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Abstract

Given a 2k-edge-connected undirected graph, we consider to find a minimum cost orientation that
yields a k-arc-connected directed graph. This minimum cost k-arc-connected orientation problem
is a special case of the submodular flow problem. Frank (1982) devised a combinatorial algorithm
that solves the problem in O(k2n3m) time, where n and m are the numbers of vertices and edges,
respectively. Gabow (1995) improved Frank’s algorithm to run in O(kn2m) time by introducing a new
sophisticated data structure. We describe an algorithm that runs in O(k3n3 + kn2m) time without
using sophisticated data structures. In addition, we present an application of the algorithm to find a
shortest dijoin in O(n2m) time, which matches the current best bound.

Key Words. Arc-connectivity, Graph orientation, Submodular flow problem, Crossing family, Dijoin.

1 Introduction

Given an undirected graph G = (V,E), we consider to orient each edge in either direction to obtain a
k-arc-connected directed graph G = (V,A). We say a directed graph G = (V,A) is k-arc-connected if
there are at least k arcs from X to V \ X for any proper nonempty vertex subset X. We also say an
undirected graph G = (V,E) is k-edge-connected if there are at least k edges connecting X and V \X

for any proper nonempty vertex subset X. The following theorem clarifies when we are able to obtain
a k-arc-connected directed graph.

Theorem 1 (Nash-Williams [12]). An undirected graph G = (V,E) has a k-arc-connected orientation
if and only if it is 2k-edge-connected.

This theorem naturally gives rise to the following optimization problem.

Problem. Given a 2k-edge-connected undirected graph G = (V,E) and costs of orientations in both
directions for each edge, find a minimum cost orientation that results in a k-arc-connected directed
graph.

This problem is referred to as the minimum cost k-arc-connected orientation problem. In partic-
ular, if k = 1, it is called the minimum cost strongly connected orientation problem. The minimum
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cost k-arc-connected orientation problem is a special case of the submodular flow problem, for which
strongly polynomial algorithms are known. Exploiting characteristic properties of the specific problems,
however, we should be able to construct a more efficient algorithm.

We will consider graphs with n vertices and m edges. Frank [5] reduced the minimum cost k-arc-
connected orientation problem to the submodular flow problem and constructed an algorithm that runs
in O(k2n3m) time. Gabow [9] improved Frank’s algorithm to run in O(kn2m) time by introducing a
new data structure called a centroid tree. We present an algorithm that runs in O(k3n3 + kn2m) time
without using such a sophisticated data structure. This simpler algorithm runs as fast as Gabow’s
when k2n = O(m). These algorithms are shown in Table 1, where M(n) is the time to multiply two
n × n matrices. The current best known bound is M(n) = O(n2.38) [1].

Table 1: Algorithms for the minimum cost k-arc-connected orientation problem.

　 Time　 Space
Frank [5] O(k2n3m) O(n2)

Gabow [9] O(kn2m) O(m)
O(knM(n)) O(n2)

This paper O(k3n3 + kn2m) O(n2)

The key idea of our algorithm is an extensive use of packing arborescences. In a directed graph
G = (V,A), we say that F ⊆ A is an r-arborescence for r ∈ V if F is a spanning tree when we ignore
the direction of arcs, no arc of F enters r, and exactly one arc of F enters v for each v ∈ V \ {r}.
An r-cut is the set of arcs from X to V \ X for a proper vertex subset X containing r. The following
theorem provides a min-max characterization of packing arborescences.

Theorem 2 (Edmonds [2]). The maximum number of arc-disjoint r-arborescences equals the minimum
number of arcs in an r-cut.

As a consequence of this theorem, if G is a k-arc-connected directed graph, there are k arc-disjoint
r-arborescences for any vertex r of G. In Section 4, we use this fact and an efficient algorithm for
packing arborescences due to Gabow [8].

