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Abstract

We investigate the Bayes estimation of the means in Poisson decomposable graphical
models. Some classes of Bayes estimators are provided which improve on the maximum
likelihood estimator under the normalized squared error loss. Both proper and improper
priors are included in the proposed class of priors. Concerning the generalized Bayes
estimators with respect to the improper priors we address their admissibility.

Keywords and phrases : admissibility, Bayes, chordal graph, contingency table, decomposable
graphical Poisson model, inadmissibility, perfect sequence, shrinkage estimation.

1 Introduction

In this article we study the simultaneous Bayes estimation of the means in Poisson decomposable
graphical models. Consider a J-way contingency table. Let ∆ = {1, . . . , J} be the set of
variables which corresponds to the set of vertices in the conditional independence graph G. G
is assumed to be chordal(decomposable). Let Iδ denote the number of levels for δ ∈ ∆. We
express the set of levels of δ by Iδ = {1, . . . , Iδ}. Each cell of the table is the element i = (iδ)δ∈∆

of the whole cells I,

i ∈ I, I =
∏

δ∈∆

Iδ.

Let the marginal cell and the set of the marginal cells for V ⊂ ∆ be expressed by iV and IV ,
respectively. x = {x(i)}i∈I ∈ Z|I|

+ denotes the vector of the cell frequencies.
Then the Poisson decomposable graphical model is expressed as follows,

x(i) ∼ Po(λ(i)), λ(i) = λ

∏
C∈C α(iC)∏

S∈S α(iS)ν(S)
, (1)

∗hara@geosys.t.u-tokyo.ac.jp
†takemura@stat.t.u-tokyo.ac.jp
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∑

iC∈IC

α(iC) = 1,
∑

iS∈IS

α(iS) = 1,

where C is the set of cliques of G and S is the set of minimal vertex separators S with mul-
tiplicities ν(S) in any perfect sequence. x(i) are supposed to be independent with respect to
i ∈ I. We note that the above definition includes the case where G is disconnected. For the
disconnected G, we suppose that ∅ ∈ S and that ν(∅) = νG − 1, where νG is the number of
connected components of G.

In this article we assume that G is chordal but not complete and address the problem of
the simultaneous estimation of λ = {λ(i)}i∈I from the decision theoretic viewpoint under the
following normalized squared error loss function

L(λ, λ̂) =
∑

i∈I

1

λ(i)
(λ(i) − λ̂(i))2. (2)

We derive the estimators which dominate the MLE under the loss (2).
When G is complete, the model (1) corresponds to the saturated model. A series of results

on the shrinkage estimation of multivariate Poisson means which were inspired by Clevenson
and Zidek[5] correspond to this setting. In the saturated model x = {x(i)}i∈I is the maximum
likelihood, the uniformly minimum variance unbiased and a minimax estimator. Clevenson
and Zidek[5] presented a class of Bayes estimators improving on x for |I| ≥ 2. Their class
includes both proper and generalized Bayes estimators. Ghosh and Parsian[7] enlarged the
class of Clevenson and Zidek[7] and presented another class of proper Bayes estimators. Brown
and Farrel[2] and Johnstone[14] provided some complete class theorems for generalized Bayes
estimators of λ in the saturated model. Brown and Hwang[3] first showed that the generalized
Bayes estimators in the class of Clevenson and Zidek[5] are admissible. Johnstone[14] proved
the admissibility of a wider class of specific estimators which includes the class of Clevenson
and Zidek[5]. Other important results on the simultaneous estimation in the saturated model
may be found, for example, in Chou[4], Ghosh and Yang[8] Hwang[12], Ghosh, Hwang and
Tsui[6], Tsui[18], Tsui and Press[19] etc.

The model (1) with S = {∅} and C = {{1}, . . . , {J}} is called Poisson multiplicative model.
Recently Hara and Takemura[9] applied the argument in the saturated model to the Poisson
multiplicative models and presented two classes of estimators which improves on the MLE. One
is the class of Bayes estimator which is the extension of the one in Clevenson and Zidek[5]. The
other corresponds to the class of Chou[4]. Hara and Takemura[10] showed that the results with
respect to the Chou-type estimators in Hara and Takemura[9] can be extended to the general
decomposable model (1) and provided some classes of estimators which dominate the MLE.

The main purpose in this article is to extend the results on the Bayes estimation in Ghosh
and Parsian[7] and Clevenson and Zidek[5] and Hara and Takemura[9] to the general Poisson
decomposable models (1) and provide some classes of Bayes admissible estimators improving
on the MLE under the loss function (2).

The paper is organized as follows. In Section 2 we summarize some basic facts on Poisson
decomposable graphical models and decomposable graphs and prepare some lemmas which
we utilize in the following arguments. In Section 3 we introduce two types of priors and the
corresponding Bayes estimators which we discuss in this article. Section 4 provides some class of
improved Bayes estimators for the model with only one minimal vertex separator. In Section 5
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we extend the results obtained in Section 4 to the general decomposable graphical models. The
proposed class of improved estimators includes both proper Bayes and generalized Bayes with
respect to improper priors. In Section 6 we show that some of the generalized Bayes estimators
proposed in Section 4 and 5 are admissible by extending the argument of Johnstone[14]. Section
7 gives Monte Carlo studies which confirm the theoretical results of the dominance relationship.

2 Preliminary facts of the Poisson decomposable graph-

ical models and the decomposable graph

2.1 Poisson decomposable models and the MLE of the means

In this section we first define some notations which we use in the following arguments. Mostly
we follow the notations of Lauritzen[16] and Hara and Takemura[10].

As is mentioned in the previous section, we assume that the conditional independence graph
G is chordal and not complete. For a subset of vertices V ⊂ ∆ let G(V ) denote the subgraph
induced by V . C(V ) and S(V ) represent the set of the cliques and the set of the minimal vertex
separators in G(V ), respectively. Define IV for V ⊂ ∆ as IV =

∏
δ∈V Iδ and I{∅} ≡ 1. For a set

of cliques C∗ ⊂ C, define ∆(C∗) ⊂ ∆ by ∆(C∗) =
⋃

C∈C∗ C.
Suppose |C| = K. Let C1, C2, . . . , CK denote a perfect sequence of the cliques in G. We write

Hk = C1 ∪ · · · ∪ Ck, k = 1, . . . , K and Sk = Hk−1 ∩ Ck, k = 2, . . . , K. Then S = {S2, . . . , SK},
where each S ∈ S is repeated ν(S) times. For any Sk there exists k′ < k such that Sk ⊂ Ck′ .
This condition is known as the running intersection property of the perfect sequence. Define
S1 = H0 = S2. It is easy to show that Rk = Ck \ Hk−1 = Ck \ Sk 6= ∅ for k = 1, . . . , K. Then
the model (1) is rewritten by

λ(i) = λα(iS1)
K∏

k=1

β(iCk
), β(iCk

) =
α(iCk

)

α(iSk
)
, (3)

∑

iS1
∈IS1

α(iS1) = 1,
∑

jCk
:jSk

=iSk

β(jCk
) =

∑

jRk
∈IRk

β(iSk
, jRk

) = 1, ∀iSk
∈ ISk

, k = 1, . . . , K.

For our discussion in Section 5, we briefly consider variables with just 1 level. Let ∆1 ⊂ ∆ be
the set of all vertices such that Iδ = 1, δ ∈ ∆. If ∆1 6= ∅, the model (3) is essentially equivalent
to the decomposable model for G(∆ \ ∆1). We note that if we assume Iδ ≥ 1, the definition
(3) includes the model for all of the induced subgraphs of G. For avoiding triviality, we assume
Iδ ≥ 2 for all δ ∈ ∆, i.e. ∆1 = ∅ unless otherwise noted.

For V ⊂ ∆, let x(iV ) denote the marginal frequency. Then xC = {x(iC), iC ∈ IC , C ∈ C} is
the complete sufficient statistic for this model. The dimension of xC is

∑
C∈C IC . xC contains

some obvious redundant elements to be minimal sufficient, but it is notationally convenient to
use xC. Following Sundberg[17] and Lauritzen[16], the marginal probability function of xC is
expressed by

Pr(xC) = e−λλx+ · t(xC) ·
∏

iS1
∈IS1

α(iS1)
x(iS1

) ·
K∏

k=1

∏

iCk
∈ICk

β(iCk
)x(iCk

), (4)
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where

t(xC) =

∏K
k=2

∏
iSk

∈ISk
x(iSk

)!
∏K

k=1

∏
iCk

∈ICk
x(iCk

)!

and the MLE of λ is given by

λ̂ML = {λ̂ML(i)}i∈I ,

λ̂ML(i) =





∏K
k=1 x(iCk

)∏K
k=2 x(iSk

)
, if x(iSk

) 6= 0 for k = 2, . . . , K,

0, otherwise.

