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Abstract

The concept of M-convex functions has recently been generalized
for functions defined on constant-parity jump systems. The b-matching
problem and its generalization provide canonical examples of M-convex
functions on jump systems. In this paper, we propose a steepest de-
scent algorithm for minimizing M-convex functions on constant-parity
jump systems.

1 Introduction

The concept of M-convex functions introduced by Murota [10] gives a frame-
work for well-solved discrete optimization problems with nonlinear objective
functions. In particular, many problems of network flow type are included
in the framework provided by M-convex functions. Moreover, a common
generalization of the submodular flow problem of Edmonds and Giles and
the valuated matroid intersection problem of Murota is provided by the M-
convex submodular problem, which covers a reasonably wide class of well-
solved discrete optimization problems.

Let V be a nonempty finite set and B be the set of integer points of a
base polyhedron of a submodular function ρ : 2V → Z ∪ {+∞}. A function
f : B → R is said to be M-convex if f satisfies

(M-EXC[B]) ∀x, y ∈ B, ∀u with x(u) > y(u), ∃v with x(v) < y(v)
such that x − χu + χv ∈ B, y + χu − χv ∈ B, and

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv),

1



where χv ∈ {0, 1}V is the characteristic vector of v ∈ V . This definition of
M-convex functions is motivated by valuated matroids introduced by Dress
and Wenzel [4][5]. M-convex functions have various desirable properties
of “discrete convexity” such as extensibility to ordinary convex functions,
conjugacy, and duality, etc.

Recently, the concept of M-convex functions is generalized by Murota
[12] for functions defined on constant-parity jump systems with a view to
providing a general framework for the minsquare factor problem considered
by Apollonio and Sebő [2]. A canonical example of such functions arises from
minimum weight perfect b-matchings and from a separable convex function
(sum of univariate convex functions) on the degree sequences of an undi-
rected graph. Fundamental properties of M-convex functions on constant-
parity jump systems are investigated in [12], such as equivalence between
different exchange axioms, a local optimality criterion guaranteeing global
optimality, and some ideas for minimization algorithms. Minimization of a
separable convex function over a jump system has been studied in [1], where
a local criterion for optimality as well as a greedy algorithm is given.

In this paper, we propose a steepest descent algorithm for minimizing
M-convex functions on constant-parity jump systems, which is an extension
of the algorithm of [10][11] for M-convex functions on base polyhedra.

The organization of this paper is as follows. In Section 2, we prepare the
definitions and fundamental properties of M-convex functions on constant-
parity jump systems. Canonical examples of M-convex functions are shown
in Section 3. In Section 4, our steepest descent algorithm is described.
Generalizations of the minimizer-cut property and the tie-breaking rule are
keys to the validity of the algorithm.

2 Definitions and Fundamental Properties

Let V be a finite set. For x = (x(v)), y = (y(v)) ∈ ZV define

x(V ) =
∑

v∈V

x(v), ‖x‖1 =
∑

v∈V

|x(v)|,

supp(x) = {v ∈ V | x(v) 6= 0},
[x, y] = {z ∈ ZV | min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)) (∀v ∈ V )}.

The characteristic vector of u ∈ V is denoted by χu, i.e., χu(v) = 1 or 0
according as v = u or v ∈ V \{u}. For s = ±χu we define sign(s) ∈ {+1,−1}
by s = sign(s) · χu.

A vector s ∈ ZV is called an (x, y)-increment if s = χu or s = −χu for
some u ∈ V and x + s ∈ [x, y]. We denote the set of all (x, y)-increments by
Inc(x, y). Jump systems are defined as follows.

Definition 2.1. A nonempty set J ⊆ ZV is said to be a jump system if it
satisfies the 2-step exchange axiom:
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∀x, y ∈ J , ∀s ∈ Inc(x, y) with x + s 6∈ J , ∃t ∈ Inc(x + s, y) such
that x + s + t ∈ J .

A set J ⊆ ZV is a constant-sum system if x(V ) = y(V ) for any x, y ∈ J ,
and a constant-parity system if x(V ) − y(V ) is even for any x, y ∈ J .