Given a directed graph G = (V,A), we say an arc set F is a dijoin if G becomes strongly connected
by contracting F . Given a length for each arc, we consider to find a dijoin of minimum total length.
This problem is called the shortest dijoin problem.

Table 2: Algorithms for the shortest dijoin problem.

　 Time　 Space
Frank [4] O(n3m) O(n2)

Gabow [9] O(n2m) O(m)
O(nM(n)) O(n2)

Shepherd–Vetta [13] O(n2m) O(nm)
This paper O(n2m) O(n2)

Previous algorithms for the shortest dijoin problem are shown in Table 2. Frank’s algorithm is based
on the optimality criterion for the submodular flow problem. Gabow improved Frank’s algorithm to
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run in O(n2m) time using the centroid tree, which was also used in the minimum cost k-arc-connected
orientation problem. In contrast, Shepherd and Vetta [13] devised an algorithm that runs in O(n2m)
time without using any complex data structures. However, the algorithm of Shepherd and Vetta
performs preprocessing, which requires to maintain n graphs using O(nm) space. Our algorithm solves
the problem in O(n2m) time and O(n2) space without using complex data structures by reduction to
the minimum cost strongly connected orientation problem.

The rest of this paper is organized as follows. Section 2 provides preliminaries on the k-arc-connected
orientation problem, and Section 3 describes Frank’s algorithm. Section 4 presents our method to find
exchangeability arcs in Frank’s algorithm. Finally, Section 5 exhibits an application of our algorithm
to the shortest dijoin problem.

2 Arc-connectivity orientations and submodular flows

We consider graphs which are allowed to have multiple edges but no loops. Given an undirected graph
G = (V,E) and X ⊆ V , we denote by δG(X) the number of edges connecting X and V \ X. In a
directed graph G = (V,A), ∆+

G(X) denotes the set of arcs of G from X to V \X, and ∆−
G(X) denotes

the set of arcs of G from V \ X to X. Let δ+
G(X) = |∆+

G(X)| and δ−G(X) = |∆−
G(X)|. For an arc set

F ⊆ A, we denote by ∆+
F (X) the set of arcs of F from X to V \ X. We also use ∆−

F , δ+
F , and δ−F in a

similar way. If there is no ambiguity, we simply omit the subscript.
A pair of vertex subsets X,Y ⊆ V is crossing if X ∩Y 6= ∅, X \Y 6= ∅, Y \X 6= ∅, and X ∪Y 6= V .

A family F ⊆ 2V is a crossing family if X ∪ Y,X ∩ Y ∈ F for any crossing X,Y ∈ F . A function f

over a crossing family F is submodular on F if f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) holds for any
crossing X,Y ∈ F .

Given an undirected graph G = (V,E) and costs of orientations in both directions for each edge,
let G = (V,A) be a directed graph obtained by orienting each edge of G in the direction of smaller
cost. Let d be a function on A such that d(e) represents the incremental cost by reversing the arc e. In
other words, let c(e) be the cost to orient the edge in the same direction of e, and let c(e) be the cost
to orient the edge in the reverse direction of e. Then d is given by d(e) = c(e) − c(e) for e ∈ A. Note
that the incremental cost function d can be treated as a vector indexed by A. We intend to obtain a
k-arc-connected directed graph by reversing some arcs of G. For a vector x ∈ {0, 1}A, we denote by
Gx = (V,Ax) the directed graph obtained from G by reversing every arc e ∈ A with x(e) = 1.

Let F be the set of all the proper nonempty subsets of V . Then F forms a crossing family. Let b

be a function on F defined by b(X) = δ+(X)− k. For any vertex subsets X,Y ∈ F , if X ∩ Y 6= ∅ and
X∪Y 6= V , then δ+(X)+δ+(Y ) ≥ δ+(X∪Y )+δ+(X∩Y ), and hence b(X)+b(Y ) ≥ b(X∪Y )+b(X∩Y ).
Thus b is submodular on the crossing family F .