(5)

The following identity obtained by Hara and Takemura[10] which is an extension of the one by
Hudson[11] and Hwang[12] is useful when we evaluate the estimators in the following argument.

Lemma 2.1 (Hara and Takemura[10]). Suppose that xC has the probability function (4).
For a real valued function g if E|g(xC)| < ∞ and g(xC) = 0 whenever there exists C ∈ C and
iC ∈ IC such that x(iC) < 1, then

E

[
g(xC)

λ(i)

]
= E

[
t(xC + ei

C)

t(xC)
· g(xC + ei

C)

]
= E

[∏K
k=2(x(iSk

) + 1)∏K
k=1(x(iCk

) + 1)
· g(xC + ei

C)

]
, (6)

where ei
C = {ei(jC), jC ∈ IC , C ∈ C} is the

∑
C∈C IC-dimensional vector such that

ei(jC) =

{
1, for jC = iC ,
0, otherwise

for all jC ∈ IC, C ∈ C.

2.2 Some preparations on decomposable graphs

In this section we prepare a proposition on decomposable graphs needed later.
For a minimal vertex separator S ∈ S, let CS = {C ∈ C | C ⊃ S} denote the set of cliques

which includes S. From Proposition 2.1 in Hara and Takemura[10], S decomposes G(∆(CS))
into ν(S) + 1 connected components. Denote them by ΓS

1 , ΓS
2 , . . . , ΓS

ν(S)+1. Let C(S,G) be the

class of ν(S) + 1 cliques in CS such that

C(S,G) =
{{

C(1), . . . , C(ν(S)+1)

}
| C(1) ∈ C(ΓS

1 ∪ S), . . . , C(ν(S)+1) ∈ C(ΓS
ν(S)+1 ∪ S)

}
.

Then we have the following proposition.

Proposition 2.1. For any C̃S ∈ C(S,G), there exists a perfect sequence of cliques in G such
that the first ν(S) + 1 elements of the sequence are C̃S.

We use the following lemma in order to prove Proposition 2.1.
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Lemma 2.2. Let δ be a simplicial vertex in G and Cδ be the clique which includes δ. Suppose
|C| = K. Then |C(∆ \ δ)| = K − 1 if and only if there exists a clique C ′ ∈ C \ {Cδ} such that
C ′ ⊃ (Cδ \ δ).

Proof. From Lemma A.1 in Hara and Takemura[10], we note that Cδ is unique in C. Sup-
pose that |C(∆ \ δ)| = K − 1. From the fact that ∆ \ {δ} ⊇ ∆(C \ {Cδ}), it follows that
C(∆ \ δ) = C \ {Cδ}. Hence

Cδ \ δ =
⋃

C∈C\{Cδ}

C ∩ Cδ.

G(Cδ \ δ) is complete. Thus from the maximality of cliques there exists C ′ ∈ C \{Cδ} such that
C ′ ⊃ Cδ \ δ.

If we suppose that there exists C ′ ∈ C\{Cδ} such that C ′ ⊃ Cδ\δ, then C(∆\{δ}) = C\{Cδ}.
Hence |C(∆ \ {δ})| = |C \ {Cδ}| = K − 1. Then we can complete the proof.

Proof of Proposition 2.1. We prove this lemma by induction on the number of vertices
J = |∆|. For J ≤ 3 the statement is trivial. Suppose then J > 4 and assume that the lemma
holds up to J .

Suppose that G has J + 1 vertices and that |C| = K. If G(∆(C̃S)) = G, the lemma is
obvious. Thus we assume that G(∆(C̃S)) 6= G. From Lemma B.1 in Hara and Takemura[10], if
G(∆(C̃S)) 6= G, ∆\∆(C̃S) includes at least one simplicial vertex in G. Denote it by δ ∈ ∆\∆(C̃S).
From Lemma A.1 in Hara and Takemura[9], δ must be a member of exactly one clique in
C \ C(∆(C̃S)), say Cδ. We note that C(∆ \ δ) satisfies

C(∆ \ δ) = C \ {Cδ} or C(∆ \ δ) = (C \ {Cδ}) ∪ {Cδ \ δ}.

We first consider the case C(∆ \ δ) = C \ {Cδ}. The inductive assumption implies that there
exists a perfect sequence of the cliques of G(∆ \ δ) such that the first ν(S) + 1 elements of the
sequence are C̃S. Denote it by C1, . . . , CK−1. From Lemma 2.2 C1, . . . , CK−1, Cδ satisfies the
running intersection property and thus it is perfect.

Next we consider the case where C(∆ \ δ) = (C \ {Cδ}) ∪ {Cδ \ δ}. The inductive assump-
tion implies that the cliques in G(∆(C \ {Cδ})) admit a perfect sequence C1, . . . , CK with
{C1, . . . , Cν(S)+1} = C̃S. There exists a clique Ck, ν(S) + 1 < k ≤ K such that Ck = Cδ \ δ. If
we replace Ck with Cδ, we can obtain a perfect sequence of the cliques in G with the desired
property.

3 Bayes estimators of the means in the decomposable

models

3.1 Bayes estimators in the saturated model

In this section we first summarize briefly the Bayes estimation in the saturated model. The
saturated model can be expressed as follows,

x(i) ∼ Po(λ(i)), λ(i) = λα(i), i = 1, . . . , I,
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∑I
i=1 α(i) = 1, α(i) ≥ 0.

We write α = (α(1), . . . , α(I))′. Clevenson and Zidek[5] and Ghosh and Parsian[7] introduced
the class of priors as follows,

π(λ, α)dλdα = m(λ)dλdα,

where

m(λ) =

∫ ∞

0

tIλI−1 exp(−tλ)η(t)dt

and dα denotes the uniform probability measure on the simplex {α |
∑I

i=1 α(i) = 1, α(i) ≥ 0}.
The resulting Bayes estimator for the loss (2) is expressed by

λ̂ =





Ψ(x+) · x

x+ + I − 1
, for x+ > 0

0, for x+ = 0

(7)

where x+ =
∑I

i=1 x(i) and Ψ(·) is defined on x > 0 as

Ψ(x) =

∫ ∞
0

exp(−λ)λxm(λ)dλ∫ ∞
0

exp(−λ)λx−1m(λ)dλ
. (8)

We note that Ψ(x+) is the Bayes estimator of λ with respect to the prior m(λ). Clevenson and
Zidek[5] and Ghosh and Parsian[7] derived conditions on η(·) to dominate x under the loss (2).
They also introduced a convenient explicit form of η(·) like

η(t) ∝ tα−1(1 + t)−(α+β). (9)

Ψ(·) for this estimator is

Ψ(x) =
x+ + β − 1

x+ + α + β + I − 1
· (x+ + I − 1).

Clevenson and Zidek[5] considered the estimator with −1 ≤ α and β = 1. Then η(·) and
Ψ(·) are expressed by

η(t) = tα−1(1 + t)−(α+1), Ψ(x) =
x

x + α + I
· (x + I − 1).

They showed that this class with α ≤ I − 2 and β = 1 dominates x. The prior is proper for
α > 0 but improper for −1 ≤ α ≤ 0. Brown and Hwang[3] showed that the estimators with
−1 ≤ α ≤ 0 are also admissible.

Ghosh and Parsian[7] enlarged the class of Clevenson and Zidek[5] and showed that the
estimator with 0 < α ≤ I − 2 and β > 0 is proper Bayes and dominates x. Johnstone[14]
showed that the prior with −1 < α ≤ 0 and β > 0 is improper but the resulting estimator
improves on x.
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3.2 Bayes estimators in the decomposable model

In this section we generalize the argument on the Bayes estimation in the saturated model
to decomposable models and introduce two types of prior measures and the corresponding
Bayes estimators. Let dα(S1) and dβ(iSk

) denote the uniform probability measure on the
simplex {α(iS1), iS1 ∈ IS1} and {β(i′Ck

), i′Ck
∈ ICk

, i′Sk
= iSk

}, respectively. Define λ(iS1) as
λ(iS1) = λα(iS1). Then the prior measures which we consider in this article are expressed as
the following form,

π(λ, α(S1),β)dλdα(S1)dβ = m(λ)dλdα(S1) ·
K∏

k=1

∏

iSk
∈ISk

dβ(iSk
), (10)

πS1(λ(S1),β)dλ(S1)dβ =
∏

iS1
∈IS1

m(λ(iS1))dλ(iS1) ·
K∏

k=1

∏

iSk
∈ISk

dβ(iSk
), (11)

where
λ(S1) = {λ(iS1), iS1 ∈ IS1}, dβ = {dβ(iSk

), iSk
∈ ISk

, k = 1, . . . , K},

m(λ) =

∫ ∞

0

tµλµ−1 exp(−tλ)η(t)dt, µ > 0. (12)

In the saturated model µ = I, which is the degrees of freedom of the model. Here we take µ
to be a positive constant. Denote the corresponding Bayes estimators with respect to the prior
measure (10) and (11) by λ̂(π) = {λ̂(i, π)} and λ̂(πS1) = {λ̂(i, πS1)}, respectively. Then λ̂(i, π)
and λ̂(i, πS1) are obtained by minimizing the posterior expected loss as follows,

λ̂(i, π) = λ̂ML(i) · Ψ(x+)

x+ + IS1 − 1
·

K∏

k=1

x(iSk
)

x(iSk
) + IRk

− 1
, (13)

λ̂(i, πS1) = λ̂ML(i) · Ψ(x(iS1))

x(iS1)

K∏

k=1

x(iSk
)

x(iSk
) + IRk

− 1
, (14)

where x+ = x(i∅) =
∑

i∈I x(i) and Ψ(x) is defined in (8) with m(·) in (12) for x > 0 and we

define Ψ(0) ≡ 0. In Section 4 and Section 5 we derive conditions on η(·) for λ̂(π) and λ̂(πS1)
to improve on λ̂ML.

