
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Weighted Even Factor Algorithm

Kenjiro TAKAZAWA

(Communicated by Satoru IWATA)

METR 2005–17 July 2005

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

A Weighted Even Factor Algorithm

Kenjiro TAKAZAWA∗

July, 2005

Abstract

An even factor in a digraph is a collection of vertex-disjoint dipaths and even dicycles, which
generalizes a path-matching introduced by Cunningham and Geelen (1997). In a restricted class
of digraphs, called odd-cycle-symmetric, Pap (2005) presented a combinatorial algorithm to find
a maximum even factor. In a certain class of weighted digraphs, called odd-cycle-symmetric,
Király and Makai (2004) showed a linear programming that describes the maximum weight
even factor problem, and proved the dual integrality.

In this paper, we present a primal-dual algorithm to find a maximum weight even factor for
an odd-cycle-symmetric weighted digraph. This algorithm is based on the weighted matching
algorithm and Pap’s even factor algorithm. The running time of the algorithm is O(n2m),
where n and m are the numbers of the vertices and arcs, respectively. This is the first fully
combinatorial strongly polynomial algorithm even for the weighted path-matching problem.
The algorithm also gives a constructive proof for the dual integrality.

1 Introduction

As a common generalization of the matching and matroid intersection problems, Cunningham and
Geelen [1] introduced the notion of path-matching in undirected graphs. In [1], they showed a min-
max formula, a totally dual integral polyhedral description, and polynomial-time solvability of the
path-matching problem, which are similar to those in the matching and matroid intersection prob-
lems. Frank and Szegő [7] simplified the min-max formula and presented its combinatorial proof.
Spille and Szegő [14] proved that the path-matching problem has a property which generalizes the
Edmonds-Gallai structure of matchings.

The proof of polynomial-time solvability in [1] depends on the ellipsoid method. Cunningham
and Geelen [3] presented an algebraic algorithm to find a maximum path-matching, which lead
us to another proof of polynomial-time solvability. So, a polynomial-time combinatorial algorithm
to find a maximum path-matching had been desired. Spille and Weismantel [15] proposed to
generalize Edmonds’ matching algorithm [6] to path-matchings.

For a combinatorial approach to path-matching, Cunningham and Geelen [2] introduced the
even factor problem in digraphs, which is yet a generalization of the path-matching problem. It is
shown by Cunningham and Geelen [3] that finding a maximum even factor is NP-hard in general
digraphs. With an algebraic approach, however, Cunningham and Geelen [2] showed it can be done
in polynomial time if the digraph is weakly symmetric. A digraph is said to be weakly symmetric
if every arc in any dicycle has the reverse arc. Pap and Szegő [11] extended the min-max formula
in [7] to the even factor problem in weakly symmetric digraphs. This formula is known to hold in a
broader class of digraphs, called odd-cycle-symmetric. A digraph is odd-cycle-symmetric if each arc
in any odd dicycle has the reverse arc. Pap and Szegő [11] also showed that the Edmonds-Gallai

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology, University
of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: takazawa@misojiro.t.u-tokyo.ac.jp

1

decomposition can be extended to even factors. Pap [10] gave a fully combinatorial algorithm to
find a maximum even factor in odd-cycle-symmetric graphs, which provides an algorithmic proof of
the min-max formula and the Edmonds-Gallai-type structure. This algorithm has some properties
similar to Edmonds’ matching algorithm [6].

Meanwhile, Cunningham and Geelen [2] also addressed a weighted generalization. They con-
sidered weakly symmetric digraphs and such weight vectors that an arc e and its reverse arc ē
(if exists) have the same weight. If a digraph G = (V, A) is weakly symmetric and a weight vec-
tor w ∈ RA satisfies this property, the weighted digraph (G,w) is called weakly symmetric. In [2],
they presented an algebraic polynomial-time algorithm to compute a maximum weight even factor
in a weakly symmetric weighted digraph, and proved the integrality of a polytope similar to the
perfect matching polytope. Király and Makai [8] extended this result to an odd-cycle-symmetric
weighted digraph. A weighted digraph (G,w) is called odd-cycle-symmetric if G is odd-cycle-
symmetric, and, for every odd cycle C, the sum of the weight of the arcs in C is the same as
that of its reverse cycle C̄. For an odd-cycle-symmetric weighted digraph (G, w), they presented a
linear programming that describes the maximum weight even factor problem, and proved the dual
integrality.