The minimum cost k-arc-connected orientation problem is formulated as follows:

minimize dx

subject to x
(
∆+(X)

)
− x

(
∆−(X)

)
≤ b(X) (∀X ∈ F),(1)

x ∈ {0, 1}A,

where x (F ) =
∑

e∈F x(e) for any F ⊆ A.
Relaxing the 0-1 constraints, we obtain a linear program:

minimize dx

subject to x
(
∆+(X)

)
− x

(
∆−(X)

)
≤ b(X) (∀X ∈ F),(2)

0 ≤ x ≤ 1,
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which is a special case of the submodular flow problem. It is shown by Edmonds and Giles [3] that if
(2) has an optimal solution, then it also has a 0-1 optimal solution, which provides an optimal solution
to (1).

3 Tight sets and potentials

Given a feasible solution x of (1), we call X ∈ F an x-tight set if x (∆+(X)) − x (∆−(X)) = b(X). In
other words, X is x-tight if δ+

Gx
(X) = k. The following lemma is well known.

Lemma 3. If X,Y ∈ F are x-tight sets with X ∪ Y 6= V and X ∩ Y 6= ∅, then X ∪ Y and X ∩ Y are
x-tight sets.

Proof. Denote σx(X) = x (∆+(X)) − x (∆−(X)). Then we have

b(X) + b(Y ) = σx(X) + σx(Y ) = σx (X ∪ Y ) + σx (X ∩ Y ) ≤ b (X ∪ Y ) + b (X ∩ Y ) ≤ b(X) + b(Y ),

which implies σx(X ∪ Y ) = b(X ∪ Y ) and σx(X ∩ Y ) = b(X ∩ Y ). Thus, both X ∪ Y and X ∩ Y are
x-tight sets.

Fix a feasible solution x of (1). Let R(v) be the intersection of all the x-tight sets containing v.
When there exists no x-tight set containing v, we set R(v) = V . Note that R(v) is not necessarily an
x-tight set. A function p defined on V is called a potential. For a potential p, the reduced cost dp(e)
of an arc e from u to v is defined by

dp(e) = d(e) − p(v) + p(u).

A potential p is optimal if p satisfies the following conditions:

x(e) = 0 ⇒ dp(e) ≥ 0,(A)

x(e) = 1 ⇒ dp(e) ≤ 0,(B)

u ∈ R(v) ⇒ p(u) ≥ p(v).(C)

A potential reflects dual variables of (2). It follows from the complementarity slackness that the feasible
solution x is an optimal solution if and only if there exists an optimal potential [5].

4 Frank’s algorithm

In this section, we describe Frank’s algorithm for the minimum cost k-arc-connected orientation prob-
lem. This algorithm starts with x and p that satisfy (A) for any e ∈ A and (C) for any u, v ∈ V .
Keeping conditions (A) and (C), it updates x and p so as to reduce the number of arcs violating (B).

First, let x be a feasible solution of (1) which can be found in O(kn2(
√

kn + k2 log(n/k))) time [7],
assign p = 0 so that the conditions (A) and (C) are satisfied. We then turn the feasible solution x into
an initial feasible solution with at most 2kn arcs violating (B) as follows.

Select an arbitrary vertex r in V . Since Gx is k-arc-connected, it has k arc-disjoint r-arborescences
by Theorem 2. Let F+ be the set of arcs used in the r-arborescences, which can be found in
O(km log(n2/m)) time [8]. We can also pack k arc-disjoint r-arborescences in the graph obtained
by reversing all arcs. Let F− be the set of arcs whose reversed arcs are used in the r-arborescences.
Set x′ as

x′(e) =

{
x(e) (e ∈ F+ ∪ F−),

0 (otherwise).
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Then there are at most 2kn arcs satisfying x′(e) = 1, and Gx′ determined by x′ is k-arc-connected.
This is because any vertex subset X ∈ F containing r satisfies δ−Gx′ (X) ≥ δ−

F+(X) ≥ k and any vertex
subset X ∈ F not containing r satisfies δ−Gx′ (X) ≥ δ−

F−(X) ≥ k. Thus the initial conditions (A) and
(C) are satisfied, and there are at most 2kn arcs violating (B).