We consider the explicit form of η(·) in (9) also for decomposable models. Now we assume
that α+µ > 0 and β > 0. Denote the corresponding Bayes estimators by λ̂α,β(π) and λ̂α,β(πS1),
respectively. Then Ψ(·) for λ̂α,β(π) and λ̂α,β(πS1) is expressed by

Ψα,β(x) =





x + β − 1

x + α + β + µ − 1
· (x + µ − 1), for x > 0

0, for x = 0.

When α > 0 and β > 0, the estimators correspond to the one by Ghosh and Parsian[7].
Denote the estimators by λ̂GP (π) and λ̂GP (πS1). In this case the priors are proper. Hence
λ̂GP (π) and λ̂GP (πS1) are admissible.
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When α ≥ −1 and β = 1, the estimators correspond to the one by Clevenson and Zidek[5].
Denote the estimators by λ̂CZ(π) and λ̂CZ(πS1). Then Ψ(·) for λ̂CZ(π) and λ̂CZ(πS1) is ex-
pressed by

Ψ(x) =
x

x + α + µ
· (x + µ − 1).

The priors are proper for α > 0. Thus λ̂CZ(π) and λ̂CZ(πS1) are admissible. However the
priors become improper for −1 ≤ α ≤ 0.

We also consider the estimator with β = −α and γ = −(α + 1). Then m(·) and Ψ(·) are

m(λ) = λγ, Ψ(x) = x + γ,

respectively. In this case the priors become improper. Denote the resulting Bayes estimators
by λ̂γ(π) and λ̂γ(πS1).

In the saturated model the generalized Bayes estimator (7) with β = −α and γ = −(α + 1)
belongs to the class of estimators improving on x derived by Clevenson and Zidek[5] when
−1 < γ < I − 1. Following Johnstone[14], the estimator is admissible when −1 < γ ≤ 0. This
class of priors is a subclass of the one discussed in Komaki[15] for the setting of simultaneous
prediction. He showed that the Bayesian predictive distribution with respect to this prior with
−1 < γ ≤ 0 is admissible and dominates the one with respect to the Jeffreys prior under the
Kullback-Leibler loss.

In the following sections sufficient conditions on α, β, γ and µ are presented for λGP , λCZ

and λγ to improve on λML.

4 Improved Bayes estimation of the Means in the de-

composable models with one minimal vertex separa-

tor

In the following sections we derive some sufficient conditions on the class of estimators intro-
duced in the previous section to dominate λML. In this section we assume that the model has
only one minimal vertex separator S1. In the next section we extend the results obtained here
to the general Poisson decomposable graphical models (3).

The model (3) with one minimal vertex separator S1 is rewritten by

x(i) ∼ Po(λ(i)), λ(i) = λα(iS1)

ν(S1)+1∏

k=1

β(iCk
), β(iCk

) =
α(iCk

)

α(iS1)
, (15)

and λ̂ML(i) in (5), λ̂(i, π) in (13) and λ̂(i, πS1) in (14) for the model (15) are rewritten by

λ̂ML(i) =

∏ν(S1)+1
k=1 x(iCk

)

x(iS1)
ν(S1)

,

λ̂(i, π) = λ̂ML(i) · Ψ(x+)

x+ + IS1 − 1

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1

,

8



λ̂(i, πS1) = λ̂ML(i) · Ψ(x(iS1))

x(iS1)

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1

,

respectively.
We first derive the condition on λ̂(π) to improve on λ̂ML. By using the identity (6), we can

obtain the UMVUE of the difference of the risks between λ̂ML and λ̂(π). By evaluating it, we
can obtain the following results.

Theorem 4.1. Suppose that Ψ(·) satisfies

0 ≤ Ψ(x+ + 1) · (x+ + IS1)
ν(S1)

∏ν(S1)+1
k=1 (x+ + IS1IRk

)
≤ 1, (16)

x(iS1)


1 − Ψ(x+)

x+ + IS1 − 1
·

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1




≤ (x(iS1) + 1)


1 − Ψ(x+ + 1)

x+ + IS1

·
ν(S1)+1∏

k=1

x(iS1) + 1

x(iS1) + IRk


 (17)

and that η(·) satisfies

(i) limt→∞ t1+εη(t) < ∞ for some ε > 0;

(ii) η(t) is differentiable on t > 0;

(iii) supt>0 tη′(t)/η(t) ≤
∑ν(S1)+1

k=1 IS1(IRk
− 1) − (IS1 + 1);

Then λ̂(π) improves on λ̂ML under the loss (2).

We use the following lemma to prove the theorem.

Lemma 4.1. Let ak, k = 1, . . . , K be positive constants. Define g1(y) and g2(y) by

g1(y) =

∏K
k=1(y + ak)

yK−1
, g2(y) =

yK+1

∏K
k=1(y + ak)

,

respectively. Then g1(y) and g2(y) are convex on y > 0.

Proof. g1(y) can be rewritten by

g1(y) = y + b0 +
K−1∑

k=1

bk

yk
, bk > 0, k = 1, . . . , K.

Hence
d2g1(y)

dy2
=

K−1∑

k=1

k(k + 1)bk

yk+2
> 0.

for y > 0. Thus g1(y) is convex on y > 0.

9



dg2(y)/dy is

dg2(y)

dy
=

yK

∏K
k=1(y + ak)

(
1 +

K∑

k=1

ak

y + ak

)
.

Hence we have

d2g2(y)

dy2
=

yK−1

∏K
k=1(y + ak)





K∑

k=1

a2
k

(y + ak)2
+

(
K∑

k=1

ak

y + ak

)2


 > 0

for y > 0. Thus g2(y) is also convex on y > 0.

Proof of Theorem 4.1. By using the identity (6), the difference between two risk func-
tions of λ̂ML and λ̂(π) is expressed by

R(λ, λ̂ML) − R(λ, λ̂(π))

= E[L(λ, λ̂ML) − L(λ, λ̂(π))]

=
∑

i∈I

E

[
1

λ(i)

{
(λ̂ML(i) − λ(i))2 − (λ̂(i, π) − λ(i))2

}]

=
∑

i∈I

E


2λ̂ML(i)

λ(i)


1 − Ψ(x+)

x+ + IS1 − 1

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1




(
λ̂ML(i) − λ(i)

)

− 1

λ(i)



λ̂ML(i)


1 − Ψ(x+)

x+ + IS1 − 1

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1








2


=
∑

i∈I

E


2

∏ν(S1)+1
k=1 (x(iCk

) + 1)

(x(iS1) + 1)ν(S1)


1 − Ψ(x+ + 1)

x+ + IS1

ν(S1)+1∏

k=1

x(iS1) + 1

x(iS1) + IRk




−2
∏ν(S1)+1

k=1 x(iCk
)

x(iS1)
ν(S1)


1 − Ψ(x+)

x+ + IS1 − 1

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1




−
∏ν(S1)+1

k=1 (x(iCk
) + 1)

(x(iS1) + 1)ν(S1)


1 − Ψ(x+ + 1)

x+ + IS1

ν(S1)+1∏

k=1

x(iS1) + 1

x(iS1) + IRk




2


=
∑

iS1
∈IS1

E

[∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)
−

(
Ψ(x+ + 1)

x+ + IS1

)2
(x(iS1) + 1)ν(S1)+2

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

−2x(iS1)


1 − Ψ(x+)

x+ + IS1 − 1

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1





 .(18)

10



This implies that

R̂d(λ̂(π))

=
∑

iS1
∈IS1

{∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)
−

(
Ψ(x+ + 1)

x+ + IS1

)2
(x(iS1) + 1)ν(S1)+2

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

−2x(iS1)


