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Information Criteria for Kernel Machines

Kei Kobayashi∗ and Fumiyasu Komaki†

Aug, 2005

Abstract

We present kernel regularization information criterion (KRIC), which is a new
criterion for tuning regularization parameters in kernel logistic regression (KLR)
and support vector machines (SVMs). The main idea of the KRIC is based on the
regularization information criterion (RIC). Although the RIC is a useful criterion
for tuning regularization parameters in statistical regularization models, it cannot
be directly applied to parameter tuning for the kernel machines because kernel
functions define only inner products in feature spaces. We derive an eigenvalue
equation to calculate the KRIC and solve the problem.

The computational cost for parameter tuning by the KRIC is reduced drastically
by using the Nyström approximation. The test error rate of SVMs or KLR with
the regularization parameter tuned by the KRIC is comparable with the one by the
cross validation or evaluation of the evidence. The computational cost of the KRIC
is significantly lower than the one of the other criteria.

1 Introduction

In recent years, there have been plenty of researches on support vector machines (SVMs)
and kernel logistic regression (KLR). An overview can be found in Vapnik (1998), Cristian-
ini & Shawe-Taylor (2000), and Schölkopf & Smola (2002) for the SVMs and in Jaakkola
& Haussler (1999), Keerthi et al. (2002), and Zhu & Hastie (2002) for the KLR.

In particular, parameter and kernel selection becomes a very important theme because
they have serious effect on the performance of classifications by the KLR and the SVMs.
Both the KLR and the SVMs have two kinds of parameters to tune, the misclassifica-
tion penalty (often denoted by C), and parameters specifying the kernel function. In
this chapter, we mainly deal with the optimization for misclassification penalty C. The
parameter C in the SVMs and the KLR is recognized as the regularization parameter in
the corresponding statistical regularization models. The value of parameter C determines
the tradeoff between training error and model complexity.

∗kkoba@stat.t.u-tokyo.ac.jp, The Institute of Statistical Mathematics.
†Graduate School of Information Science and Technology, University of Tokyo.
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There have been a lot of researches for tuning the parameter C. One of the most
widely used approaches is based on data resampling methods such as cross validation and
bootstrapping. They require high computational cost. Another approach is to optimize
generalization error bounds (for example, evaluating structural risk minimization (Vapnik
(1998)) and the span method (Vapnik & Chapelle (2000))). However, most of these works
consider the worst case with respect to the probability measure of population. Therefore
the upper bounds on the test error rate are sometimes very loose. The performance of
Wahba’s GACV (Wahba (1998)) and ξα-estimation by Joachims (2000) is between the
two approaches. The experimental comparison between these methods has been studied
in Duan et al. (2003).

Kwok (1999) constructed a Bayesian model approximating SVMs and tuned the regu-
larization and kernel parameters by maximizing the type II likelihood (Good (1965)). The
type II likelihood is sometimes called as the evidence. He also proposed an approximation
method for calculating the type II likelihood (Kwok (2000)). This study based on the
Bayesian inference framework (MacKay (1992a) and MacKay (1992b)) was innovative.

In the model in Kwok (1999), the conditional probabilities for each class yi given data
xi do not add to one. Therefore, his model is not an exact statistical model. A naive
but effective solution for this problem is to approximate a hinge loss function of SVMs
by a logistic function. We call such models as the logistic Bayesian models for SVMs.
Sollich (2002) proposes another Bayesian model for SVMs. He introduces the idea of the
normalization of likelihood and constructs an exact Bayesian model for SVMs.

In most of these Bayesian framework approaches, the evidence value is used for tuning
the regularization parameter. The calculation of the evidence is a difficult problem and
there are several approaches to solve it. Opper & Winther (2000) derived some approx-
imations and bounds of that by the cavity method borrowed from statistical mechanics.
Seeger (2000) used a Gaussian variational approach to estimate the evidence. Kwok
(2000) used the Laplace approximation.

Another statistical model for the SVMs is the regularization model. Many people have
noted the relationship between the SVMs and the regularization function estimation in
the reproducing kernel Hilbert spaces (RKHS). An overview can be found in Hastie et al.
(2001), Wahba (1998), and Schölkopf & Smola (2002).

In this chapter, first, two different regularization models are considered as the sta-
tistical models for SVMs. These models correspond to the Bayesian models, the logistic
Bayesian model and Sollich’s model. In the regularization models, the regularization
parameter corresponds to the hyperparameter in the Bayesian models.

Next, we introduce a criterion, kernel regularization information criterion (KRIC),
for tuning the regularization parameter. The KRIC corresponds to the regularization
information criterion (RIC) in the feature space.

It is known that the RIC is an effective criterion for tuning parameters in regularization
models. The main idea of the RIC is to minimize the expectation of the Kullback-Leibler
divergence from the true distribution function to the estimated distribution function by
the regression model. See Shibata (1989) for details of the RIC.

The RIC is often easier to compute than the type II likelihood. It is because the RIC
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uses a plug-in estimator while the calculation of the type II likelihood needs the integration
with respect to the model parameters. The computational cost of model selections by the
RIC is often lower than other methods because it needs no data resampling or recursive
optimization.

