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Arbitrary high-order conservative or dissipative
method for ordinary differential equations and its
block algorithm*

Takayasu Matsuo!

July 25, 2005

Abstract

A method for designing arbitrary high-order conservative/dissipative
finite difference schemes for conservative/dissipative ordinary differen-
tial equations is proposed. The new method is given by extending the
previously presented method for up to the sixth order schemes. The
key in this extension is to introduce the idea of the generalized back-
ward difference formula (GBDF'), by which the seventh- or higher-order
schemes are stabilized. A “block” algorithm to reduce the computa-
tional cost is also presented. Numerical examples are shown to show
the effectiveness of the method.

1 Introduction

We consider numerical solution to the system:

d (t) = AVH(z), t>0

—=z(t) = z

{ dt ’ ’ (1)
z(0) = 2o,

where z: R — R, Aisan N x N real matrix, H : RY — R, VH(%) is the
gradient of H with respect to z, and zy € R is a given initial value. When
A is skew-symmetric, H is preserved along the solution:

d

G H (M) = (VH) &= (VH) AVH =0, (2)
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where z = (d/dt)z(t) and ‘(-)"" denotes transpose of the matrix. Therefore,
in this case, we call the system (1) “conservative.” Hamiltonian systems, in
which N = 2M (M € {1,2,...}) and

A= 0 —Im , Ipr:identity matrix of order M,
I,y O

is an example. On the other hand, when A is negative definite, H decreases
along the solution:

d
(=) = (VH)" AVH <0, (3)
and hence we call the system (1) “dissipative.” Hamiltonian systems with a

damping term, in which

| —aly Iy
A_< Iy 0

>, R>a>0,

is an example.

For the conservative or dissipative systems, it is widely accepted that
numerical schemes that inherit the conservation or dissipation property, i.e.,
“dissipative” or “conservative” schemes, are desirable, and thus many efforts
have been devoted in this theme'. In the ’70s and ’80s, associated with
specific problems, several conservative or dissipative schemes of first- or
second-order accuracy were presented (e.g. [2, 6]). Then, in the ’90s, general
methods for designing conservative or dissipative schemes of first- or second-
order accuracy have been independently proposed by McLachlan et al.[14]
(see also Gonzalez[5]), and Furihata and Matsuo([3, 11, 12]). These two
methods have one key concept in common: the “discrete derivative,” or
“discrete gradient,” by which we define a numerical scheme analogously
to the original system (1) so that the conservation or dissipation property
results.

In contrast to these successes, relatively little had been known on the
third- or higher-order schemes. For a long period, the only tool had been the
so-called composition technique[15], by which we can construct high-order
conservative schemes. The first work which dealt with both dissipative and
conservative cases in a complete manner was Matsuo[13], where a method
was proposed for automatic designing of high-order dissipative or conserva-
tive schemes. The method had an additional advantage that the computa-
tional cost of the resulting schemes are relatively very cheap. But unfor-
tunately the method had one weak point: the resulting schemes can suffer

!For the conservative systems, there are also nearly conservative methods, such as
the symplectic methods for the Hamiltonian systems, and some symmetric methods for
reversible systems[7, 8]. In this paper, however, we are mainly concerned with strictly
conservative and dissipative methods.



the same instability as the so-called “backward difference formula” (BDF)
schemes. Thus, from the practical point of view, the attainable order was
limited to the 6th as in BDF.

In this paper, we propose a new method which overcomes the order bar-
rier. The key point is to utilize the idea of the “generalized BDF” (GBDF)[1].
We also present an efficient “block” algorithm to reduce the computational
cost. The rest of this paper is organized as follows. In Section 2, we briefly
review the existing (2nd- and conventional higher-order) methods. In Sec-
tion 3, we propose a new method for designing arbitrary high-order schemes,
by utilizing the idea of GBDF. Section 4 is devoted to a “block” algorithm
of the proposed schemes. Section 5 is for concluding remarks.

2 The existing methods

The existing methods up to the sixth order are briefly reviewed.

2.1 Second-order methods

The second-order method introduced in [3, 5, 11, 14] is summarized. The
method is based on the concept of the “discrete derivative,” or the “dis-
crete gradient.” Using this concept, schemes are defined analogously to the
original system (1), so that the conservation or dissipation property results.