1 − Ψ(x+)

x+ + IS1 − 1

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1






 (19)

is the UMVUE of R(λ, λ̂ML) − R(λ, λ̂(π)).
From Lemma 4.1 with y = x(iS1) + 1, ak = IRk

and K = ν(S1) + 1 both

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)
and

(x(iS1) + 1)ν(S1)+2

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

are convex on x(iS1). Thus from Jensen’s inequality

∑

iS1
∈IS1

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)
≥

∏ν(S1)+1
k=1 (x+ + IS1IRk

)

(x+ + IS1)
ν(S1)

, (20)

∑

iS1
∈IS1

(x(iS1) + 1)ν(S1)+2

∏ν(S1)+1
k=1 (x(iS1) + IRk

)
≥ (x+ + IS1)

ν(S1)+2

∏ν(S1)+1
k=1 (x+ + IS1IRk

)
. (21)

Hence we have from (17), (20) and (21)

Rd(λ̂(π)) ≥
∏ν(S1)+1

k=1 (x+ + IS1IRk
)

(x+ + IS1)
ν(S1)

− 2(x+ + IS1)

+
(x+ + IS1)

ν(S1)+2

∏ν(S1)+1
k=1 (x+ + IS1IRk

)
· Ψ(x+ + 1)

x+ + IS1

·
(

2 − Ψ(x+ + 1)

x+ + IS1

)

=

(∏ν(S1)+1
k=1 (x+ + IS1IRk

)

(x+ + IS1)
ν(S1)

− Ψ(x+ + 1)

)

×

{
1 − (x+ + IS1)

ν(S1)+1

∏ν(S1)+1
k=1 (x+ + IS1IRk

)

(
2 − Ψ(x+ + 1)

x+ + IS1

)}
. (22)

From (8) and the assumptions (i), (ii) and (iii) of the theorem

Ψ(x+ + 1)

x+ + µ
=

∫ ∞
0

(1 + t)−(x++µ+1)tµη(t)dt∫ ∞
0

(1 + t)−(x++µ)tµη(t)dt

=
x+ − 1

x+ + µ
−

∫ ∞
0

(tη′(t)/η(t))(1 + t)−(x++µ)tµη(t)dt∫ ∞
0

(1 + t)−(x++µ)tµη(t)dt
· 1

x+ + µ

≥ x+ − 1

x+ + µ
−

∑ν(S1)+1
k=1 IS1(IRk

− 1) − (IS1 + 1)

x+ + µ
.
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Hence we have

2 − Ψ(x+ + 1)

x+ + IS1

≤ 2 − x+ − 1

x+ + IS1

+

∑ν(S1)+1
k=1 IS1(IRk

− 1) − (IS1 + 1)

x+ + IS1

=
1

x+ + IS1


x+ + IS1 +

ν(S1)+1∑

k=1

IS1(IRk
− 1)




≤
∏ν(S1)+1

k=1 (x+ + IS1IRk
)

(x+ + IS1)
ν(S1)+1

. (23)

From (16) and (23) the right hand side of (22) is always nonnegative. Then we can complete
the proof.

By utilizing Theorem 4.1, we can derive the condition on α, β and µ of λ̂α,β(π) to improve
on λ̂ML. We use the following lemma to derive the conditions.

Lemma 4.2. Let ψ(y) be a nondecreasing function such that ψ(y) ≥ 0 and y(1 − ψ(y)) is
nondecreasing on y ≥ 1. Suppose that ak ≥ bk ≥ 0, k = 1, . . . , K and define φk(y), k =
0, 1, . . . , K as

φ0(y) = y(1 − ψ(y)), φk(y) = y

(
1 − ψ(y)

k∏

j=1

y + bj

y + aj

)
for k = 1, . . . , K.

Then φk(y) is nondecreasing on y ≥ 1.

Proof. We prove this lemma by induction on k. When k = 0, the lemma is obvious.
Suppose k > 0 and assume that the lemma holds up to k. Then

φk+1(y) = y

(
1 − ψ(y)

k∏

j=1

y + bj

y + aj

)
+ ψ(y)

k∏

j=1

y + bj

y + aj

· (ak+1 − bk+1)y

y + ak+1

From the inductive assumption the first term is nondecreasing. The second term is obviously
nondecreasing. Thus the proof is completed.

Define ψα,β(x) on x ≥ 1 by

ψα,β(x) ≡ Ψα,β(x)

x + IS1 − 1
=

x + β − 1

x + α + β + µ − 1
· x + µ − 1

x + IS1 − 1
.

Since Ψα,β(0) is defined to be 0 and x+ = 0 implies x(iS1) = 0, if ψα,β(x+) is nondecreasing and
0 ≤ ψα,β(x+) ≤ 1 on x+ ≥ 1, then (16) and (17) with Ψ(·) = Ψα,β(·) are satisfied from Lemma
4.2.

η(t) for λ̂α,β(π) is (9). Since α − 1 < α + β, the conditions (i) and (ii) of Theorem 4.1 are
satisfied. h(t) = tη′(t)/η(t) is expressed by

h(t) = α − 1 − t

1 + t
(α + β).
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Thus supt>0 h(t) is

sup
t>0

h(t) =

{
α − 1, if α + β ≥ 0,
−β − 1, if α + β < 0.

If α + β ≥ 0, the condition (iii) is rewritten by α ≤
∑ν(S1)+1

k=1 IS1(IRk
− 1) − IS1 . Since β is

assumed to be positive, the condition (iii) is always satisfied when α + β < 0. Noting that
α + β < 0 implies α < 0, we can obtain the following results.

Corollary 4.1. If α, β and µ satisfy

(i) ψα,β(x) is nondecreasing on x ≥ 1,

(ii) 0 ≤ ψα,β(x) ≤ 1 for x ≥ 1,

(iii)

α ≤
ν(S1)+1∑

k=1

IS1(IRk
− 1) − IS1 , (24)

then λ̂α,β(π) improves on λ̂ML under the loss (2). If α > 0, λ̂α,β(π) is admissible.

Remark 4.1. By using Corollary 4.1, we can derive conditions on λ̂GP (π), λ̂CZ(π) and λ̂γ(π) to
improve on λ̂ML. With respect to λ̂GP (π), both of α and β are positive. Hence min(β, µ) ≤ IS1

and (24) is a sufficient condition on λ̂GP (π) to satisfy the conditions of Corollary 4.1 and then
λ̂GP (π) improves on λ̂ML. Since α ≥ −1 and β = 1 for λ̂CZ(π), (i) and (ii) of Corollary 4.1 are
always satisfied. Then if (24) holds, λ̂CZ(π) improves on λ̂ML. α + β = 0 and γ = −(α + 1)
for λ̂γ(π). Hence if −1 < γ ≤ IS1 − 1, the conditions of Corollary 4.1 hold and then λ̂γ(π)
improves on λ̂ML.

Next we derive the condition on λ̂(πS1) to improve on λ̂ML. In the similar way to Theorem
4.1 we can obtain the following results.

Theorem 4.2. Suppose that Ψ(·) satisfies

0 ≤ Ψ(x(iS1) + 1) · (x(iS1) + 1)ν(S1)

∏ν(S1)+1
k=1 (x(iS1) + IRk

)
≤ 1, (25)

x(iS1)


1 − Ψ(x(iS1))

x(iS1)
·

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1




≤ (x(iS1) + 1)


1 − Ψ(x(iS1) + 1)

x(iS1) + 1
·

ν(S1)+1∏

k=1

x(iS1) + 1

x(iS1) + IRk


 (26)

and that η(·) satisfies

(i) limt→∞ t1+εη(t) < ∞ for some ε > 0;

(ii) η(t) is differentiable on t > 0;
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(iii) supt>0 tη′(t)/η(t) ≤
∑ν(S1)+1

k=1 (IRk
− 1) − 2;

Then λ̂(πS1) improves on λ̂ML under the loss (2).

Proof. By using the similar argument to the proof of Theorem 4.1, the UMVUE of the
difference of the risks between λ̂ML and λ̂(πS1) is expressed by

R̂d(λ̂(πS1))

=
∑

iS1
∈IS1

{∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)
− Ψ2(x(iS1) + 1) · (x(iS1) + 1)ν(S1)

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

− 2x(iS1)


1 − Ψ(x(iS1))

x(iS1)

ν(S1)+1∏

k=1

x(iS1)

x(iS1) + IRk
− 1








≥
∑

iS1
∈IS1

{∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)

− Ψ2(x(iS1) + 1) · (x(iS1) + 1)ν(S1)

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

− 2(x(iS1) + 1)


1 − Ψ(x(iS1) + 1)

x(iS1) + 1

ν(S1)+1∏

k=1

(x(iS1) + 1)

x(iS1) + IRk








=
∑

iS1
∈IS1

(∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(x(iS1) + 1)ν(S1)
− Ψ(x(iS1) + 1)

)

×

{
1 − (x(iS1) + 1)ν(S1)+1

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

(
2 − Ψ(x(iS1) + 1)

x(iS1) + 1

)}
. (27)

The inequality follows from (26). We have in the same way as (23)

2 − Ψ(x(iS1) + 1)

x(iS1) + 1
≤ 2 − x(iS1) − 1

x(iS1) + 1
+

∑ν(S1)+1
k=1 (IRk

− 1) − 2

x(iS1) + 1

=
1

x(iS1) + 1


x(iS1) + 1 +

ν(S1)+1∑

k=1

(IRk
− 1)




≤
∏ν(S1)+1

k=1 (x(iS1) + IRk
)

(x(iS1) + 1)ν(S1)+1
, (28)

From (25) and (28) the right hand side of (27) is always nonnegative under the conditions of
the theorem.