However, for SVMs, the RIC cannot be directly calculated because kernel functions
define only the inner products of vectors in feature spaces. We reduces the calculation of
the RIC for SVMs to an eigenvalue problem and introduces the KRIC.

The KRIC can be used for tuning the regularization parameters in the kernel logis-
tic regression (KLR). The KLR corresponds to the penalized logistic classification in the
RKHS (See the details in Jaakkola & Haussler (1999), Keerthi et al. (2002), and Zhu &
Hastie (2002)). KLR is easier to analyse than SVMs because KLR has the logistic loss
function and SVMs have a hinge loss function (see Wahba et al. (1995) and Hastie &
Tibshirani (1990)). The computational cost for KLR is much higher than SVMs with
the sequential minimal optimization (SMO) introduced by Platt (1998) or other decom-
position algorithms. This is one of the reasons why the KLR is less popular than the
SVMs as an application tool. In recent years, however, the SMO algorithm for the KLR
is introduced (Keerthi et al. (2002) and Zhu & Hastie (2002)).

We propose to tune the regularization parameter for the KLR by using the KRIC. We
can use the result on SVMs directly because the Bayesian model for the KLR is similar
to the logistic Bayesian model for SVMs.

2 The support vector machines and the kernel logis-

tic regression

In this section, we summarize the general algorithm for SVMs and KLR in binary clas-
sification problems. Let the input space be X ⊂ R

m. Let D be the training set
{(xi, yi)} (i = 1, . . . , l), where xi ∈ X is the input and yi ∈ {±1} is the output la-
bel. In the binary classification (or pattern recognition) problem, we predict ỹi for each
future input data x̃i. The statistical model for this problem is introduced after section 3.
We first explain the algorithm for SVMs and KLR.

2.1 Support vector machine

SVMs map the inputs x ∈ R
m to vectors z = φ(x) in a l2 space, called feature space F .

The inner product of z1 and z2 in the l2 is represented by z1 · z2. SVMs construct the
optimal hyperplane w · z − b = 0 in the feature space and classify data by a classification
function f(w; z, b) := sign(w ·z− b). Here, w and b are obtained by solving the following
quadratic problem:
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Figure 1: An example of hyperplane by an SVM.

The main quadratic problem of SVMs in the feature space

min.
1

2
‖w‖2 + C

l∑
i=1

ξi, (1)

s.t. yi(w · zi − b) ≥ 1 − ξi, and ξi ≥ 0 (2)

for i = 1, . . . , l.

Here, C is a positive parameter, determining the regularization property of SVMs. In-
equalities (2) are represented by

ξi = [1 − yi(w · zi − b)]+, (3)

where [·]+ := max(0, ·).
We give intuitive explanation of quadratic problem (1) and (2). We consider the

problem separating data by hyperplane with a margin T = {z ∈ l2; |w · z − b| ≤ 1}. (See
figure 1.) The width of hyper plane T is ‖w‖−1. Then minimization of ‖w‖2/2 in (1)
corresponds to maximization of the width of hyper plane T . On the other hand, for a
data of class yi = 1, ξi in (3) is the distance from the “correct” half-space wi · zi − b ≥ 1
to the data zi. Since ξi is a misclassification level of each data by hyper plane T , the
second term of (1) is proportional to the sum of the level of misclassification.

Therefore, the SVMs search the optimal hyperplane with a margin T such that the
width of T is large and the misclassification of data is small at the same time.

The solution of the main quadratic problem (1) and (2) becomes

ŵ =
l∑

i=1

αiyizi,

b̂ = −maxyi=−1 ŵ · zi + maxyi=1 ŵ · zi

2
,
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where α = (α1, . . . , αl)
� are the solutions of the following dual quadratic problem:

The dual problem of SVMs in the feature space

max .

l∑
i=1

αi − 1

2

l∑
i,j=1

αiαjyiyjzi · zj ,

s.t. C ≥ αi ≥ 0 for i = 1, . . . , l,
l∑

i=1

αiyi = 0.

See, for example, Cristianini & Shawe-Taylor (2000) and Vapnik (1995) for derivation of
the dual problem of SVMs.

2.2 Kernel functions

Instead of zi · zj in the dual problem, we use a function K(xi, xj) := φ(xi) · φ(xj) for
each xi, xj ∈ X . The function K(·, ·) is called a kernel function. We need some conditions
on K for being an inner product in a feature space.

Theorem 2.1 (Mercer’s theorem (explained in Cristianini & Shawe-Taylor (2000)))
Let X be a compact subset of R

n. Suppose K is a continuous symmetric function such
that the integral operator TK : L2(X ) → L2(X ),

(TKf)(·) :=

∫
X

K(·, x)f(x)dx

is positive, that is ∫
X×X

K(xi, xj)f(xi)f(xj)dxidxj ≥ 0,

for all f ∈ L2(X ). Then we can expand K(xi, xj) in a uniformly convergent series (on
X × X ) in terms of TK ’s eigen-functions φk ∈ L2(X ), normalized in such a way that
‖φk‖L2 = 1, and positive associated eigenvalues λk ≥ 0,

K(xi, xj) =
∞∑

k=1

λkφk(xi)φk(xj).