In this paper, we present a combinatorial primal-dual algorithm to find a maximum weight
even factor in an odd-cycle-symmetric weighted digraph (G,w). This algorithm combines Pap’s
algorithm [10] and the weighted matching algorithm of Edmonds [5] (see [9], for example). The
resulting algorithm runs in O(n2m) time, where n and m are the numbers of the vertices and
arcs, respectively. This is the first fully combinatorial strongly polynomial algorithm even for the
weighted path-matching problem.

Besides a maximum weight even factor, this algorithm computes a dual optimal solution, which
is integral if the weight vector w is integral. Thus, this algorithm also gives a constructive proof
for the dual integrality of the linear programming in [8]. This situation is in contrast to the
situation in matchings. The weighted matching algorithm of Edmonds [5] does not imply the total
dual integrality, which was established by Cunningham and Marsh [4] with the aid of a primal
algorithm, followed by a simpler proof given by Schrijver [12, 13].

2 The Weighted Even Factor Problem

Throughout this paper, digraphs are assumed to have no loops. A path is the arc set of a directed
walk which does not revisit any vertex. A cycle is the arc set of a directed walk which ends in the
starting vertex and does not revisit any internal vertex. For a cycle C, let C̄ denote the reverse
cycle of C (if exists), and V (C) denote the set of vertices which appear in C. A path or cycle is
called odd (resp. even) if the number of the arcs is odd (resp. even). An even factor is an arc set
which consists of vertex-disjoint paths and even cycles.

For an arc e, let ∂−e (resp. ∂+e) denote the terminal (resp. initial) vertex of e. For a vertex v,
δ−(v) (resp. δ+(v)) denotes the set of arcs entering (resp. leaving) v. For a vertex set U , let A[U]
denote the set of arcs whose end vertices are both contained in U , and G[U] denote the subgraph
induced by U , that is, G[U] := (U,A[U]).

An arc is called symmetric if there is a reverse arc in the arc set of the digraph. A digraph
is said to be symmetric if every arc is symmetric. A digraph is odd-cycle-symmetric if every arc
in any odd cycle is symmetric. A weighted digraph (G,w) of a digraph G = (V, A) and a weight
vector w ∈ RA is said to be odd-cycle-symmetric, if G is odd-cycle-symmetric and w satisfies that
w(C) = w(C̄) for every odd cycle C, where w(C) :=

∑
e∈C we. Similarly, for a vector x ∈ RA and

an arc set F ⊆ A, in general we denote x(F) =
∑

e∈F xe.
Let (G,w) be odd-cycle-symmetric. Király and Makai [8] presented a linear programming

2

which describes the maximum weight even factor problem:

(P) maximize wx (2.1)
subject to x

(
δ−(v)

) ≤ 1 (∀v ∈ V), (2.2)
x

(
δ+(v)

) ≤ 1 (∀v ∈ V), (2.3)
x (A[U]) ≤ |U | − 1 (∀odd sets U ⊆ V), (2.4)
x ≥ 0. (2.5)

The dual problem of (P) is given by

(D) minimize
∑

v∈V

(
π−v + π+

v

)
+

∑

U : odd set

yU (|U | − 1) (2.6)

subject to π−
∂−e

+ π+
∂+e

+
∑

odd set U,
e∈A[U]

yU ≥ we (∀e ∈ A), (2.7)

π−v , π+
v , yU ≥ 0. (2.8)

Király and Makai [8] showed that if the weighted digraph (G,w) is odd-cycle-symmetric, both (P)
and (D) have integral optimal solutions.

Theorem 2.1 (Király and Makai [8]). If a weighted digraph (G,w) is odd-cycle-symmetric, the
linear programming problem (P) has an integral optimal solution. Moreover, the dual problem (D)
also has an integral optimal solution such that F = {U | yU > 0} is a laminar family and G[U] is
strongly connected and symmetric for each U ∈ F .

The following definitions are of alternating walk/path, which appear in Pap’s even factor algo-
rithm [10]. They can be considered as extensions of those in matchings.