A stronger exchange axiom:

(J-EXC) ∀x, y ∈ J , ∀s ∈ Inc(x, y), ∃t ∈ Inc(x + s, y) such that
x + s + t ∈ J and y − s − t ∈ J

characterizes a constant-parity jump system, a fact communicated to the
first author by J. Geelen (see Section 6.1 of [12] for a proof).

Lemma 2.2 (Geelen [7]). A nonempty set J is a constant-parity jump
system if and only if it satisfies (J-EXC).

M-convex functions on constant-parity jump systems are defined in [12]
as follows:

Definition 2.3. A function f : J → R on a constant-parity jump system
J is said to be M-convex if it satisfies the following exchange axiom:

(M-EXC[J]) ∀x, y ∈ J , ∀s ∈ Inc(x, y), ∃t ∈ Inc(x + s, y) such
that x + s + t ∈ J , y − s − t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

We adopt the convention that f(x) = +∞ for x 6∈ J .

For examples of M-convex functions, see [12] or Section 3. Note that
addition of a linear function preserves M-convexity. That is, for an M-
convex function f and a vector p = (p(v)) ∈ RV , the function f [p] defined
by f [p](x) = f(x) + 〈p, x〉 with 〈p, x〉 =

∑
v∈V p(v)x(v) is M-convex.

Remark 2.4. A jump system is a common generalization of a delta-matroid
and a base polyhedron of an integral polymatroid, which are generalizations
of a matroid in two different directions. According to Definition 2.3, this hi-
erarchy of discrete structures is extended to discrete functions; an M-convex
function on a constant-parity jump system is a common generalization of a
valuated delta-matroid [6] and an M-convex function on a base polyhedron.

The following theorem gives an optimality criterion of an M-convex func-
tion on a constant-parity jump system. More specifically, global optimality
is guaranteed by local optimality in the neighborhood of l1-distance two.

Theorem 2.5 (Murota [12]). Let f : J → R be an M-convex function on
a constant-parity jump system J , and let x ∈ J . Then f(x) ≤ f(y) for all
y ∈ J if and only if f(x) ≤ f(y) for all y ∈ J with ‖x − y‖1 ≤ 2.
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Remark 2.6. Let f : J → R be an M-convex function on a constant-parity
jump system J . Define Jk = {x ∈ J | x(V ) = k} with k ∈ Z and suppose
that Jk 6= ∅. It is also pointed out by Murota [12] that global optimality of
f on Jk is guaranteed by local optimality in the neighborhood of l1-distance
four. Note that Jk is not necessarily a jump system. This is a generalization
of the result of [2] for the minsquare factor problem.

3 Examples

Let G = (V,E) be an undirected graph that may have loops, but no parallel
edges. Let w : E → R be an edge weight function, and c : E → Z+ be an
edge capacity function. Put n = |V | and m = |E|. We define J ⊆ ZV as the
set of vectors x ∈ ZV such that a c-capacitated perfect x-matching exists in
G, i.e., such that there exists λ ∈ ZE satisfying

∑

e∈δ(v)

λ(e) = x(v) (∀v ∈ V ), 0 ≤ λ(e) ≤ c(e) (∀e ∈ E). (3.1)

Then J is a constant-parity jump system. Moreover, we define a function
fM : J → R as the minimum weight of a c-capacitated perfect x-matching,
i.e.,

fM(x) = min





∑

e∈E

λ(e)w(e)

∣∣∣∣∣
∑

e∈δ(v)

λ(e) = x(v) (∀v ∈ V ),

0 ≤ λ(e) ≤ c(e) (∀e ∈ E), λ(e) ∈ Z+ (∀e ∈ E)



 , (3.2)

and f : J → R as
f(x) = fM(x) +

∑

v∈V

ϕv(x(v)), (3.3)

where {ϕv | ϕv : R → R ∪ {+∞} (v ∈ V )} is a family of univariate convex
functions. The function f in (3.3) is an M-convex function on J , as is
observed by Murota [12] in the special case of c ∈ {0, 1}E (the case of factor
problem).

Theorem 3.1. The function f in (3.3) is M-convex.

Proof. The proof is a natural generalization of an observation by Murota
[12] for the case of b-factor problem. The detail is given in Appendix A,
where a generalization of (3.3) given in Remark 3.2 is treated.