Corresponding to Corollary 4.1, we can also obtain the condition on λ̂α,β(πS1) to improve on
λ̂ML(πS1).
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Corollary 4.2. Suppose that the conditions (25) and (26) with Ψ(·) = Ψα,β(·) hold. If α
satisfies

α ≤
ν(S1)+1∑

k=1

(IRk
− 1) − 1, (29)

λ̂α,β(π) improves on λ̂ML under the loss (2). If α > 0, λ̂α,β(π) is admissible.

Remark 4.2. We can also obtain the improved estimators from the class λ̂GP (πS1), λ̂CZ(πS1)
and λ̂γ(πS1). Define I∗

R as I∗
R = max1≤k≤ν(S1)+1 IRk

. Then min(β, µ) ≤ I∗
R is a sufficient

condition on Ψ(·) for λ̂GP (πS1) to satisfy (25) and (26) from Lemma 4.2. Thus if min(β, µ) ≤ I∗
R

and (29) is satisfied, λ̂GP (πS1) improves on λ̂ML. Since (25) and (26) are always satisfied for
λ̂CZ(πS1), (29) is a sufficient condition on λ̂CZ(πS1) to improve on λ̂ML. In the same way if
−1 < γ ≤ I∗

R − 1, λ̂γ(πS1) improves on λ̂ML.

Remark 4.3. Hara and Takemura[9] considered λ̂CZ(πS1) in the model (15) with |Rk| = 1 and
|S1| = 1 or S1 = ∅ and derived some conditions to improve the MLE. We note that λ(iS1) = λ
when S1 = ∅. The results in Hara and Takemura[9] coincide with the one for λ̂CZ(πS1) in
Remark 4.2.

5 Extension to general decomposable graphical models

In this section we extend the results for the model with one minimal vertex separator (15)
obtained in the previous section to general Poisson decomposable graphical models (3). For
a perfect sequence C1, . . . , CK of the cliques in G and the corresponding minimax vertex sep-
arators S1 ≡ S2, . . . , SK , we can assume from Proposition 2.1 that S1 = · · · = Sν(S1)+1 and
{C1, . . . , Cν(S1)+1} ∈ C(S1,G). We first state a generalization of Theorem 4.1.

Theorem 5.1. If Ψ(·) and η(·) satisfy

Ψ(x+)

x+ + IS1 − 1
≤ Ψ(x+ + 1)

x+ + IS1

for x+ ≥ 1, (30)

0 ≤ Ψ(x+ + 1)

x+ + IS1

·
k∏

j=1

x(iSj
) + 1

x(iSj
) + IRj

≤ 1, (31)

for ν(S1) + 1 ≤ k ≤ K, λ̂(π) improves on λ̂ML under the loss (2).

In order to prove this theorem, we use the following lemma.

Lemma 5.1. For IRk
≥ 1 , k = 1, . . . , K and 0 ≤ c ≤ I∗

R − 1, I∗
R = max1≤k≤ν(S1)+1 IRk

,

(x(iS1) + c)x(iSK
)

(x(iSK
) + IRK

− 1)2
·

K−1∏

k=1

(
x(iCk

)

x(iSk
) + IRk

− 1

)

≤ (x(iS1) + c + 1)(x(iSK
) + 1)

(x(iSK
) + IRK

)2
·

K−1∏

k=1

(
x(iCk

) + 1

x(iSk
) + IRk

)
.
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Proof. From the running intersection property of C1, C2, . . . , CK there exists a sequence of
the indices k1 < · · · < kJ < kJ+1 = K such that

Sk1 = S1, Sk2 6= S1, CkJ
⊃ SK ,

Ckj
⊃ Skj+1

for k = 1, . . . , J − 1.

Define K0, K1 and K2 by

K0 = {k1, . . . , kJ}, K1 = {k | k /∈ J0, k ≤ ν(S1) + 1}, K2 = {k | k /∈ J0, k > ν(S1) + 1}.

Then by shifting the indices in K0

(x(iS1) + c)x(iSK
)

(x(iSK
) + IRK

− 1)2
·

K−1∏

k=1

(
x(iCk

)

x(iSk
) + IRk

− 1

)

=
x(iSK

)

x(iSK
) + IRK

− 1
· x(iS1) + c

x(iS1) + IRk1
− 1

·
J∏

j=1

(
x(iCkj

)

x(iSkj+1
) + IRkj+1

− 1

)

×
∏

k/∈K0

(
x(iCk

)

x(iSk
) + IRk

− 1

)

=
x(iSK

)

x(iSK
) + IRK

− 1
·

(x(iS1) + c)
∏

k∈K1
x(iCk

)
∏ν(S1)+1

k=1 (x(iS1) + IRk
− 1)

×
J∏

j=1

(
x(iCkj

)

x(iSkj+1
) + IRkj+1

− 1

)
·

∏

k∈K2

(
x(iCk

)

x(iSk
) + IRk

− 1

)

Hence for 0 ≤ c ≤ I∗
R − 1,

x(iSK
)

x(iSK
) + IRK

− 1
·

(x(iS1) + c)
∏

k∈K1
x(iCk

)
∏ν(S1)+1

k=1 (x(iS1) + IRk
− 1)

×
J∏

j=1

(
x(iCkj

)

x(iSkj+1
) + IRkj+1

− 1

)
·

∏

k∈K2

(
x(iCk

)

x(iSk
) + IRk

− 1

)

≤ x(iSK
) + 1

x(iSK
) + IRK

·
(x(iS1) + c + 1)

∏
k∈K1

(x(iCk
) + 1)

∏ν(S1)+1
k=1 (x(iS1) + IRk

)

×
J∏

j=1

(
(x(iCkj

) + 1)

x(iSkj+1
) + IRkj+1

)
·

∏

k∈K2

(
x(iCk

) + 1

x(iSk
) + IRk

)

=
(x(iS1) + c + 1)(x(iSK

) + 1)

(x(iSK
) + IRK

)2
·

K−1∏

k=1

(
x(iCk

) + 1

x(iSk
) + IRk

)
,

which completes the proof.

Proof of Theorem 5.1. In the same way as (18) and (19) the UMVUE of the difference
of the risks between λ̂ML and λ̂(π) for the model (3) can be obtained by

R̂d(λ̂(π),G)
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=
∑

i∈I

{
(x(iS1) + 1) ·

K∏

k=1

x(iCk
) + 1

x(iSk
) + 1

− 2x(iS1)
K∏

k=1

x(iCk
)

x(iSk
)

+2x(iS1) ·
Ψ(x+)

x+ + IS1 − 1
·

K∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1

− (x(iS1) + 1) ·
(

Ψ(x+ + 1)

x+ + IS1

)2

·
K∏

k=1

(x(iCk
) + 1)(x(iSk

) + 1)

(x(iSk
) + IRk

)2

}

=
∑

iHK−1
∈IHK−1

{
(x(iS1) + 1) ·

K−1∏

k=1

(x(iCk
) + 1)

(x(iSk
) + 1)

· (x(iSK
) + IRK

)

(x(iSK
) + 1)

−2x(iS1)
K−1∏

k=1

x(iCk
)

x(iSk
)

+
2x(iS1)Ψ(x+)

x+ + IS1 − 1
·

K−1∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1
· x(iSK

)

x(iSK
) + IRK

− 1

−(x(iS1) + 1) ·
(

Ψ(x+ + 1)

x+ + IS1

)2

· x(iSK
) + 1

x(iSK
) + IRK

×
K−1∏

k=1

(x(iCk
) + 1)(x(iSk

) + 1)

(x(iSk
) + IRk

)2

}
.