The main algorithm is described as follows.

An algorithm for minimum cost k-arc-connected orientation

Input: A directed graph G = (V,A), incremental cost d, a feasible solution x of (1), and a potential
p, satisfying (A) and (C) with at most 2kn arcs violating (B).

Output: A minimum cost k-arc-connected orientation Gx.

Step 1.

1.0. For each pair of u, v ∈ V , determine whether u ∈ R(v) or not.
1.1. If all arcs satisfy (B), then go to Step 4. Otherwise, select a ∈ A violating (B). Let s

and t be the initial and terminal vertices of a, respectively.
1.2. For the reverse arc e of each e ∈ A, let dp(e) = −dp(e). Construct an auxiliary graph

G∗
x = (V,A∗

x ∪ D∗
x) with arc sets

A∗
x = {e | e ∈ Ax, dp(e) ≤ 0} ,

D∗
x = {uv | u ∈ R(v), p(u) = p(v)} .

Arcs in D∗
x are called exchangeability arcs.

1.4. Find a directed path from s to t in G∗
x by a labeling technique. If such a directed path

exists, then let P be the one with the minimum number of arcs and go to Step 3.

Step 2.

2.0. Let S be the set of vertices reachable from s in G∗
x. Compute ε = min(α, β, γ), where

α = dp(a),

β = min
{
dp(e) | e ∈ ∆+

Gx
(S)

}
,

γ = min {p(u) − p(v) | u ∈ S, v 6∈ S, u ∈ R(v)} .

When the minimum is taken over the empty set, it is defined to be ∞. Set p(v) :=
p(v) − ε for v ∈ S.

2.1. If ε = α, then delete all the labels and go to Step 1.1 (Note that R(v) does not change).
Otherwise, go to Step 1.2.

Step 3.

Change x along P so that every arc in Ax ∩P gets reversed. Set x(a) := 0. Go to Step 1.0.

Step 4.

The current directed graph Gx is a minimum cost k-arc-connected orientation.

In this algorithm, Step 3 is iterated at most 2kn times. In each iteration, Step 2 is done until
all vertices are labeled, so it takes O(n2) time. Thus, if Step 1.0 runs in g(n,m, k) time, the entire
algorithm takes O(kn(n2 + g(n,m, k))) time in total. This algorithm needs O(n2) space to keep the
auxiliary graph G∗

x.
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Figure 1: A member of F−
u and v.

r

v

u

x-tight set

Figure 2: A member of F+
v and u.

5 Finding exchangeability arcs

In Frank’s algorithm for the minimum cost k-arc-connected orientation problem, we need to find
exchangeability arcs. In this section, we describe a method to find all the exchangeability arcs in
O(k2n2+nm) time so that our algorithm runs in O(kn(k2n2+nm)) time. Gabow’s algorithm computes
them by using a data structure called centroid tree which represents all the x-tight sets. In contrast,
our method finds all the exchangeability arcs without using such a sophisticated data structure. The
key observation is that we do not need all x-tight sets.

Note that X is an x-tight set if and only if δ+
Gx

(X) = k. Fix a certain vertex r ∈ V . First, we
determine whether u ∈ R(v) or not for u, v ∈ V \{r}. Let F−

u be the collection of all x-tight sets which
contain r and exclude u. Let F+

v be the collection of all x-tight sets which contain v and exclude r.
If X,Y ∈ F−

u , it is obvious that X ∪ Y,X ∩ Y contain r and exclude u and that both X ∪ Y and
X ∩ Y are x-tight sets by Lemma 3. Thus, if F−

u 6= ∅, then there is a unique maximal set in F−
u , to be

denoted by R−
u . If F−

u = ∅, let R−
u = ∅. Similarly, F+

v is closed with respect to union and intersection.
So, if F+

v 6= ∅, then there is a unique minimal set in F+
v , to be denoted by R+

v . If F+
v = ∅, let R+

v = V .