Definition 2.2. Let M be a fixed even factor in a digraph G = (V, A). A sequence W =
(v0, e1, v1, . . . , vk−1, ek, vk) is an M -alternating walk if there is no arc in M which leaves v0,
ei = vi−1vi ∈ A \ M if i is odd, and ei = vivi−1 ∈ M if i is even. A vertex vi is called odd
(resp. even) if i is odd (resp. even).

Definition 2.3. An M -alternating walk is an M -alternating path if its even vertices are pairwise
distinct, and its odd vertices are pairwise distinct.

Using these definitions, we define an M -alternating tree.

Definition 2.4. The union of M -alternating paths is called an M -alternating tree if these M -
alternating paths start from a common vertex r. The vertex r is called a root. The set of arcs in
P is denoted by A[P].

Note that the underlying graph of an M -alternating tree is not necessarily a tree, and there
may exist a vertex that is both odd and even.

We are now ready to present how to construct alternating forests. Fix an even factor M . The
aim of the construction is to find an augmenting path P and take the symmetric difference of M
and A[P], which is denoted by M 4A[P].

First, choose each vertex r such that δ+(r) ∩ M = ∅ to be a root. Then, grow an r-rooted
M -alternating tree from each root r. Each vertex cannot be contained in multiple M -alternating
trees, unless it is contained in two trees, even in one and odd in the other. Suppose an r-rooted
M -alternating tree reaches an odd vertex u such that δ−(u) ∩M = ∅. The M -alternating path P
from r to u is called an augmenting path if M ′ = M 4A[P] does not contain any odd cycle. This

3

+ +

+

+

±

+

±

−

− −

−

−

−

: edge in M

: edge not in M
: even vertex
: odd vertex

: pseudo-vertex

+
−

·
: unlabeled vertex

+

+−+

root

root

+

outside the M -alternating forest

Figure 1: An M -alternating forest.

naming comes from the fact that M ′ is also an even factor and |M ′| = |M |+ 1. This operation of
taking the symmetric difference is called an augmentation.

If M ′ contains an odd cycle C, we avoid the creation of the odd cycle as follows. Suppose P =
(v0, e1, v1, . . . , vk−1, ek, vk) with r = v0 and u = vk. Then we denote Pi = (v0, e1, v1, . . . , vi−1, ei, vi)
for each i ≤ k. Let ej be the arc which is the remotest arc from r in P∩C. Then, take the symmetric
difference of M and A[Pj−2], and contract G[V (C)]. Such a contraction is said to be shrinking,
and the resulting vertex v(V (C)) is called a pseudo-vertex. We call the subgraph obtained by
growing M -alternating trees and contracting odd cycles an M -alternating forest. Recall that the
underlying graph of an M -alternating forest is not necessarily a forest. Vertices outside an M -
alternating forest are called unlabeled. An example of an M -alternating forest is shown in Figure 1.

3 A Primal-Dual Algorithm

In this section, we describe an algorithm to find a maximum weight even factor in a odd-cycle-
symmetric weighted digraph (G, w). Since we are concerned with a maximum weight even factor,
we assume without loss of generality that the weight w is positive.

For each e ∈ A, define ce := π−
∂−e

+π+
∂+e

+
∑

U :e∈A[U]

yU −we. Then, the complementary slackness

4

conditions of the primal and dual linear programs are as follows:

cexe = 0 (∀e ∈ A), (3.1)
(|U | − 1− x(A[U])) yU = 0 (∀odd sets U ⊆ V), (3.2)(
1− x(δ−(v))

)
π−v = 0 (∀v ∈ V), (3.3)(

1− x(δ+(v))
)
π+

v = 0 (∀v ∈ V). (3.4)

The algorithm begins with a pair of primal and dual feasible solutions that satisfies the condi-
tions (3.1)–(3.3). It maintains the feasibility and (3.1)–(3.3). The optimality is achieved when the
condition (3.4) is satisfied.

An initial pair of primal and feasible solutions satisfying (3.1)–(3.3) is given by

xe := 0 (∀e ∈ A), (3.5)
yU := 0 (∀odd sets U ⊆ V), (3.6)
π−v := 0 (∀v ∈ V), (3.7)
π+

v := max
e∈A

we (∀v ∈ V). (3.8)

Let A= := {e ∈ A | ce = 0} and G= := (V, A=). Throughout the algorithm, we keep xe = 0 for
e ∈ A \A=, in order to maintain (3.1).