The problem of minimizing f in (3.3) contains, as a special case, the
general matching problem with upper and lower degree bounds discussed,
e.g., in p. 191 of [3] and in [8]. To see this, choose ϕv to be the indicator
function of the admissible interval of degrees at v ∈ V .
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Remark 3.2. The function f in (3.3) remains M-convex even when the
edge cost is convex rather than linear. That is, the function

f(x) = fM(x) +
∑

v∈V

ϕv(x(v)) (3.4)

is M-convex, where

fM(x) = min





∑

e∈E

ψe(λ(e))

∣∣∣∣∣
∑

e∈δ(v)

λ(e) = x(v) (∀v ∈ V ),

0 ≤ λ(e) ≤ c(e) (∀e ∈ E), λ(e) ∈ Z+ (∀e ∈ E)



 , (3.5)

with {ψe | ψe : R → R∪{+∞} (e ∈ E)} being a family of univariate convex
functions. The proof of this claim is given in Appendix A.

Remark 3.3. Minimization of f in (3.4) can be done independently of any
minimization algorithms for M-convex functions on constant-parity jump
systems. In fact, it can be reduced to a minimum weight factor problem by
modifying G, c, {ϕv | v ∈ V }, and {ψe | e ∈ E}.

4 Steepest Descent Algorithm

The characterization given in Theorem 2.5 naturally suggests the following
algorithm of steepest descent type for minimizing an M-convex function f
on a constant-parity jump system J .

Steepest Descent Algorithm

S0 Find a vector x ∈ J .

S1 Find s, t ∈ {±χu | u ∈ V } (s + t 6= 0) that minimize f(x + s + t).

S2 If f(x) ≤ f(x + s + t), then stop (x is a minimizer of f).

S3 Set x := x + s + t and go to S1.

Our objective is to elaborate on this natural idea to obtain a pseudopoly-
nomial complexity bound on the number of iterations in the steepest descent
algorithm. The following theorem, a generalization of Theorem 6.28 of [10],
is a key fact for this complexity analysis.

Theorem 4.1 (M-minimizer cut). Let f : J → R be an M-convex func-
tion on a constant-parity jump system J with argmin f 6= ∅.
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(1) For x ∈ J and t ∈ {±χu | u ∈ V }, let s0 ∈ {±χu | u ∈ V } be such
that

f(x + s0 + t) = min
s∈{±χu|u∈V }

f(x + s + t).

Put x′ = x + s0 + t and {u} = supp(s0). Then there exists x∗ ∈ argmin f
with

x∗(u)

{
≤ x′(u) (if sign(s0) < 0),
≥ x′(u) (if sign(s0) > 0).

(2) For x ∈ J \ argmin f , let s0, t0 ∈ {±χu | u ∈ V } be such that

f(x + s0 + t0) = min
s,t∈{±χu|u∈V }

f(x + s + t).

Put x′ = x+s0 + t0, {u} = supp(s0), and {v} = supp(t0). Then there exists
x∗ ∈ argmin f with

x∗(u)

{
≤ x′(u) (if sign(s0) < 0),
≥ x′(u) (if sign(s0) > 0),

x∗(v)

{
≤ x′(v) (if sign(t0) < 0),
≥ x′(v) (if sign(t0) > 0).

Proof. (1) Suppose s0 = −χu, while the other case can be treated in a
similar manner. To prove the assertion by contradiction, we assume that
x∗(u) > x′(u) for every x∗ ∈ argmin f . Let x∗ ∈ argmin f be a minimizer
of f such that x∗(u) is minimum. By applying (M-EXC[J]) to x∗, x′, and
s0 ∈ Inc(x∗, x′), we have

f(x′) − f(x′ − s0 − t′) ≥ f(x∗ + s0 + t′) − f(x∗)

for some t′ ∈ Inc(x∗ + s0, x
′). Noting that x′ − s0 − t′ = x − t′ + t and

x∗ + s0 + t′ 6∈ argmin f , we have

f(x′) − f(x − t′ + t) > 0,

which contradicts the choice of x′.
(2) Due to x ∈ J \ argmin f and Theorem 2.5, we have s0 + t0 6= 0. Note

that
f(x + s0 + t0) = min

s∈{±χu|u∈V }
f(x + s + t0). (4.1)