Let At be a time-mesh size. Numerical solutions are denoted by z(™ ~
z(mAt). In this section, H(2("™) is often abbreviated as H(™). With these
notations, the discrete derivative is defined as follows.

Definition 1 (First- or second-order discrete derivative) For a suf-
ficiently smooth function f : RY — R, we call Vqf : RY x RY - RN 4
discrete derivative” if it satisfies the following two conditions.

1 f(y1) = f(y2) = (Vaf (1, 92))" (g1 —us) for all y;,y, € RV.

2. For any sufficiently smooth function x(t) : R — RN, any t1,ty €
R, and p=1 or 2, there emist t(t1,t2) such that Vaf(z(t1), z(t2)) =
Vf(z(t)) + O(|t; — t2|P) holds.

Furthermore, we call Vaf “a first-order discrete derivative at t” when p = 1,
and a “second-order discrete derivative at t” when p = 2.

The above is a formal definition. There are several concrete exam-
ples that satisfy the definition[13]. We here present an example given by
Gonzalez[5].

f@) =)~ (Vi) (@ -y

Iz — yll3

Vaf(z,y) =Vf(z) + (z—y), z=



where || - ||2 is the Euclidean norm.
Once a concrete form of discrete derivative is given, a conservative or
dissipative scheme can be constructed as follows.

Scheme 1 (First- or second-order scheme) A scheme

0)

29 = z; (an initial value)

{ W:AVdH(Z(MH)aZ(m)) (m=1,2,...),

18 conservative:

if A is skew-symmetric, or is dissipative:
HMD) < gm (m=1,2,...), (7)

if A is negative definite. The scheme is second-order, if the discrete deriva-
tive VqH is second-order at t = ((m + 1)At +mAt) /2. Otherwise, the
scheme is first-order.

2.2 High-order method

The high-order method proposed by Matsuo[13] is briefly reviewed. The
key point is to replace the low (second) order difference operator in the
second-order method with high-order ones to increase accuracy. To this
end, pth-order difference operators are introduced first as follows.

Definition 2 (pth-order difference operator) Let 57%?0 be a difference

operator defined as

(1) 2, cpmt)
Spled™ = Y BN (8)

i=—1[1

where 11,lo € {0,1,2,...},¢; € R, and ¢ = (c_yy,...,¢,). If for any
sufficiently smooth function z(t) : R — RY and any t € R, there exists
t(t, At,ly,13) such that

l2

> @R iy v oar) )

1=—1I

holds, we call 5&?0 “a pth-order difference operator at t” which refers | =

l1 +la 4+ 1 points, and denote it by 6%?&”.

Usually, [ is chosen to the smallest number: [ = p+1. Next, a high-order
discrete derivative is defined accordingly.



Definition 3 (pth-order discrete derivative) Let (55,1?3’ a pth-order dif-
ference operator at t which refers | = Iy + lo + 1 points. For a sufficiently
smooth function f: RN — R, we call

Vhel iRV x - xRNV 5 RV
[
“a pth-order discrete derivative (with respect to 5,%?&]] .7 if the function sat-
isfies the following conditions.

T
1), 1),
1. 5§n;>cp (ym) = (vg;cf(ym—lla s 7ym+l2)) 5§n;>cpym7 fOT anyY Ym—t1>- -+ » Ym+is €
RN;

2. For any sufficiently smooth function z(t) : R — R and any t € R,
Vief (@t =LA, ,x(t+ 1bAt) = Vf(a(l)) + O(A#) holds.

The above is a formal definition. A concrete example is given below as
an extension of the Gonzalez’s second-order discrete derivative (4).

Theorem 1 (A pth-order discrete derivative[13]) Let (55,1?3’ be a pth-
order difference operator at t which refers | =1, + Iy + 1 points. Then, the
following is a pth-order discrete derivative.

Sl T () = (V@) 00U 1),

1 m;C Jm»
16502 12 ’

where § = G(Ym_i1s- - +Ymat,) 15 @ function of Y1 s s Ymys, € RY such
that for any sufficiently smooth function z(t) : R — RN and any t € R,

y(z(t — WAL, ... ,z(t + 12At)) = z(t) + O(ALP) holds.