Here is the steps of the algorithm.

Step 0 (Initialization): Start with the primal and dual solutions given by (3.5)–(3.8). M := ∅,
A= := arg max{we}.

Step 1: Construct an M -alternating forest in G=. If an augmenting path P is found, then go to
Step 2. Otherwise, go to Step 3.

Step 2 (Augmentation): Update the primal solution by M := M 4 A[P]. If (3.4) is satisfied,
then go to Step 4. Otherwise, go to Step 1.

Step 3 (Dual Change): Apply the dual change given below by (3.9)–(3.11). If (3.4) is satisfied,
then go to Step 4. Otherwise, update G=, expand each pseudo-vertex v(U) with yU = 0,
and then go to Step 1.

Step 4 (Expand): Expand each pseudo-vertex v(U). The current pair of primal and dual solu-
tions is optimal.

We now describe the dual change in Step 3. Define the following sets:

U+ := {odd set U | U is the vertex set of a shrunk blossom
represented by an even pseudo-vertex},

U− := {odd set U | U is the vertex set of a shrunk blossom
represented by an odd pseudo-vertex},

U◦ := {odd set U | U is the vertex set of a shrunk blossom
represented by an unlabeled pseudo-vertex},

V + := {v ∈ V | v is even or v ∈ U for some U ∈ U+},
V − := {v ∈ V | v is odd or v ∈ U for some U ∈ U−},
V ◦ := {v ∈ V | v is unlabeled or v ∈ U for some U ∈ U◦},
A+ := {e ∈ A | ∂+e ∈ V +, ∂−e 6∈ V −}.

5

The dual variables are changed as

π+
v := π+

v − δ (for v ∈ V +), (3.9)
π−v := π−v + δ (for v ∈ V −), (3.10)

yU :=

{
yU + δ (for U ∈ U+),
yU − δ (for U ∈ U−),

(3.11)

where

δ := min{δ1, δ2, δ3},

δ1 :=

min
v∈V +

π+
v (if V + 6= ∅),

∞ (if V + = ∅),

δ2 :=

min
U∈U−

yU (if U− 6= ∅),
∞ (if U− = ∅),

δ3 :=

min
e∈A+

ce (if A+ 6= ∅),
∞ (if A+ = ∅).

We verify the validity of this algorithm. First, we show that an augmentation does not ruin
the feasibility nor the conditions (3.1)–(3.3).

Proposition 3.1. If the primal and dual feasible solutions before an augmentation satisfy the
conditions (3.1)–(3.3), the solutions after the augmentation are also feasible and satisfy (3.1)–(3.3).

Proof. (Feasibility) An augmentation does not interrupt the dual feasibility because it only
changes the primal solution. The primal feasibility is ensured by the fact that M 4 A[P] is
an even factor.

(Condition (3.1)) In an augmentation, we change xe only if e ∈ A= = {e ∈ A | ce = 0}, which
implies that the condition (3.1) holds.

(Condition (3.2)) For an odd set U , the value yU is positive only if G[U] is shrunk. With G[U]
being shrunk, we have x(A[U]) = |U | − 1 and x(A[U]) is not changed by an augmentation.

(Condition (3.3)) The only possibility for an augmentation to violate (3.3) is that x(δ−(v))
changes from zero to one for a vertex v with π−v > 0. The value π−v > 0 means that v had
been in V −, which implies x(δ−(v)) = 1, before the augmentation. As the value x(δ−(v))
does not decrease through the algorithm, there does not exist a vertex v with x(δ−(v)) = 0
and π−v > 0.

Next, we describe that the value δ is determined so that the dual change does not interrupt
the dual feasibility and the complementary slackness conditions (3.1)–(3.3).

Proposition 3.2. If the primal and dual feasible solutions before a dual change satisfy the condi-
tions (3.1)–(3.3), the primal and dual solutions after the dual change are also feasible and satisfy
(3.1)–(3.3).

Proof. (Feasibility) As a dual change does not change the primal solution, it suffices to check
the dual feasibility. As δ ≤ δ1 = minv∈V + π+

v and δ ≤ δ2 = minU∈U− yU , the condition (2.8)
holds after a dual change. Furthermore, we can see the condition (2.7) holds from the fact
that ce decreases only if e ∈ A+ and that δ ≤ δ3 = mine∈A+ ce.