Differentiating partially R̂d(λ̂(π),G) with respect to IRK
,

∂R̂d(λ̂(π),G)

∂IRK

=
∑

iHK−1
∈IHK−1

{
(x(iS1) + 1)

K−1∏

k=1

(x(iCk
) + 1)

(x(iSk
) + 1)

· 1

(x(iSK
) + 1)

−2x(iS1)Ψ(x+)

x+ + IS1 − 1
·

K−1∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1
· x(iSK

)

(x(iSK
) + IRK

− 1)2

−(x(iS1) + 1) ·
(

Ψ(x+ + 1)

x+ + IS1

)2

· x(iSK
) + 1

(x(iSK
) + IRK

)2

×
K−1∏

k=1

(x(iCk
) + 1)(x(iSk

) + 1)

(x(iSk
) + IRk

)2

}

≥
∑

iHK−1
∈IHK−1

{
(x(iS1) + 1)

K−1∏

k=1

(x(iCk
) + 1)

(x(iSk
) + 1)

· 1

(x(iSK
) + 1)

−2(x(iS1) + 1) · Ψ(x+ + 1)

x+ + IS1

·
K−1∏

k=1

x(iCk
) + 1

x(iSk
) + IRk

· x(iSK
) + 1

(x(iSK
) + IRK

)2
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−(x(iS1) + 1) ·
(

Ψ(x+ + 1)

x+ + IS1

)2

· x(iSK
) + 1

(x(iSK
) + IRK

)2

×
K−1∏

k=1

(x(iCk
) + 1)(x(iSk

) + 1)

(x(iSk
) + IRk

)2

}

=
∑

iHK−1
∈IHK−1

(x(iS1) + 1)
K−1∏

k=1

(x(iCk
) + 1)

(x(iSk
) + 1)

· 1

(x(iSK
) + 1)

×

{
1 − Ψ(x+ + 1)

x+ + IS1

·
K−1∏

k=1

x(iSk
) + 1

x(iSk
) + IRk

×

(
2 − Ψ(x+ + 1)

x+ + IS1

·
K−1∏

k=1

x(iSk
) + 1

x(iSk
) + IRk

) (
x(iSK

) + 1

x(iSK
) + IRK

)2
}

. (32)

The inequality follows from Lemma 5.1 with c = 0 and (30). From (31) with k = K − 1 the
right hand side of (32) is always nonnegative for IRK

≥ 1. Thus R̂d(λ̂(π),G) is nondecreasing
on IRK

≥ 1. Hence we have

R̂d(λ̂(π),G)

≥
∑

iHK−1
∈IHK−1

{
(x(iS1) + 1)

K−1∏

k=1

(x(iCk
) + 1)

(x(iSk
) + 1)

− 2x(iS1) ·
K−1∏

k=1

x(iCk
)

x(iSk
)

+ 2x(iS1) ·
Ψ(x+)

x+ + IS1 − 1
·

K−1∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1

− (x(iS1) + 1) ·
(

Ψ(x+ + 1)

x+ + IS1

)2

·
K−1∏

k=1

(x(iCk
) + 1)(x(iSk

) + 1)

(x(iSk
) + IRk

)2

}

= R̂d(λ̂(π),G(HK−1)). (33)

We note that the right hand side of (33) is equal to R̂d(λ̂(π),G) with IRK
= 1, which corresponds

to the induced subgraph G(HK−1). By iterating this procedure we obtain

R̂d(λ̂(π),G) ≥ R̂d(λ̂(π),G(HK−1)) ≥ · · · ≥ R̂d(λ̂(π),G(Hν(S1)+1)).

From Lemma 4.2, (30) and (31) with k = ν(S1) + 1 imply (16) and (17). Hence

R̂d(λ̂(π),G(Hν(S1)+1)) ≥ 0

under the condition of the theorem. Then we can complete the proof.

In the same way we can obtain the following result corresponding to Theorem 4.2.

Theorem 5.2. If Ψ(·) satisfies the condition of Theorem 4.2 and

Ψ(x)

x + I∗
R − 1

≤ Ψ(x + 1)

x + I∗
R

, (34)
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0 ≤ Ψ(x(iS1) + 1)

x(iS1) + 1
·

k∏

j=1

x(iSj
) + 1

x(iSj
) + IRj

≤ 1,

for ν(S1) + 1 ≤ k ≤ K, λ̂(πS1) improves on λ̂ML under the loss (2).

Theorem 5.1 and 5.2 suggest that the dominance relationship between the proposed Bayes
estimators and the MLE for general decomposable models can be reduced to the one in the
model with one minimal vertex separator discussed in the previous section. Then we can obtain
the following results corresponding to Corollary 4.1 and 4.2.

Corollary 5.1. If α, β and µ satisfy the conditions in Corollary 4.1, λ̂α,β(π) improves on λ̂ML

under the loss (2). If α > 0, λ̂α,β(π) is admissible.

Corollary 5.2. If α, β and µ satisfy the conditions in Corollary 4.2 and (34), λ̂α,β(πS1)
improves on λ̂ML under the loss (2). If α > 0, λ̂α,β(πS1) is admissible.

Remark 5.1. The sufficient conditions on λ̂GP (π), λ̂GP (πS1), λ̂CZ(π), λ̂CZ(πS1), λ̂γ(π) and
λ̂γ(πS1) obtained in Remark 4.1 and 4.2 are applicable for general decomposable models without
any change.

6 Admissibility of the generalized Bayes estimators

In this section we discuss the admissibility of λ̂(π) with respect to improper priors. Johnstone[14]
showed that the admissibility of the estimators of λ in the saturated model can be reduced
to the admissibility of one dimensional parameter λ. Here we generalize the argument to the
decomposable graphical models and obtain a sufficient condition for the admissibility of λ̂(π).

Let πn(λ, α(S1),β) be a sequence of proper priors of form (10) with m(·) = mn(·) and denote
the resulting Bayes estimator and Ψ(·) with m(·) = mn(·) by λ̂(πn) and Ψn(·), respectively.
We write the Bayes risk of λ̂(π) with respect to πn as B(λ̂(π), πn). Following Blyth[1], λ̂(π) is
admissible if

lim
n→∞

(
B(λ̂(π), πn) − B(λ̂(πn), πn)

)
= 0

for some sequence of proper priors πn.
We note that Ψn(x+) is the Bayes estimator of λ with respect to the prior mn(λ) for the loss

function L(λ, λ̂) = (λ̂ − λ)2/λ. Define Mn(x) by

Mn(x) =

∫ ∞

0

exp(−λ)λxmn(λ)dλ.

The following result is a generalization of Theorem 4.1 in Johnstone[14]

Theorem 6.1. If Ψ(x+) is admissible as an estimator of λ in the one-dimensional problem
under the loss function L(λ, λ̂) = (λ̂ − λ)2/λ, λ̂(π) is also admissible.
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Proof. Following Johnstone[13], the difference of the Bayes risks between Ψ(x+) and Ψn(x+)
with respect to the prior mn(λ) is written by

B(Ψ(x+), πn(λ)) − B(Ψn(x+), πn(λ))

=

∫ (
R(λ, Ψ(x+)) − R(λ, Ψn(x+))

)
πn(λ)dλ

=
∑

x+≥1

(Ψ(x+) − Ψn(x+))2 · Mn(x+ − 1)

x+!
.

Define xC(i) be xC(i) = {x(iCk
), k = 1, . . . , K}. Let xC(i) ≥ 1 denote that x(iCk

) ≥ 1,

∀k = 1, . . . , K. Noting that λ̂(i, π) = λ̂(i, πn) = 0 if x(iCk
) = 0 for some k, the difference of the

Bayes risks between λ̂(π) and λ̂(πn) with respect to the prior πn is

B(λ̂(π), πn) − B(λ̂(πn), πn)

=

∫ (
R(λ, λ̂(π)) − R(λ, λ̂(πn))

)
πn(λ, α(S1), β)dλdα(S1)dβ

=

∫ ∑

i∈I

∑

xC :xC(i)≥1





Ψ2(x+) − Ψ2
n(x+)

λ(i)

(
x(iS1)

x+ + IS1 − 1

K∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1

)2

−2
(
Ψ(x+) − Ψn(x+)

) x(iS1)

x+ + IS1 − 1

K∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1

}

× Pr(xC)mn(λ)dλdα(S1)dβ

=
∑

i∈I

∑

xC :xC(i)≥1

{(
Ψ2(x+) − Ψ2

n(x+)
)
· Mn(x+ − 1) − 2(Ψ(x+) − Ψn(x+)) · Mn(x+)

}

× x(iS1)

x+ + IS1 − 1
·

K∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1
·
∏

iS1
∈IS1

Γ(x(iS1) + 1)

Γ(x+ + IS1)

×

∏K
k=1

∏
iCk

∈ICk
Γ(x(iCk

) + 1)
∏K

k=1

∏
iSk

∈ISk
Γ(x(iSk

) + IRk
)
· t(xC)

=
∑

i∈I

∑

xC :xC(i)≥1

(Ψ(x+) − Ψn(x+))2 · Mn(x+ − 1)

x+!
· C(i,xC),

where

C(i, xC) =
x(iS1)

x+ + IS1 − 1
· x+!

(x+ + IS1 − 1)!
·

K∏

k=1

x(iCk
)

x(iSk
) + IRk

− 1

×
K∏

k=1

∏

iSk
∈ISk

x(iSk
)!

(x(iSk
) + IRk

− 1)!
.