Viel = V@) +

The discrete derivative consists of two terms: the first term is the “true”
derivative at 7; and the second term is the pth-order correction term which
enforces the discrete chain rule (and thus essential in conservative/dissipative
schemes). Using the discrete derivative, a pth-order conservative or dissipa-
tive scheme for (1) can be constructed as follows.

Scheme 2 (pth-order scheme) Let 6,%?&” be a pth-order difference oper-
ator at t which refers | =1y + Iy + 1 points, and let VEH be the pth-order
discrete derivative of H at t. Then, a scheme

O 2 = AVE JH (271 20 R)Y (=1, 4+ 1),
20 = 2y (an initial-value), (10)
20 ..., 2072 (starting-values),

18 conservative:

§iLp prm) — (m=1y,l1 +1,...), if A is skew-symmetric, (11)

m;C



or is dissipative:
6&?&’)}[("’) <0 (m=Ul,li+1,...), if A is negative definite.  (12)
In addition, the scheme is pth-order.

Scheme 2 is not self-starting. We have to provide the starting-values
21, 202 in addition to the initial value 2(9) = z;. Usually, they are
computed using another scheme with sufficient accuracy, such as Scheme 1
or the Runge-Kutta methods.

Note that the above story holds good, at least formally, for any pth-order
difference operator (55,1?3’ . But for the stability of the resulting scheme, we
are forced to choose the operator to the so-called “stiffly-stable” backward
difference operator: that is, the scheme should be like the BDF (Backward
Difference Formula) scheme[9]. The usual linear stability analysis shows
that BDF schemes are stable only up to the 6th order. Thus, unfortunately
Scheme 2 is of practical use only in the 6th- or lesser order situations.

3 The new method: a GBDF approach

To overcome the order barrier, the idea of the “Generalized BDF” (GBDF)
proposed by Brugunano and Trigiante[1] is utilized. The idea of GBDF is
to solve a finite difference scheme not sequentially from start to end (i.e.,
as a initial value method), but simultaneously as a big system of equations
(i.e., as a boundary value method). Brugunano and Trigiante showed that
in this approach BDF-like schemes which are stable up to arbitrary order
can be constructed (see [1] for the detail).

Let us consider the problem in 0 < ¢ < T and its pth-order numerical
solution. Let v be a constant such that

v= 1%2, ifpiseven; v = 1%1, otherwise. (13)

For a given large integer Ny, Ny +p — v — 1 time mesh points are set, i.e.,

At = T/(N; +p — v —1). The numerical solutions 2%, ... , z(Ne+P=v=1) gre

then divided into three groups: The initial group 20 .. 2*=Y the main
group 2) ..., 2(Ve=1 and the final group (M), ... z(Netp—r—1),

In each group, different versions of Scheme 2 are applied. More specif-

ically, different time difference operators 5%?&’; are used depending on the

time step m. The operators are defined as follows.

Definition 4 (Special pth-order difference operator) Let [1,ly be the

values defined in Table 1 for each time step m > 0. We define 6&?&’; to be

special versions of the pth-order difference operators 5,%?&11, whose coefficients

cm are uniquely determined, for each m, so that the operator be pth-order
at t = mAt.



Table 1: Parameters in 5<1>’p

m;Cm
group (I1,12) referred points
initial (m,p—m) 0,...,p
main (v,p—v) m-—v,..., m+p—v

final  (m—N,Ny—m+p) Ny—v—-1,...,Ny+p—-v—1

The way of finding such coefficients can be found, for example, in [1].
The seventh-order case will be shown in Example 1. In Table 1, the referred
points by each difference operators are also listed for readers’ convenience.
Notice that in the initial and final groups the referred points are fixed and
l1,15 vary depending on m (to avoid referring outside points), while on the
other hand [y, l5 are fixed in the main group.

With the difference operator, now the generalized version of the pth-order
scheme is defined as follows.