6

e+

e−
v(V (C)

e−

e+

expand

Figure 2: Expanding v(V (C)) with |C| = 7.

(Condition (3.1)) It suffices to show that ce does not change in a dual change for every arc e
with xe = 1. If xe = 1, the both ends of e are unlabeled or ∂+e is even and ∂−e is odd,
which implies ce does not change.

(Condition (3.2)) In a dual change, the value yU is changed only if G[U] is shrunk, which implies
x(A[U]) = |U | − 1.

(Condition (3.3)) The value π−v is changed only if v ∈ V −, which implies δ−(v) = 1.

Finally, we describe how to expand pseudo-vertices. The following proposition assures the
validity of shrinking and expanding.

Proposition 3.3. If all arcs in an odd cycle C are contained in A=, then all arcs in C̄ are also
contained in A=.

Proof. Note that c(C) = c(C̄), which follows from the odd-cycle-symmetry of (G,w).
As every arc in C is contained in A=, we have ce = 0 for each e ∈ C. Thus, c(C̄) = c(C) = 0.

From the feasibility of the current solution, it holds that ce ≥ 0 for each e ∈ A. Hence, c(C̄) = 0
implies that ce = 0 for every e ∈ C̄.

From Proposition 3.3, in expanding v(V (C)) we can choose any arc in C ∪ C̄ to be contained
in M . The proof of the following proposition tells us which arcs to be chosen.

Proposition 3.4 (Pap [10]). Suppose G = (V, A) is odd-cycle-symmetric, C is an odd cycle in
G, G′ is a digraph obtained by shrinking V (C), M is an even factor in G′. Then, there is an even
factor of size |M |+ |C| − 1 in G.

Proof. Suppose the pseudo-vertex v(V (C)) has a leaving arc e+ and an entering arc e− in M . As
C is odd, there exists an even path P from ∂−e− to ∂+e+ in C. In addition, there exist cycles
of length two that cover every vertex exposed by P exactly once. The union of M , P and these
cycles is an even factor in G of size |M |+ |C| − 1. (An example is shown in Figure 2.)

If there does not exist e+ and/or e−, it can be proved by a similar argument.

4 Complexity Analysis

In this section, we discuss the time complexity of the algorithm. Recall that n = |V | and m = |A|.
Lemma 4.1. The dual change does not degenerate, that is, δ > 0.

7

Proof. (δ1 > 0) Suppose δ1 = 0, which means there exists a vertex v ∈ V + with π+
v = 0. Through-

out the algorithm, the condition (3.4) is violated only by the root vertices, which are the
elements of V +. Since an augmentation does not decrease the number of arcs in M leaving
each vertex, a root r has been in V + all through the algorithm. Hence, π+

r has been decreased
in every dual change. Then it follows that all the root vertices achieve minv∈V +{π+

v } = 0.
Thus the condition (3.4) holds, which suggests that the algorithm would have terminated.

(δ2 > 0) After a dual change, each pseudo-vertex v(U) with yU = 0 is expanded. Therefore, the
only possibility for a pseudo-vertex v(U) to have the value yU = 0 is that G[U] has been
shrunk since the last augmentation, which implies U ∈ U+. Thus, U ∈ U− implies yU > 0.

(δ3 > 0) If ce = 0 for some e ∈ A+, then e is contained in G=. Then, the arc e can be added to an
alternating tree which contains ∂+e as an even vertex, which implies ∂−e ∈ V −. Therefore,
there does not exist an arc e ∈ A+ with ce = 0.

Lemma 4.1 tells us how many dual changes can happen between augmentations.

Proposition 4.2. There are at most 4n/3 dual changes between augmentations.

Proof. (δ = δ1) It follows from the proof of Lemma 4.1 that the algorithm terminates once δ = δ1

happens.

(δ = δ2) For some U ∈ U−, the value yU becomes zero and G[U] is expanded, so that |U−| decreases
at least by one. After an augmentation, there can be at most n/3 odd pseudo-vertices and
all new pseudo-vertices created between augmentations are even. Hence, δ = δ2 can happen
at most n/3 times between augmentations.

(δ = δ3) For some e ∈ A+, the reduced cost ce becomes zero, so that e is added to A= and
∂−e comes to be contained in V −. The result is that |V −| increases at least by one, or an
augmenting path is found. Hence, δ = δ3 can happen at most n times between augmentations.