If u = v, we must have sign(s0) = sign(t0), and therefore the assertion
follows from (1). Suppose s0 = −χu and t0 = −χv with u 6= v, while the
other cases can be treated in a similar manner. By (4.1) and (1), we have
x∗(u) ≤ x′(u) for some x∗ ∈ argmin f . We assume that x∗ minimizes x∗(v)
among all such vectors. If x∗(v) > x′(v), by applying (M-EXC[J]) to x∗, x′,
and t0 ∈ Inc(x∗, x′), we have

f(x′) − f(x′ − t0 − t′) ≥ f(x∗ + t0 + t′) − f(x∗)
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for some t′ ∈ Inc(x∗ + t0, x′). Noting that x′ − t0 − t′ = x + s0 − t′ and x∗ ∈
argmin f , we have f(x∗+t0+t′)−f(x∗) = 0 because 0 ≥ f(x′)−f(x′−t0−t′)
and f(x∗+ t0 + t′)−f(x∗) ≥ 0. Hence we have x∗+ t0 + t′ ∈ argmin f , which
contradicts the choice of x∗.

The following theorem gives an upper bound on the number of iterations
in the steepest descent algorithm.

Theorem 4.2. If f has a unique minimizer x∗, the number of iterations in
the steepest descent algorithm is bounded by ‖x◦−x∗‖1/2, where x◦ denotes
the initial vector found in step S0.

Proof. Put x′ = x + s + t, {u} = supp(s), and {v} = supp(t) in step S2.
By Theorem 4.1, we have




x∗(u) ≥ x(u) + 2 = x′(u) (u = v, s = t = +χu),
x∗(u) ≤ x(u) − 2 = x′(u) (u = v, s = t = −χu),
x∗(u) ≥ x(u) + 1 = x′(u), x∗(v) ≥ x(v) + 1 = x′(v) (u 6= v, s = +χu, t = +χv),
x∗(u) ≥ x(u) + 1 = x′(u), x∗(v) ≤ x(v) − 1 = x′(v) (u 6= v, s = +χu, t = −χv),
x∗(u) ≤ x(u) − 1 = x′(u), x∗(v) ≥ x(v) + 1 = x′(v) (u 6= v, s = −χu, t = +χv),
x∗(u) ≤ x(u) − 1 = x′(u), x∗(v) ≤ x(v) − 1 = x′(v) (u 6= v, s = −χu, t = −χv).

Hence we have ‖x′ − x∗‖1 = ‖x− x∗‖1 − 2. Note that ‖x◦ − x∗‖1 is an even
integer because J is a constant-parity jump system.

When given an M-convex function f , which may have multiple mini-
mizers, we consider a perturbation of f so that we can use Theorem 4.2.
Assume now that the effective domain is bounded and denote its l1-size by

K1 = max{‖x − y‖1 | x, y ∈ J}. (4.2)

We arbitrarily fix a bijection ϕ : V → {1, 2, . . . , n} to represent an ordering
of the elements of V , put vi = ϕ−1(i) for i = 1, 2, . . . , n, and define a vector
p ∈ RV by p(vi) = εi for i = 1, 2, . . . , n, where ε > 0. The function fε = f [p]
is M-convex and, for a sufficiently small ε, it has a unique minimizer that is
also a minimizer of f . More precisely, we have

f(x) > f(y) ⇒ fε(x) > fε(y) (x, y ∈ J), (4.3)
x 6= y ⇒ fε(x) 6= fε(y) (x, y ∈ J). (4.4)

The details of the above assertions are explained in Remark 4.4.
Suppose that the steepest descent algorithm is applied to the perturbed

function fε. Since

fε(x + s + t) = f(x + s + t) +
n∑

i=1

εix(vi) + sign(s)εϕ(u) + sign(t)εϕ(v),

7



where {u} = supp(s) and {v} = supp(t), this amounts to employing a tie-
breaking rule:

take (s, t) that lexicographically minimizes Ψ(s, t), (4.5)

where

Ψ(s, t) =
{

(sign(s), − sign(s)ϕ(u), sign(t), − sign(t)ϕ(v)) (ϕ(u) ≤ ϕ(v)),
(sign(t), − sign(t)ϕ(v), sign(s), − sign(s)ϕ(u)) (ϕ(u) > ϕ(v)),

(4.6)

in the case of multiple candidates in step S1 of the steepest descent algorithm
applied to f .