Scheme 3 (Generalized pth-order scheme) Let 5P pe the difference

m;Cm
operator defined as above, and Vﬁ;cm be the pth-order discrete derivative

defined in Theorem 1 as to 6&?&‘2@. Then, o scheme

6&?&‘2%7") = AVﬁ;cmH(z(U), ., 2P) (m=1,...,v—-1),

6&?&‘2%7") = AVﬁ;cmH(z(m*’j), ., 2mErv)) (m=v,...,N; — 1),
67(71?g;z(m) - AVﬁ;CmH(Z(Ntiuil)a s az(NrH)iVil)) (m = Nta s aNt +p—v-— 1)3
20 = 2(0) (an initial value),

(14)
18 conservative:

57(;;)&1;[_1(771) =0 (m=1Il,l1+1,...), ifAis skew-symmetric, (15)
or is dissipative:

55;?&1;1-[(7”) <0 (m=UlL,li+1,...), if A is negative definite.  (16)
In addition, the scheme is pth-order.

(Proof) We here abbreviate H(z(™="), ... 2(mtP=)) (or the similar terms
in initial and final parts) as H (m) " The special pth-order difference operator

5%?&’; satisfies, as the special case of Theorem 1, the discrete chain rule

T

m;Cm



This, together with the definition of the scheme, shows

(1),p _ T
5m;CmH(m) - (vﬁ,CmH(m)) A (Vg;CmH(m)) )

from which the conservation property (15) and the dissipation property (16)

are clear. The claim on the order is trivial since both sides of the scheme is

everywhere pth-order.

To help readers’ understanding, the 7th-order case is demonstrated be-
low.

Example 1 (The 7th-order scheme) To implement Scheme 3, we have
to specify the coefficients of the difference operators 6&?&’; used in the
scheme. (Remember that the discrete derivative Vg,cmH also depends on

the forms of the difference operators 5,%?&’; . See Theorem 1.) There are

eight different Tth-order operators, all of which refer [ = 7 + 1 = 8 points®.
The coefficients are listed in Table 2, being categorized according to the time
step m. The bold face values denote that, the corresponding operators are
Tth-order at those points; for example, for m = 1, the operator is 7th-order
at t = At. Because now v = (74 1)/2 = 4 in (13), the first four solutions
20 20 belong to the initial group, and three sets of coefficients are
used to construct three different operators at m = 1,2,3, needed in the
first line of (14). Throughout the main group (m = 4,... ,N; — 1), one
operator is constantly used. Finally, since N; +7 —4 — 1 = Ny + 2, three
solutions z(Ve), z(Ne1) o (Ne+2) belong to the final group, and the three sets
of coefficients are used for them.

Scheme 3 is expected to be very stable up to arbitrary order, inheriting
the strong stability of the standard GBDF. As noted earlier, the discrete
derivative Vﬁ_cmH defined in Theorem 1 is a combination of the “original”
gradient VH ‘and the pth-order correction term. If the correction term is
switched off, Scheme 3 is nothing but the standard GBDF scheme whose
linear stability is well established.

We have to pay, however, the price of this extra stability. Scheme 3 ap-
parently involves a big (N x (N; +p — v — 1))-dimensional system of nonlin-
ear equations, which must be solved iteratively by, for example, the Newton
method. This requires not only heavy computation, but the complicated
implementation task. As for the computational cost, an efficient algorithm
will be presented in Section 4. To decrease the implementation complex-
ity, some reliable Newton procedure library which automatically generates
numerical Jacobian can be used.

2The first set of coefficients, i.e. the set for m = 0, is not used here since we do not
need the equation for the given initial value 2(*) = 2; in Scheme 3. The set will be used
in the next section (Scheme 4).



Table 2: The coefficients of the 7th-order operators

time step (m) C—1y C—l1+1 T T Cly—1 Cly
0 _863 -  _20 3 _3 20 _71 1
140 2 3 4 5 6 7
1 1 _29 3 5 5 _3 1 _1
7 20 2 3 4 5 42
9 1 1 _4r 5 _5 1 _1 1
42 3 60 3 6 3 12 105
3 1 L .3 _1 { _3 1 _1
105 10 5 4 10 15 140
1 1 3 1 3 1 1
Lo Ne=1 1 1 -5 1 1 32 5“0 105
N 1 1 _1 5 _5 4t 1
3 105 12 3 6 3 60 3 42
1 1 3 5 5 29 1
Ne+1 B ~5 i T3 3 T3 3 7
1 7 21 35 35 21 363
Ny +2 —7 6 —% T —3 % 7T 10

Here we present three numerical examples. In all the examples in this
paper, the routine NEQNF included in IMSL Fortran library, which is a
Newton solver with numerical Jacobian, is used.