It takes O(m) time to determine δ, so the dual changes between augmentations require O(nm)
time. The construction of an M -alternating forest takes O(n2) time. In finding an M -alternating
path P , we have to check whether M 4 A[P] contains an odd cycle. This exploration requires
O(n) time and happens O(n) times between augmentations. Thus, the most time consuming part
of this algorithm is the dual changes. Since there are at most n augmentations, the total time
complexity of the algorithm is O(n2m).

Theorem 4.3. Given an odd-cycle-symmetric weighted digraph (G, w), the algorithm finds a max-
imum weight even factor in O(n2m) time.

5 Concluding Remarks

We have presented a fully combinatorial algorithm to find a maximum weight even factor in an
odd-cycle-symmetric weighted digraph (G,w) in O(n2m) time. This algorithm obtains primal and
dual optimal solutions simultaneously.

In the dual changes, we only use the operations of addition, subtraction, and comparison.
Therefore, if the weight vector w is integral, the dual optimal solution obtained by the algorithm
is also integral. Moreover, the family F = {U | yU > 0} is the collection of shrunk odd sets, which
implies that F is a laminar family and G[U] is strongly connected and symmetric for all U ∈ F .
Thus, this algorithm provides a constructive proof of Theorem 2.1.

8

Acknowledgements

I am very obliged to Satoru Iwata for his happy suggestions and reading the draft of the paper.

References

[1] Cunningham, W. H., and Geelen, J. F.: The optimal path-matching problem, Combinatorica,
vol. 17 (1997), 315–337.

[2] Cunningham, W. H., and Geelen, J. F.: Vertex-disjoint directed paths and even circuits,
manuscript, 1998.

[3] Cunningham, W. H., and Geelen, J. F.: Combinatorial algorithms for path-matching,
manuscript, 2000.

[4] Cunningham, W. H., and Marsh, III, A. B.: A primal algorithm for optimum matching,
Mathematical Programming Study, vol. 8 (1978), 50–72.

[5] Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices, Journal of Research of
the National Bureau of Standards, Section B, vol. 69 (1965), 125–130.

[6] Edmonds, J.: Paths, trees, and flowers, Canadian Journal of Mathematics, vol. 17 (1965),
449–467.

[7] Frank, A., and Szegő, L.: Note on the path-matching formula, Journal of Graph Theory,
vol. 41 (2002), 110–119.

[8] Király, T., and Makai, M.: On polyhedra related to even factors, in Bienstock, D., and
Nemhauser, G., eds., Integer Programming and Combinatorial Optimization: Proceedings of
the 10th International IPCO Conference, LNCS 3064, Springer-Verlag, 2004, 416–430.

[9] Nemhauser, G. L., and Wolsey, L. A.: Integer and Combinatorial Optimization, John Wiley
and Sons, New York, 1988.

[10] Pap, G.: A combinatorial algorithm to find a maximum even factor, in Jünger, M., and
Kaibel, V., eds., Integer Programming and Combinatorial Optimization: Proceedings of the
11th International IPCO Conference, LNCS 3509, Springer-Verlag, 2005, 66–80.

[11] Pap, G., and Szegő, L.: On the maximum even factor in weakly symmetric graphs, Journal
of Combinatorial Theory, Series B, vol. 91 (2004), 201–213.

[12] Schrijver, A.: Min-max results in combinatorial optimization, in Bachem, A., Grötschel, M.,
and Korte, B., eds., Mathematical Programming—The State of the Art, Springer-Verlag,
Berlin, 1983, 439–500.

[13] Schrijver, A.: Short proofs on the matching polyhedron, Journal of Combinatorial Theory,
Series B, vol. 34 (1983), 104–108.

[14] Spille, B., and Szegő, L.: A Gallai-Edmonds-type structure theorem for path-matchings, Jour-
nal of Graph Theory, vol. 46 (2004), 93–102.

[15] Spille, B., and Weismantel, R.: A generalization of Edmonds’ matching and matroid inter-
section algorithms, in Cook, W. J., and Schulz, A. S., eds., Integer Programming and Com-
binatorial Optimization: Proceedings of the 9th International IPCO Conference, LNCS 2337,
Springer-Verlag, 2002, 9–20.

9