With the tie-breaking rule (4.5) we have the following complexity bound.

Theorem 4.3. For an M-convex function f on a constant-parity jump sys-
tem J with finite K1 in (4.2), the number of iterations in the steepest descent
algorithm with tie-breaking rule (4.5) is bounded by K1/2. Hence, if a vector
in J is given, the algorithm finds a minimizer of f with O(n2K1) evaluations
of f .

Remark 4.4. We show (4.3) and (4.4) by taking a sufficiently small ε > 0.
Let 0 < ε < 1/3 be a real number such that

n∑

i=1

(x(vi) − y(vi))εi 6= 0 (∀x, y ∈ J with x 6= y), (4.7)

ε <
1

2K∞
min {|f(x) − f(y)| | x, y ∈ J, f(x) − f(y) 6= 0} , (4.8)

where
K∞ = max{‖x − y‖∞ | x, y ∈ J}. (4.9)

For the proof of (4.3), assume that f(x) > f(y) (x, y ∈ J). Then we have

n∑

i=1

εi(y(vi) − x(vi)) ≤
n∑

i=1

εiK∞ <
ε

1 − ε
K∞ < 2εK∞ < f(x) − f(y),

where the third inequality is due to ε < 1/3 and the last is due to (4.8).
Hence

fε(y) < fε(x).

Next, for the proof of (4.4), we may assume f(x) = f(y) for x, y ∈ J with
x 6= y. Then we have

fε(x) − fε(y) =
n∑

i=1

εi(x(vi) − y(vi)) 6= 0

due to (4.7).
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Remark 4.5. It is known that no strongly polynomial time algorithm exists
for minimizing M-convex functions on constant-parity jump systems. This
follows from a result of Hochbaum [9], showing a weakly polynomial time
lower bound for minimization of a separable convex function on a simplex.
This means that even a special type of M-convex functions on constant-
parity jump systems cannot be minimized in strongly polynomial time.

5 Concluding Remarks

The proposed algorithm involves iterations the number of which is poly-
nomial in K1. For a polynomial time algorithm, the number of iterations
must be bounded by a polynomial in log K1. A scaling algorithm, which is
available for M-convex functions on base polyhedra [14][15], is a promising
candidate for a polynomial time algorithm. This is left for a future work.
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A Proof of M-convexity of f in (3.4)

It suffices to show that fM in (3.5) is M-convex. Noting that ψe is convex
for each e ∈ E, we can reduce the problem defining fM(x) to the minimum
weight x̂-factor problem for some x̂. Let dom ψe = [l(e), u(e)] ⊆ R with
l(e), u(e) ∈ Z ∪ {±∞} for each e ∈ E. Without loss of generality, we can
assume [0, c(e)] ∩ [l(e), u(e)] 6= ∅ for each e ∈ E (otherwise fM(x) = +∞
for any x). Let l̂(e) = max{0, l(e)} and û(e) = min{c(e), u(e)}. Note that
l̂(e) and û(e) are finite since c(e) < +∞. Replacing each edge e ∈ E with
ĉ(e) = û(e) − l̂(e) multiple edges ê1, . . . , êĉ(e), setting new linear weights ŵ
on the new edges by

ŵ(êi) = ψe(l̂(e) + i) − ψe(l̂(e) + i − 1) (i = 1, . . . , ĉ(e)),

and replacing x with x̂ = x− l̂d, where l̂d(v) =
∑

e∈δG(v) l̂(e) for each v ∈ V ,
we have

fM(x) =f̂M(x − l̂d) +
∑

e∈E

ψe(l̂(e))
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with

f̂M(x̂) = min
{

ŵ(F̂ )
∣∣∣ Ĥ = (V, F̂ ) is a subgraph of Ĝ and degĤ = x̂

}
,

where Ĝ = (V, Ê) denotes the new graph made as above. Note that we have
fM(x) = +∞ unless x̂ ≥ 0, and that f̂M(x̂) is defined in terms of a minimum
weight x̂-factor problem on Ĝ.