Example 2 First, the simplest equation:

d 2
2 =-VH(2), H(z) = (17)

is considered in the interval 0 < ¢ < 10, to check the accuracy of Scheme 3.
As one can easily check, it is dissipative: %H(z(t)) <0.

The problem is solved by three schemes, GBDFn(d)(n = 7,9, 11), which
are the 7th-, 9th-, and 11th-order versions of Scheme 3, respectively. The
suffix “(d)” denotes that the scheme is dissipative, i.e., not the standard
GBDEF’s. Fig. 1 shows the error in the numerical solutions at ¢ = 10. The
lines are the guide lines which show 7th-, 9th-, and 11th-order, respectively.
All of three schemes run quite stably and are rightly 7th-, 9th-, and 11th-
order. Fig. 2 shows the numerical solution (points) against the exact solution
(solid line). The dissipation property is clear.

Example 3 (Harmonic oscillator) The harmonic oscillator:

Ao = IVHE), 2= (1,0)", H=w (M> o as)

dt 2
0 -1
=(1 )
and w € R is the angular velocity, is considered. We took w = 3/2 and
integrated the problem in the interval 0 < ¢ < 100, with the time mesh size

where
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Figure 1: [Example 2] Errors in the 7th-, 9th-, and 11th-order schemes

x ' GBDF11(d) X
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04t 7 ]
031 ¥ .
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Figure 2: [Example 2] The numerical and exact solution (the 11th-order
case, Ny = 20)
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At = 1/2 (this means the numerical solution has about 8 points in each
oscillation cycle). The problem is solved by three schemes:

BDF7 — The standard 7th-order BDF scheme, which is unstable.

GBDF7 — The 7th-order GBDF scheme, as is proposed by Brugunano
and Trigiante[1]. This scheme is not conservative.

GBDF7(c) — Scheme 3 of order 7, which is conservative.

Note that the harmonic oscillator problem is a linear problem, for which
the standard GBDF schemes are proved to work quite stably (see Brugunano
and Trigiante[1]). In GBDF7 and GBDF7(c), the dimension of the nonlinear
system is 2 x (200 + 7 — 4 — 1) = 404.

Fig. 3 shows the trajectories of the numerical and exact solutions. BDF7
blows up as expected since it is an unstable scheme. GBDF7 is quite stable
as expected, but its solutions do not stay exactly on the true orbit (circle).
GBDF7(c) is stable, and its solutions exactly stay on the true orbit.

Fig. 4 shows the evolutions of the energies. The energy by BDF7 rapidly
blows up. The energy by GBDF7 slowly decreases toward zero, which reflects
the fact that the scheme is stable (and not conservative). The energy by
GBDF7(c) is strictly conserved as expected.

These results illustrate that GBDF schemes are in fact quite stable, for
the linear problem, and in addition to that the conservation of energy further
refines the result.

Example 4 (Kepler problem) The kepler problem:

()= JVH(z), Hz=2t2 1 (19)

(0 —I (10
=(n o) m=(oh)

is considered. Note that the Kepler problem is a nonlinear problem, where
the stability of the standard GBDF schemes is not well established. In all
of the following experiments, we took the initial data z(0) = (0,3,0.2,0)
(which corresponds to the Kepler orbit of eccentricity 0.8, and cycle 27),
and tested the schemes GBDF7 and GBDF7(c).

Firstly, let us focus on the qualitative aspects of the schemes. To this
end, the problem is integrated in the interval 0 < ¢ < 10 with time mesh
size At = 1/50. In these settings, the dimension of the nonlinear system is
4 x (500 +7—4 —1) = 2008.