Lemma 4. We have u ∈ R(v) if and only if v 6∈ R−
u and u ∈ R+

v hold.

Proof. If u ∈ R(v), there are neither x-tight sets which contain r, v and exclude u nor x-tight sets which
contain v and exclude r, u. In other words, no members of F−

u contain v (Fig. 1), and all members of
F+

v contain u (Fig. 2). Thus u ∈ R(v) is equivalent to v 6∈ R−
u and u ∈ R+

v .

We now describe how to compute R−
u by using Theorem 2. This procedure works with the graph

Gx.
First, we pack k arc-disjoint r-arborescences in Gx. Since Gx is k-arc-connected, it follows from

Theorem 2 that there are k arc-disjoint r-arborescences. The packing can be done in O(k2n2) time [8].
After this preprocessing, we can compute R−

u easily for each vertex u ∈ V as follows.
For any u ∈ V , we can find an r-u path consisting of arcs of an r-arborescence. Hence we can

find k arc-disjoint r-u paths. Let Tu be the set of arcs used in the paths, and let GTu be an auxiliary
graph obtained from Gx by reversing arcs of Tu. If there is a directed path Pu from r to u in GTu , the
symmetric difference T ′

u = Tu4Pu includes k + 1 arc-disjoint r-u paths of Gx, which implies F−
u = ∅,

R−
u = ∅. If there is no directed path from r to u, we can compute R−

u by the following lemma.

Lemma 5. Let Su be the set of vertices from which we can reach u in GTu . Then we have R−
u = V \Su.

6



Proof. Obviously, we have u ∈ Su and r 6∈ Su. Since Tu consists of k arc-disjoint r-u paths, we have
δ−Tu

(Su) − δ+
Tu

(Su) = k. By the definition of Su, we have δ+
Tu

(Su) + δ−Gx\Tu
(Su) = 0, and hence

δ+
Gx

(V \ Su) = δ−Gx
(Su) = δ−Tu

(Su) + δ−Gx\Tu
(Su) = δ+

Tu
(Su) + k + δ−Gx\Tu

(Su) = k.

Thus we have V \ Su ∈ F−
u .

By the definition of Su, we have δ+
Tu

(X)+δ−Gx\Tu
(X) ≥ 1 for any vertex subset X with u ∈ X ( Su.

Then we have

δ+
Gx

(V \ X) = δ−Gx
(X) = δ−Tu

(X) + δ−Gx\Tu
(X) = δ+

Tu
(X) + k + δ−Gx\Tu

(X) ≥ k + 1,

which means that V \ X is not an x-tight set. Thus we obtain R−
u = V \ Su.

We now analyze the running time of finding exchangeability arcs. Packing k arc-disjoint r-arborescences
requires O(k2n2) time, and computing R−

u requires O(m) time for each vertex u ∈ V . Thus we can
compute R−

u for all u in O(k2n2 + nm) time. We can also compute V \ R+
v by reversing all arcs and

executing the same procedure. This also takes O(k2n2 + nm) time. We have r ∈ R(v) if and only
if R+

v = V , and v ∈ R(r) if and only if R−
v = ∅. So we can determine whether u ∈ R(v) or not by

computing R+
v and R−

v for all v ∈ V . Thus for all u, v ∈ V we can determine whether u ∈ R(v) or not
in O(k2n2 + nm) time, which implies the following theorem.

Theorem 6. The total running time of our algorithm is O(kn(k2n2 + nm)).