The proof of M-convexity of f̂M [12][13] is as follows. Let F̂x̂ (resp. F̂ŷ)
be an optimal x̂-factor (resp. ŷ-factor). Without loss of generality, we can
choose v0 ∈ V such that x̂(v0) < ŷ(v0), and therefore s = χv0 ∈ Inc(x̂, ŷ).
Here we claim that there exists an alternating path P = (v0, ê1, v1, . . . , êk, vk)
on (V, F̂x̂∆F̂ŷ) with ê1 ∈ F̂ŷ \ F̂x̂ such that

t =

{
+χvk

(if k is odd),
−χvk

(if k is even)

satisfies t ∈ Inc(x̂ + χv0 , ŷ). Starting with an edge in F̂ŷ \ F̂x̂ incident to v0

we construct an alternating path P by adding an edge in F̂x̂ \ F̂ŷ and an
edge in F̂ŷ \ F̂x̂ alternately. The path P is not necessarily simple so that it
may contain the same vertex more than once, whereas it consists of distinct
edges. We assume that P is maximal in the sense that it cannot be extended
further beyond the end vertex, say, vk. Then P has the desired property
mentioned above. Noting that x̂ + s + t = degĤ′

x̂
and ŷ − s − t = degĤ′

ŷ
,

where Ĥ ′
x̂ = (V, F̂x̂∆P ) and Ĥ ′

ŷ = (V, F̂ŷ∆P ), we have

f̂M(x̂) + f̂M(ŷ) − f̂M(x̂ + s + t) − f̂M(ŷ − s − t)

≥ ŵ(F̂x̂) + ŵ(F̂ŷ) − ŵ(F̂x̂∆P ) − ŵ(F̂ŷ∆P ) = 0.
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[2] N. Apollonio and A. Sebő: Minsquare factors and maxfix covers of
graphs, in: D. Bienstock and G. Nemhauser, eds., Integer Programming
and Combinatorial Optimization, Lecture Notes in Computer Science,
3064, Springer-Verlag, 2004, 388–400.

[3] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver:
Combinatorial Optimization, John Wiley and Sons, New York, 1998.

[4] A. W. M. Dress and W. Wenzel: Valuated matroid: A new look at the
greedy algorithm, Applied Mathematics Letters, 4 (1990), 33–35.

10



[5] A. W. M. Dress and W. Wenzel: Valuated matroids, Advances in Math-
ematics, 93 (1992), 214–250.

[6] A. W. M. Dress and W. Wenzel: A greedy-algorithm characterization
of valuated ∆-matroids, Applied Mathematics Letters, 4 (1991), 55–58.

[7] J. F. Geelen: Private communication, April 1996.

[8] A. M. H. Gerards: Matching, in: Handbooks in Operations Research
and Management Science, Vol. 7: Network Models (M. O. Ball, T. L.
Magnanti, C. L. Monma, and G. L. Nemhauser, eds.), Elsevier, Ams-
terdam, 1995, 135–224.

[9] D. S. Hochbaum: Lower and upper bounds for the allocation problem
and other nonlinear optimization problems, Mathematics of Operations
Research, 19 (1994), 390–409.

[10] K. Murota: Discrete Convex Analysis, SIAM Monographs on Discrete
Mathematics and Applications Vol. 10, SIAM, Philadelphia, 2003.

[11] K. Murota: On steepest descent algorithms for discrete convex func-
tions, SIAM Journal on Optimization, 14 (2003), 699–707.

[12] K. Murota: M-convex functions on jump systems: a general framework
for minsquare graph factor problem, Mathematical Engineering Tech-
nical Reports, METR 2004-43, University of Tokyo, 2004.
http://www.keisu.t.u-tokyo.ac.jp/Research/techrep.0.html

[13] K. Murota: M-convex functions on jump systems: generalization of
minsquare factor problem, in: Proceedings of 4th Japanese-Hungarian
Symposium on Discrete Mathematics and Its Applications. June 3–6,
2005, Budapest, pp. 217–223.

[14] A. Shioura: Fast scaling algorithms for M-convex function minimization
with application to the resource allocation problem, Discrete Applied
Mathematics, 134 (2003), 303–316.

[15] A. Tamura: Coordinatewise domain scaling algorithm for M-convex
function minimization, Mathematical Programming, 102 (2005), 339–
354.

11