C(i, xC) satisfies 0 < C(i, xC) < 1 for xC such that xC(i) ≥ 1. Hence

lim
n→∞

∑

i∈I

∑

xC :xC(i)≥1

(Ψ(x+) − Ψn(x+))2 · Mn(x+ − 1)

x+!
· C(i, xC) = 0
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is equivalent to

lim
n→∞

∑

x+≥1

(Ψ(x+) − Ψn(x+))2 · Mn(x+ − 1)

x+!
= 0.

Thus the admissibility of Ψ(x+) implies the admissibility of λ̂(π).

By using Corollary 5.2 in Johnstone[13] and Corollary 4.3 in Johnstone[14], we can obtain a
sufficient condition for admissibility of λ̂(π).

Theorem 6.2. Suppose that Ψ(·) satisfies

|Ψ(x) − x| ≤ M(1 +
√

x), for ∃M > 0

Ψ(x + 1) − Ψ(x) = O(1).

and there exist c ≤ 1 and x0 > 0 such that Ψ(x) ≤ x + c/ log x for x > x0, then λ̂(π) is
admissible.

Corollary 6.1. If α ≥ −1, λ̂α,β(π) is admissible.

By using the similar argument to the proof of Theorem 6.1, we can show that the admissibility
of λ̂(πS1) can be reduced to the admissibility of {Ψ(x(iS1)), iS1 ∈ IS1} as the estimator of IS1

dimensional parameter λ(iS1) under the loss
∑

iS1
∈IS1

(Ψ(x(iS1))−λ(iS1))
2/λ(iS1). Since λ(iS1)

is multidimensional, it seems difficult to derive sufficient conditions on λ̂(πS1) with respect to
an improper prior to be admissible at this point.

7 Monte Carlo Studies

We study the risk performance of λ̂α,β(π) and λ̂α,β(πS1) for the 5-way decomposable model
corresponding to the graph in Figure 1 through Monte Carlo studies with 100,000 replications.

For the graph in Figure 1, C = {{1, 2}, {2, 3, 5}, {2, 4, 5}}, S = {{2}, {2, 5}} and ν({2}) =
ν({2, 5}) = 1. The model (1) is expressed by

λ(i) = λ
α(i12)α(i235)α(i245)

α(i2)α(i25)
.

We set Iδ = 3 for all δ ∈ ∆ = {1, 2, 3, 4, 5} and α(iC) =
∏

δ∈C α(iδ) for all C ∈ C.

In Tables 1 to 6 we present the risks of λ̂α,β(π) and λ̂α,β(πS1) with

• S1 = {2} and C(S1) = {{1, 2}, {2, 3, 5}},

• S1 = {2, 5} and C(S1) = {{2, 3, 5}, {2, 4, 5}}.

for some combination of λ and (α, β, µ) which satisfies the conditions of Corollary 4.1 and 4.2.
With respect to α(iδ) we consider the following two cases,

• α(iδ) = 1/3 for all iδ ∈ Iδ, δ ∈ ∆,

• α(iS1) are unbalanced and α(iδ) = 1/3 for all iδ ∈ Iδ, δ ∈ ∆ \ {S1}.
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The summary of experiments is as follows.

• We can confirm the dominance of the proposed estimators over the MLE. As can be
expected from the fact that the proposed estimators shrink the MLE toward zero, we can
see considerable amount of risk reduction when λ is small.

• The improvement is in the inverse proportion to λ.

• The difference among estimators is small.

• When α(iδ) are unbalanced, the dominance between λ̂α,β(π) and λ̂α,β(πS1) seems to de-
pend on λ. When λ = 1 and 10000, λ̂α,β(π) shows larger risk reduction than λ̂α,β(πS1).
However λ̂α,β(πS1) seems to be better for λ = 100.

1 2

3

4

5

Figure 1: 5-way decomposable model
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Table 1: Risks of λ̂ML and λ̂α,β(π) for the model in Figure 1 with balanced α(iδ).

(1) S1 = {2}
λ

(α, β, µ) 0.1 1.0 10 102 103 104

(27, 1, 3) 0.100 0.998 9.513 40.643 50.132 50.928
(27/2, 1, 3) 0.100 0.997 9.391 38.917 49.628 50.871

(0, 1, 3) 0.103 1.008 9.383 38.222 49.441 50.851
(−1, 1, 3) 0.106 1.015 9.425 38.240 49.440 50.850

(27, 1, 3/2) 0.100 0.998 9.541 40.709 50.134 50.928
(27/2, 1, 3/2) 0.100 0.998 9.412 38.940 49.629 50.871

(0, 1, 3/2) 0.102 1.006 9.380 38.222 49.441 50.851
(−3/4, 3/4, 3) 0.104 1.011 9.411 38.234 49.440 50.850
(−3/2, 3/2, 3) 0.112 1.025 9.457 38.253 49.441 50.851

λ̂ML 239.31 214.44 111.08 56.919 51.505 51.060

(2) S1 = {2, 5}
λ

(α, β, µ) 0.1 1.0 10 102 103 104

(27, 1, 9) 0.100 0.997 9.448 41.001 50.296 50.946
(27/2, 1, 9) 0.101 0.997 9.366 39.508 49.800 50.890

(0, 1, 9) 0.105 1.009 9.445 39.003 49.617 50.870
(−1, 1, 9) 0.106 1.013 9.482 39.029 49.617 50.870

(27, 1, 9/2) 0.100 0.997 9.501 41.172 50.302 50.947
(27/2, 1, 9/2) 0.100 0.997 9.396 39.567 49.802 50.890

(0, 1, 9/2) 0.104 1.007 9.438 39.002 49.617 50.870
(−9/4, 9/4, 9) 0.124 1.040 9.581 39.081 49.619 50.870
(−9/2, 9/2, 9) 0.191 1.134 9.844 39.224 49.631 50.871

λ̂ML 239.31 214.44 111.08 56.919 51.505 51.060
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Table 2: Risks of λ̂ML and λ̂α,β(πS1) for the model in Figure 1 with balanced α(iδ).

(1) S1 = {2}
λ

(α, β, µ) 0.1 1.0 10 102 103 104

(9, 1, 9) 0.109 1.008 9.319 40.015 50.197 50.939
(9/2, 1, 9) 0.116 1.021 9.334 38.779 49.675 50.877
(0, 1, 9) 0.134 1.057 9.497 38.271 49.451 50.852

(−1, 1, 9) 0.142 1.073 9.584 38.313 49.445 50.851
(9, 1, 9/2) 0.104 1.000 9.366 40.481 50.219 50.939

(9/2, 1, 9/2) 0.108 1.009 9.332 38.969 49.682 50.878
(0, 1, 9/2) 0.128 1.047 9.469 38.280 49.452 50.852

(−9/4, 9/4, 9) 0.299 1.267 9.983 38.497 49.460 50.852
(−9/2, 9/2, 9) 0.879 1.963 11.331 39.285 49.554 50.862

λ̂ML 239.31 214.44 111.08 56.919 51.505 51.060

(2) S1 = {2, 5}
λ

(α, β, µ) 0.1 1.0 10 102 103 104

(3, 1, 3) 0.166 1.083 9.479 41.353 50.749 51.003
(3/2, 1, 3) 0.207 1.143 9.646 40.162 50.103 50.925
(0, 1, 3) 0.302 1.279 10.065 39.553 49.747 50.884

(−1, 1, 3) 0.457 1.492 10.699 39.708 49.682 50.876
(3, 1, 3/2) 0.128 1.035 9.459 42.048 50.785 51.003

(3/2, 1, 3/2) 0.152 1.074 9.560 40.552 50.119 50.926
(0, 1, 3/2) 0.232 1.193 9.928 39.664 49.751 50.884

(−3/4, 3/4, 3) 0.306 1.311 10.369 39.644 49.686 50.877
(−3/2, 3/2, 3) 0.886 1.999 11.620 40.035 49.704 50.878

λ̂ML 239.31 214.44 111.08 56.919 51.505 51.060
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Table 3: Risks of λ̂ML and λ̂α,β(π) for the model in Figure 1 with unbalanced α(i2).