6 Application to shortest dijoins

A directed graph G = (V,A) is weakly connected if G is a connected graph when we ignore the
orientations of the arcs. Given a weakly connected directed graph G = (V,A), if proper nonempty
vertex subset S ( V satisfies ∆+(S) = ∅, then we say ∆−(S) is a directed cut (dicut). An arc subset
F ⊆ A is a dijoin (directed cut cover) if F meets every dicut. Thus G can be made strongly connected
by contracting (or adding the reverse arc of) every arc of a dijoin. The following theorem establishes
a min-max relation between dijoins and packing dicuts.

Theorem 7 (Lucchesi and Younger [11]). The minimum cardinality of a dijoin is equal to the maximum
number of disjoint dicuts.

It is clear that the cardinality of a dijoin is greater than or equal to the number of disjoint dicuts.
This theorem guarantees that there must exist a pair that attains the equality. A simple proof of this
theorem is given in [10].

Given a length function l : A → Z+, we consider finding a dijoin F of minimum length
∑

e∈F l(e).
This is called the shortest dijoin problem. The optimal value is characterized by the following general-
ization of Theorem 7.

Theorem 8 (Lucchesi and Younger [11]). The minimum total length of a dijoin is equal to the maxi-
mum size of a collection C of dicuts such that at most l(e) dicuts of C contain e for every e ∈ A, where
C allows duplication, i.e.,

min

{∑
e∈F

l(e)
∣∣∣∣ F : dijoin

}
= max

{
|C|

∣∣ at most l(e) dicuts of C contain e for each e ∈ A
}

.
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The shortest dijoin problem can be reduced to the minimum cost strongly connected orientation
problem as follows [6]. Suppose we are given a directed graph G = (V,A) and l(e) for each e ∈ A.
Let G′ be the undirected graph made by reduplicating each arc e as edges e1, e2. Since G is weakly
connected, undirected graph G′ is 2-edge-connected. So G′ has a 1-arc-connected (strongly connected)
orientation. We consider a strongly connected orientation problem with costs for orienting each edge
as follows: c(e1) = c(e2) = 0, c(e1) = l(e), c(e2) = +∞ where c(e1) means the cost for orienting e1

in the same direction as e, c(e1) means the cost for orienting e1 in the reverse direction of e, and the
same for c(e2) and c(e2). There exists an orientation whose cost is finite, so the set of edges oriented
in the reverse direction of G corresponds to a shortest dijoin.

When applied to the minimum cost strongly connected orientation problem, our algorithm for arc-
connectivity orientation runs in O(n2m) time. Furthermore, packing k arborescences is easy for k = 1.
Thus, we can solve the shortest dijoin problem in O(n2m) time and O(n2) space by reduction to the
minimum cost strongly connected orientation problem.

We have implemented our algorithm, and applied it to some instances of the shortest dijoin problem.
Our experiments were conducted on the PC with an Intel Pentium4, CPU 1.60GHz, 1GB of memory.
All programs are written in C++ with C++ class library LEDA. We generated random directed graphs
for given n, m, and when the graph is weakly connected we applied our algorithm to the graph. All
the running times reported here are in seconds, and we only report the user CPU time, excluding the
time of constructing graphs. We made five instances for each n,m, and each number in the table is
the time averaged over five runs. Ratio in the table, meaning the time divided by n2m, are almost
constant. Thus the running time of our algorithm is confirmed to be O(n2m).

Table 3: Running time for instances of the shortest dijoin problem.

n m time [s] ratio [µs]
15 30 0.03 4.74
15 45 0.05 4.94
15 90 0.08 3.95
30 60 0.20 3.74
30 90 0.31 3.83
30 180 0.53 3.28
50 100 0.84 3.34
50 150 1.32 3.53
50 300 2.33 3.11

100 200 6.89 3.44
100 300 10.70 3.57
100 600 18.35 3.06
200 400 58.19 3.64
200 600 92.63 3.86
200 1200 166.75 3.47
300 600 202.27 3.75
300 900 347.80 4.29
300 1800 661.02 4.08
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