Fig. 5 shows the trajectories. Both schemes run quite stably, and we
can not see any significant difference between GBDF7 and GBDF7(c). This

az

where

11
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Figure 3: [Example 3] The trajectories of the numerical and exact solutions
in Example 2: (top left) BDF7, (top right) GBDF7, (bottom) GBDF7(c)
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Figure 4: [Example 3] The evolutions of the energies

should be attributed to the fact that essentially both schemes are quite
accurate thanks to the high-order (7th-order) accuracy.

On the other hand, in Fig. 6, which shows the evolutions of the energies,
the difference is rather clear. In GBDF7(c) the energy is strictly conserved,
while in GBDF7 it is slowly dissipated, like as in the harmonic oscillator
problem. But this time, the energy by GBDF7 shows undesirable oscillations
at perihelion (¢ ~ 27). Thus in this nonlinear problem, we can conclude that
the conservation of energy is desired for stabilizing the numerical solution.

Secondly, we turn our attention to the computational costs of the schemes.
The problem is integrated in the interval 0 < ¢ < 1, with several different At
(or N¢). Table 3 shows the computation times of GBDF7 and GBDF7(c)
under several N;. The experiment was done using a PC with Pentium4
(2.8GHz), 1GB RAM, Windows XP, and Intel Fortran Compiler 8.0. In
the table, the columns named “(growth)” show the ratio logy, /v, (T2/T1)
(T}, T, are the computation times required when Ny = Ny and Ny, respec-
tively), which gives the constant ¢ for O(N;°) quantities. We can see that
roughly the computational costs are O(N;?). It is natural since in Scheme 3
roughly N N;-dimensional system of nonlinear equations must be solved.
Thus Scheme 3 might be too expensive when N, is quite large. We also
notice that GBDF7(c) requires slightly much costs since it involves extra
calculations in evaluating the high-order discrete derivative Vg;cmH (m)

13
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Figure 5: [Example 4] The trajectories of numerical and exact solutions
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Figure 6: [Example 4] The evolutions of the energies
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Table 3: [Example 4] Computation time (in seconds)

N; | GBDF7 (growth) | GBDF7(c) (growth)
200 2.7 — 3.1 —
300 8.7 2.9 9.8 2.8
400 19 2.7 22 2.8
500 37 3.0 42 2.9
600 63 2.9 72 3.0

4 A block algorithm

As pointed out in the previous section, Scheme 3 involves O(N;?) computa-
tion time, and thus may not be very practical as it stands. In this section
a “block” algorithm is presented to overcome this difficulty. The idea here
is to utilize Iavernaro and Mazzia’s technique for general boundary value
methods[10]. Hereafter we limit ourselves to the odd order schemes for sim-
plicity. The even order cases can be treated similarly.

The smallest IV; for which Scheme 3 makes sense is N; = v + 1. If we
also treat the initial value (m = 0) as the unknown value, Scheme 3 with
Ny = v + 1 becomes

S 2 = AVh L H(Z0), ... 20) (m=0,...,v—1),
S 2 = AVh L H(z0),... 2P (m =), (20)
S Zm = AVE L H(ZO,.. 2P) (m=v+1,...,p),

which consists of (p 4 1) equations for (p 4+ 1) unknown z(™)s. Our strategy
here is to repeatedly use this “smallest block” of the scheme to reach the
“goal” time T'. For example, if we are given the initial value 20 we solve
(20) with it to obtain 2(1),...,2(). Then we repeat this process with the
new initial value z®), and so on, until spAt > T (s is the number of cy-
cles). In each cycle, we only have to solve (N x (p+ 1))-dimensional system
of nonlinear equations (which is the smallest). The overall computational
cost would be, roughly speaking, proportional to the number of cycles (i.e.
O(N;)), which is far smaller than O(N;?) in the previous section.

But as it is shown in simpler settings[10], this “naive” strategy does
not work as it stands, since the strong stability of GBDF would be lost by
splitting the interval. Thus, based on the clever strategy in [10], we here
propose a slightly different algorithm.

