∫ 1

0
tp−3F (rt)dt

)−2 (∫ 1

0
tp−1F (rt)dt

∫ 1

0
tp−1f(rt)dt

−
∫ 1

0
tp+1f(rt)dt

∫ 1

0
tp−3F (rt)dt

)
.

If F (t){t2f(t)}−1 is nonincreasing, the right-hand side of the equality above is nonpositive
by the covariance inequality.

Now we consider the minimaxity of δ∗. We present a brief list of known sufficient con-
ditions for minimaxity given in previous papers, for the estimator of the form (1.1) with
nonnegative and nondecreasing φ(r).

Author p φ(r)/r2 upper bound of φ

general
Berger (1975) p ≥ 3 2(p − 2) infs∈U F (s)/f(s)

Brandwein (1979) p ≥ 4 ↘ 2(p − 2)(pE0(‖X‖−2))−1

unimodal or f is nonincreasing
Brandwein and Strawderman (1978) p ≥ 4 ↘ 2p((p + 2)E0(‖X‖−2))−1

Ralescu et al. (1992) p = 3 ↘ 0.93(E0(‖X‖−2))−1

F (t)/f(t) is nondecreasing
Bock (1985) p ≥ 4 ↘ 2(E0(‖X‖−2))−1

scale mixtures of multivariate normal
Strawderman (1974) p ≥ 3 ↘ 2(E0(‖X‖−2))−1
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In the table, U = {t ≥ 0|f(t) > 0} and an arrow ↘ means nonincreasing. It is noted
that f(t) is nonincreasing in t if F (t)/f(t) is nondecreasing in t and that F (t)/f(t) is
nondecreasing in t if f is a scale mixtures of multivariate normal.

Combining Theorem 4.1 and the table above, we can derive a sufficient condition for
minimaxity of δ∗(X) and we state it in the following theorem for p ≥ 4.

Theorem 4.2. 1. Assume t−2F (t)/f(t) is nonincreasing.

(a) δ∗ is minimax if E0[‖X‖2]E0[‖X‖−2] ≤ 2.
(b) Assume also f(t) is nonincreasing. Then δ∗ is minimax

if (p2 − 4)E0[‖X‖2]E0[‖X‖−2] ≤ 2p2.
(c) Assume also F (t)/f(t) is nondecreasing. Then δ∗ is minimax

if (p − 2)E0[‖X‖2]E0[‖X‖−2] ≤ 2p.

2. Assume 0 < infs∈U F (s)/f(s) < ∞. Then δ∗ is minimax
if E0[‖X‖2] ≤ 2p infs∈U F (s)/f(s).

Berger (1975) and Bock (1985) gave several examples of f , checked the monotonicity
of f(t), F (t)/f(t), and t−2F (t)/f(t) and calculated an upper bound of φ(r). In this paper
we give just two examples but we believe that the estimator δ∗(X) is minimax for a broad
class of spherically symmetric distributions.

Example 4.1. We consider f(s) = sα exp(−βs2) for α, β > 0. We have

F (t)
t2f(t)

=
∫ ∞

1
uα+1 exp(βt2(1 − u))du,

which is decreasing in t. By an integration by parts, we have

F (t)
f(t)

=
1
2β

+
α

2β

∫ ∞
t sα−1 exp(−βs2)ds

tα exp(−βt2)

=
1
2β

+
α

2β

∫ ∞

1
uα−1 exp(βt2{1 − u2})du

and hence inft≥0 F (t)/f(t) = (2β)−1. We also have E0(‖X‖2) = (p/2 + α/2)/β and
E0(‖X‖−2)−1 = (p/2 + α/2 − 1)/β. Therefore the generalized Bayes estimator is min-
imax if α ≤ p for p ≥ 3 by Berger (1975)’s conditions and if α ≥ 4 − p for p ≥ 4 by
Brandwein (1979)’s conditions regardless of β. Hence the estimator for p ≥ 4 is minimax
regardless of α and β.

Example 4.2. We consider f(t) = exp(−t2/2) − a exp(−t2/{2b}) for 0 < a ≤ 1, 0 <
b < 1. Note that if a ≤ b then f is unimodal and if a > b then f is not. We easily
see that inft≥0 F (t)/f(t) = 1 and that E0[‖X‖2] = p(1 − abp/2+1)/(1 − abp/2). Because
(1 − abp/2+1)/(1 − abp/2) ≤ 2 for 0 < a ≤ 1, 0 < b < 1, the generalized Bayes estimator is
minimax by Berger (1975).

The following lemma is stated in a more general form in 3.036 of Gradshteyn and
Ryzhik (2000), but it is incorrectly stated with an errata posted on the book’s web page.
Maruyama pointed out this error and he is acknowledged in the errata for 3.036. Since a
derivation of the formula is not easily accessible, we provide our own proof.
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Lemma 4.1. For α > −1/2 and |a| < 1,
∫ π

0
(1 + 2a cos ϕ + a2)−α sin2α ϕdϕ = B(α + 1/2, 1/2).

Proof. Let g(ϕ) = (1 + 2a cos ϕ + a2)−1 sin2 ϕ. Then we have the derivative

g′(ϕ) = 2 sinϕ
(a cos ϕ + 1)(cos ϕ + a)

(1 + 2a cos ϕ + a2)2
.

We see that g(ϕ) is monotone increasing from g(0) = 0 to g(arccos(−a)) = 1 and decreasing
from g(arccos(−a)) = 1 to g(π) = 0. Therefore we have

∫ π

0
(1 + 2a cos ϕ + a2)−α sin2α ϕdϕ

=

(∫ arccos(−a)

0
+

∫ π

arccos(−a)

)
(1 + 2a cos ϕ + a2)−α sin2α ϕdϕ

=
∫ arccos(−a)

0
(1 + 2a cos ϕ + a2)−α sin2α ϕdϕ

+
∫ arccos(a)

0
(1 − 2a cos ρ + a2)−α sin2α ρdρ

=
∫ 1

0
tα(dϕ/dt)dt +

∫ 1

0
sα(dρ/ds)ds, (4.2)

where t = (1 + 2a cos ϕ + a2)−1 sin2 ϕ and s = (1 − 2a cos ρ + a2)−1 sin2 ρ. Here (dϕ/dt)
and (dρ/ds) are calculated as

dϕ/dt =
1

2tA(t)

(
1 − {at − A (t)}2

)1/2

dρ/ds =
1

2sA(s)

(
1 − {as + A (s)}2

)1/2
,

where A(t) = (1 − t)1/2(1 − a2t)1/2. Let

h(t) =
1

2tA(t)

{(
1 − {at − A (t)}2

)1/2
+

(
1 − {at + A (t)}2

)1/2
}

.

Then we have h2(t) = {2tA(t)}−2{2 − 2a2t2 − 2A(t)2 + 2B(t)}, where

B(t) =
(
1 − {at − A(t)}2 − {at + A(t)}2 + {a2t2 − A2(t)}2

)1/2

= t(1 − a2),

which implies h(t) = t−1/2(1 − t)−1/2. Therefore we get

the right hand side of (4.2) =
∫ 1

0
tαh(t)dt = B(α + 1/2, 1/2).
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