(1) S1 = {2}, λ = 1.0

α(2) = {α(i2), i2 ∈ I2}
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(27, 1, 3) 0.997 0.997 0.998 0.998

(27/2, 1, 3) 0.996 0.996 0.997 0.997
(0, 1, 3) 1.004 1.006 1.007 1.008

(−1, 1, 3) 1.011 1.013 1.014 1.015
(27, 1, 3/2) 0.997 0.998 0.998 0.998

(27/2, 1, 3/2) 0.996 0.997 0.997 0.998
(0, 1, 3/2) 1.003 1.004 1.005 1.006

(−3/4, 3/4, 3) 1.008 1.009 1.010 1.011
(−3/2, 3/2, 3) 1.021 1.023 1.024 1.025

λ̂ML 215.75 215.13 214.55 214.54

(2) S1 = {2}, λ = 100.0

α(2)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(27, 1, 3) 35.800 37.016 39.600 40.499

(27/2, 1, 3) 33.844 35.118 37.822 38.768
(0, 1, 3) 32.956 34.280 37.086 38.073

(−1, 1, 3) 32.962 34.288 37.100 38.090
(27, 1, 3/2) 35.873 37.088 39.667 40.564

(27/2, 1, 3/2) 33.871 35.145 37.847 38.792
(0, 1, 3/2) 32.957 34.280 37.086 38.073

(−3/4, 3/4, 3) 32.960 34.285 37.096 38.084
(−3/2, 3/2, 3) 32.970 34.298 37.113 38.103

λ̂ML 62.380 61.377 57.905 57.068

(3) S1 = {2}, λ = 10000.0

α(2)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(27, 1, 3) 50.749 50.731 50.887 50.943

(27/2, 1, 3) 50.692 50.675 50.831 50.887
(0, 1, 3) 50.671 50.654 50.810 50.866

(−1, 1, 3) 50.671 50.654 50.810 50.866
(27, 1, 3/2) 50.749 50.731 50.887 50.943

(27/2, 1, 3/2) 50.692 50.675 50.831 50.887
(0, 1, 3/2) 50.671 50.654 50.810 50.866

(−3/4, 3/4, 3) 50.671 50.654 50.810 50.866
(−3/2, 3/2, 3) 50.671 50.654 50.810 50.866

λ̂ML 51.055 51.004 51.052 51.080
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Table 4: Risks of λ̂ML and λ̂α,β(πS1) for the model in Figure 1 with unbalanced α(i2).

(1) S1 = {2}, λ = 1.0

α(2)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(9, 1, 9) 1.004 1.006 1.007 1.008

(9/2, 1, 9) 1.017 1.019 1.020 1.021
(0, 1, 9) 1.054 1.055 1.056 1.057

(−1, 1, 9) 1.070 1.071 1.072 1.073
(9, 1, 9/2) 0.997 0.998 1.000 1.000

(9/2, 1, 9/2) 1.005 1.007 1.008 1.009
(0, 1, 9/2) 1.044 1.045 1.046 1.047

(−9/4, 9/4, 9) 1.265 1.266 1.265 1.268
(−9/2, 9/2, 9) 1.961 1.962 1.959 1.965

λ̂ML 215.75 215.13 214.55 214.54

(2) S1 = {2}, λ = 100.0

α(2)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(9, 1, 9) 34.020 35.544 38.691 39.833

(9/2, 1, 9) 33.197 34.607 37.562 38.615
(0, 1, 9) 32.941 34.282 37.118 38.119

(−1, 1, 9) 33.014 34.346 37.169 38.163
(9, 1, 9/2) 34.382 35.915 39.140 40.297

(9/2, 1, 9/2) 33.347 34.758 37.747 38.804
(0, 1, 9/2) 32.940 34.283 37.126 38.128

(−9/4, 9/4, 9) 33.277 34.587 37.372 38.351
(−9/2, 9/2, 9) 34.276 35.521 38.214 39.150

λ̂ML 62.380 61.377 57.905 57.068

(3) S1 = {2}, λ = 10000.0

α(2)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(9, 1, 9) 50.827 50.796 50.910 50.956

(9/2, 1, 9) 50.718 50.697 50.840 50.894
(0, 1, 9) 50.673 50.655 50.811 50.867

(−1, 1, 9) 50.672 50.654 50.810 50.867
(9, 1, 9/2) 50.828 50.797 50.911 50.956

(9/2, 1, 9/2) 50.719 50.697 50.840 50.894
(0, 1, 9/2) 50.673 50.655 50.811 50.867

(−9/4, 9/4, 9) 50.675 50.657 50.812 50.868
(−9/2, 9/2, 9) 50.693 50.673 50.823 50.878

λ̂ML 51.055 51.004 51.052 51.080
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Table 5: Risks of λ̂ML and λ̂α,β(π) for the model in Figure 1 with unbalanced α(i25).

(1) S1 = {2, 5}, λ = 1.0

α(2) = α(5) = {α(i5), i5 ∈ I5}
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(27, 1, 9) 0.994 0.995 0.997 0.997

(27/2, 1, 9) 1.003 1.006 1.008 1.009
(0, 1, 9) 1.006 1.009 1.012 1.013

(−1, 1, 9) 0.996 0.997 0.997 0.998
(27, 1, 9/2) 0.995 0.996 0.997 0.997

(27/2, 1, 9/2) 1.001 1.004 1.006 1.007
(0, 1, 9/2) 1.006 1.009 1.012 1.013

(−9/4, 9/4, 9) 1.032 1.036 1.039 1.040
(−9/2, 9/2, 9) 1.124 1.128 1.134 1.134

λ̂ML 216.19 215.07 214.90 214.60

(2) S1 = {2, 5}, λ = 100.0

α(2) = α(5)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(27, 1, 9) 34.674 36.352 40.135 41.643

(27/2, 1, 9) 32.054 33.868 37.952 39.574
(0, 1, 9) 30.668 32.628 37.036 38.780

(−1, 1, 9) 30.657 32.625 37.054 38.805
(27, 1, 9/2) 34.946 36.612 40.369 41.868

(27/2, 1, 9/2) 32.164 33.971 38.040 39.657
(0, 1, 9/2) 30.669 32.629 37.036 38.779

(−9/4, 9/4, 9) 30.658 32.639 37.094 38.855
(−9/2, 9/2, 9) 30.716 32.718 37.219 38.996

λ̂ML 65.520 63.636 58.511 57.134

(3) S1 = {2, 5}, λ = 10000.0

α(2) = α(5)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(27, 1, 9) 50.667 50.704 50.905 51.000

(27/2, 1, 9) 50.584 50.620 50.821 50.917
(0, 1, 9) 50.554 50.590 50.792 50.887

(−1, 1, 9) 50.554 50.590 50.791 50.887
(27, 1, 9/2) 50.667 50.704 50.905 51.000

(27/2, 1, 9/2) 50.584 50.620 50.822 50.917
(0, 1, 9/2) 50.554 50.590 50.792 50.887

(−9/4, 9/4, 9) 50.554 50.590 50.792 50.887
(−9/2, 9/2, 9) 50.555 50.591 50.793 50.888

λ̂ML 51.086 51.042 51.032 51.085
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Table 6: Risks of λ̂ML and λ̂α,β(πS1) for the model in Figure 1 with unbalanced α(i25).

(1) S1 = {2, 5}, λ = 1.0

α(2) = α(5)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(3, 1, 3) 1.075 1.079 1.083 1.083

(3/2, 1, 3) 1.135 1.139 1.143 1.144
(0, 1, 3) 1.271 1.274 1.280 1.280

(−1, 1, 3) 1.485 1.488 1.495 1.493
(3, 1, 3/2) 1.028 1.031 1.035 1.035

(3/2, 1, 3/2) 1.066 1.070 1.074 1.074
(0, 1, 3/2) 1.186 1.189 1.194 1.194

(−3/4, 3/4, 3) 1.304 1.307 1.313 1.312
(−3/2, 3/2, 3) 1.992 1.994 2.004 2.001

λ̂ML 216.19 215.07 214.90 214.60

(2) S1 = {2, 5}, λ = 100.0

α(2) = α(5)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(3, 1, 3) 31.218 33.526 38.763 41.036

(3/2, 1, 3) 30.671 32.853 37.798 39.881
(0, 1, 3) 30.591 32.680 37.389 39.302

(−1, 1, 3) 31.041 33.081 37.667 39.475
(3, 1, 3/2) 31.602 33.954 39.371 41.721

(3/2, 1, 3/2) 30.863 33.075 38.139 40.267
(0, 1, 3/2) 30.602 32.708 37.477 39.412

(−3/4, 3/4, 3) 30.849 32.913 37.564 39.407
(−3/2, 3/2, 3) 31.672 33.651 38.091 39.815

λ̂ML 65.520 63.636 58.511 57.134

(3) S1 = {2, 5}, λ = 10000.0

α(2) = α(5)
(α, β, µ) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.3,0.4)
(3, 1, 3) 50.945 50.918 50.962 51.023

(3/2, 1, 3) 50.712 50.723 50.862 50.944
(0, 1, 3) 50.584 50.616 50.808 50.901

(−1, 1, 3) 50.560 50.596 50.798 50.894
(3, 1, 3/2) 50.953 50.925 50.963 51.024

(3/2, 1, 3/2) 50.716 50.726 50.862 50.944
(0, 1, 3/2) 50.585 50.617 50.808 50.901

(−3/4, 3/4, 3) 50.562 50.597 50.799 50.894
(−3/2, 3/2, 3) 50.567 50.602 50.801 50.896

λ̂ML 51.086 51.042 51.032 51.085
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