Scheme 4 (Block version of the pth-order scheme) Let 55;?&7” be the
difference operator defined as above, and Vﬁ,cm is the pth-order discrete

derivative defined in Theorem 1 as to 57%?&];. Assume that the initial and

15



starting values atm = 0,1,... ,v—1 are given. Then we calculate PG CE S

using the algorithm:
(a) s:=v;
(b) With the known values 2=, ... 20571 solve

(55,1?&1;%’”) = AVg;CmH(z(S*”), 2P (m=s—w, s — 1),

SP Sm) = AVE  H (26 2y (= s),

SP Lm) = AVE L H (26, 26 ) (= st 1, s 4 p— ),

to obtain 28, ... Z5tP—V).
(C) Discard z(5+1), N ,z(5+pfu),. let s := 8+1; then go to (b) until s — Nt-

In the above algorithm, we still solve (IV x (p+1))-dimensional system of
nonlinear equations in each cycle. This time, however, only one numerical
solution z(®) is adopted in each cycle, and the rests (z(6T1, ... z(s+tp=v))
are discarded. It may seem an waste, but it greatly helps the stability
of the overall scheme (see [10] for rigorous linear stability analysis of the
standard block GBDF schemes). The starting values must be provided by,
for example, another (conservative/dissipative) numerical scheme.

We show three numerical examples of Scheme 4.

Example 5 The simplest problem in Example 2 is considered again to
check the accuracy of the schemes. The problem is solved by three schemes,
BGBDFn(d)(n = 7,9,11), which are the 7th-, 9th-, and 11th-order versions
of Scheme 4, respectively. Fig. 7 shows the error in the numerical solutions
at ¢ = 10. All of three schemes run quite stably and are rightly of 7th-,
9th-, and 11th-order. Notice that the vertical scale is different from Fig. 1
in Example 2; Scheme 4 are more accurate than Scheme 3.

In what follows, Scheme 4 of Tth-order and the corresponding lavernaro
and Mazzia’s Tth-order block GBDF (which is not conservative/dissipative)
are considered. Scheme 4 is denoted as “BGBDF7(c),” and the correspond-
ing block GBDF as “BGBDF7.”

Example 6 (Kepler problem) The same problem as in Example 4 is con-
sidered. This is a conservative problem.

Firstly, the problem is integrated in the interval 0 < ¢ < 500 (which
corresponds to about 80 periods), with the time mesh size At = 1/40 (thus
the number of mesh points are N; = 20000) to see its long time behaviour.
Note that this setting is almost impossible for Scheme 3. If we applied
Scheme 3 with these settings, we would have to solve 80,012-dimensional
system of nonlinear equations. Fig. 8 and Fig. 9 shows the trajectories of
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Figure 7: [Example 5] Errors in numerical solutions

BGBDF7 and BGBDF7(c), respectively. BGBDF7 (Fig. 8) stably calculates
the numerical solution, but the orbit gradually falls into the center due to
numerical dissipation. BGBDF7(c) (Fig. 9) gives better result, where the
orbit never shrink.

Fig. 10 shows the energies in both schemes, which is more illustrative
and impressive. The energy in BGBDF7(c) is rightly conserved. It is actu-
ally conserved to the machine accuracy. Thus we can see the conservation
property holds good also in Scheme 4. In contrast to that, the energy in
BGBDF7 gradually dissipates, and it also exhibits oscillations at the perihe-
lion(s). Since we are now considering about 80 periods of the Kepler motion,
we observe about 80 spikes in the graph, which agrees with the result in the
previous section. We conclude that the qualitative aspects of the original
schemes are inherited to the blocked version Scheme 4.

Secondly, we consider the same setting as in the second part of Exam-
ple 4, to check the computation time. Table 4 shows the computation times
of BGBDF7 and BGBDF7(c). Compare it with Table 3. At a glance, we
understand that the computational cost is dramatically decreased; nearly
1/300 when N; = 600. The growth order is much smaller than three. We
expected it to be one, but the result is blurring. The reason of this should
be attributed to the fact that the cost in each cycle varies and depends on
the initial values set for the Newton iteration. It can be better (or even
worse) by tuning the initial values. We here do not get involved with this
issue any further, and leave it to the future work.

Thirdly, Fig. 11 shows the accuracy of the numerical solutions. The
points are the accuracies of numerical solutions, and the dashed line is the
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guide line to show O(At7). The solutions are rightly 7th-order. GBDF7(c)
is slightly better thanks to the conservation property.
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Figure 8: [Example 6] The trajectories of numerical solution (BGBDF7)

Table 4: [Example 6] Computation time (in seconds)

N; | GBDF7 (growth) | GBDF7(c) (growth)
200 | 0.074 — 0.078 —
300 | 0.099 0.72 0.112 0.89
400 | 0.128 0.89 0.145 0.90
500 | 0.176 1.43 0.189 1.19
600 | 0.230 1.47 0.228 1.03

Example 7 (Damped Kepler problem) A damped Kepler problem:

40 = IVH(), Hz=AT2 1 (22)

dé 2 NCEY A

. —0512 _12 o 10
=) = y),

is considered. The constant o > 0 is the resistance coefficient, and is taken to
0.001 in this experiment. The other parameters are the same as in Example 4

where
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Figure 9: [Example 6] The trajectories of numerical solution (BGBDF7(c))
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Figure 10: [Example 6] The evolutions of the energies
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Figure 11: [Example 6] The accuracy of numerical solutions

and 6. Two schemes are compared: the dissipative Scheme 4 of 7th-order
(denoted as BGBDF7(d)), and the corresponding Iavernaro and Mazzia’s
block GBDF7 (BGBDFT) which is not dissipative.

Fig. 12 and Fig. 13 shows the trajectories of numerical solutions by
BGBDF7 and BGBDF7(d). In both graphs the trajectories falls into the
center, but the solution by BGBDF?7 falls faster than BGBDF7(d).

Fig. 14 shows the evolutions of the energies in both schemes. We can
observe two facts: first, BGBDF7 shows oscillations at the perihelion(s),
as in the conservative case (Example 6), while BGBDF7(d) strictly dissi-
pates the energy. Thus we can see the dissipation property holds good also
in Scheme 4. Second, the dissipation profile of BGBDF7(d) agrees quite
well with the exact profile (which was obtained by a numerical calculation
choosing very small time mesh size). In contrast to that, the dissipation in
BGBDF7 is much larger than the original profile. This explains the differ-
ence between Fig. 12 and Fig. 13.

5 Concluding remarks

In this paper a new method for designing dissipative or conservative schemes
of arbitrary high-order is proposed. In the method, the previously proposed
method[13] is incorporated with the idea of the generalized backward differ-
ence formula. The order and stability of the proposed scheme are confirmed
by numerical experiments. In particular, it is illustrated that the proposed
schemes are superior to the standard GBDF schemes in the sense that they
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Figure 12: [Example 7] The trajectories of numerical solution (BGBDF7)
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Figure 13: [Example 7]The trajectories of numerical solution (BGBDF7(d))
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Figure 14: [Example 7|The evolutions of the energies

prohibit undesirable numerical oscillations with a little additional computa-
tional cost in some nonlinear problem. An efficient block algorithm, which
dramatically saves the computational cost, was also presented.

There remains several issues as the future works. First, theoretical as-
pects of the proposed schemes, including the rigorous stability analysis,
should be clarified. The standard tools for stability analysis, however, can
not be simply applied to our case in the following two senses: firstly, the
proposed schemes are always nonlinear even for linear problems; and sec-
ondly, considering Dahlquist’s test equation does not make sense when we
are concerned with conservative schemes. Some new concept and tools of
stability analysis should be introduced to handle our case.

Second, it must be examined if the proposed schemes can be implemented
with variable time mesh sizes, which is quite crucial in practical computa-
tion. We believe that the known techniques as to GBDF can be utilized to
this end. The result will be reported as soon as it is available.

Third, the approach in this paper can be, at least formally, extended
to the numerical integration of conservative/dissipative partial differential
equations, for designing temporally high-order conservative/dissipative schemes.
To do so, we first discretize space variable so that the resulting ordinary dif-
ferential equations would be still conservative/dissipative. Then we apply
the approach in this paper to the ordinary differential equations. But in
this way we have to solve considerably high dimensional systems of non-
linear equations. We are now working on this issue, and will report some
results in the near future.
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