We use the term kernel to refer to functions satisfying this property, but in the literature
these are often called Mercer kernels.

We introduce some examples of kernel functions.

1. Example: Gaussian kernel (Radial Basis Function kernel)

K(xi, xj) = exp(
−‖xi − xj‖2

2σ2
)

where σ > 0.
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2. Example: the polynomial kernel

K(xi, xj) = (1 + cxi · xj)
d

where d ∈ N and c > 0.

3. Example: the neural network kernel (sigmoid kernel)

K(xi, xj) = tanh(b(xi · xj) − c)

where b > 0 and c ∈ R.

The parameters in kernels, as σ, c, d and b above, are called kernel parameters.
Gaussian kernel and the polynomial kernel are Mercer kernels. The neural network

kernel is not a Mercer kernel for any b and c. (See Smola et al. (2000).)
Using the kernel functions, the dual problem of SVMs becomes as follows:

The dual problem of the SVMs with kernel function in the feature space

max .

l∑
i=1

αi − 1

2

l∑
i,j=1

αiαjyiyjK(xi, xj)

s.t. C ≥ αi ≥ 0 for i = 1, . . . , l,
l∑

i=1

αiyi = 0.

Let
a(x, w, b) := w · z − b =

∑
i

αiyiK(xi, x) − b, (4)

and
ai := a(xi, w, b).

Then the optimal hyperplane is a(x, ŵ, b̂) = 0 and the classification function is I(x) =
sign(a(x, ŵ, b̂)).

2.3 The kernel logistic regression (KLR)

The KLR solves the following optimization problem.

The optimization problem of the KLR

min.
1

2
‖w‖2 + C

l∑
i=1

ξi,

s.t. ξi = g(yi(w · zi − b)) for i = 1, . . . , l,
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SVM

KLR

Figure 2: Comparison of loss functions of the SVMs and the KLR.

where g(t) := log(1 + e−t).
The KLR uses the loss function g(t) instead of the SVMs’ loss function [1−t]+. Figure

2 shows the difference of these two loss functions.
Let G(δ) := δ log δ + (1 − δ) log(1 − δ). The Wolfe dual problem for KLR is

The dual problem of the KLR

max . − C
l∑

i=1

G(
αi

C
) − 1

2

l∑
i,j=1

αiαjyiyjK(xi, xj),

s.t.
l∑

i=1

αiyi = 0.

See Keerthi et al. (2002) for derivation of the dual problem.

3 The logistic Bayesian framework for SVMs and

KLR

We assume that each sample (xi, yi) is independently and identically distributed. We also
assume that p(xi) is independent of w and π.

We consider a logistic predictive density

p(yi | xi, w, b, π, K) =
1

1 + exp(−ηaiyi)
, (5)
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where η is a fixed positive constant. In the left-hand side, K represents the kernel function
and π represents the kernel parameters. We omit K in the following.

Next, we assume a normal prior density:

p(w, b | λ, π) ∝ exp(−λ

2
‖w‖2), (λ > 0)

where λ is a positive hyper-parameter. From Bayes’ rule, the posterior distribution is

p(w, b | D, λ, π) ∝ p(w, b | λ, π)p(D | w, b, π)

= p(w, b | λ, π)
∏

i

p(yi | xi, w, b, π)p(xi).

Therefore, the negative logarithmic posterior distribution is

− log p(w | D, λ, π) =
λ

2
‖w‖2 +

∑
i

log {1 + exp(−ηaiyi)}

−
∑

i

log p(xi) + constant (not depend on w).

4 Sollich’s Bayesian framework for SVM

We summarize the Bayesian model by Sollich. We abbreviate a(·, w, b) in (4) to a. As in
the Gaussian process (Williams & Barber (1998)), we consider a prior distribution of the
function a. Let Q(x) be a true density function of each sample xi. Then the likelihood
functions of the Bayesian model are given by

p(x|a) = Q(x)ν(a(x))/N(a),

p(y|x, a) = exp(−C[1 + ya(x)]+)τ(C)/ν(a(x))

where

N(a) :=

∫
x

Q(x)ν(a(x))dx, (6)

ν(a(x)) := τ(C)[exp{−C[1 − a(x)]+} + exp{−C[1 + a(x)]+}]

and τ(C) = {1+exp(−2C)}−1. The integrability of the right-hand side of (6) is assumed.
The coefficient τ(C) is set to ensure that ν(a(x)) ≤ 1. The prior density function is
defined as follows:

π(a) ∝ exp(−1

2

∫
a(x)K−1(x, x′)a(x′)dxdx′)N l(a)

8



Assume the Bayesian model above, the logarithm of the posterior probability is

log p(a|D) =
∑

i

log p(yi|xi, a) + log p(xi|a) + log π(a) + const.

= −1

2

∫
a(x)K−1(x, x′)a(x′)dxdx′ − C

l∑
i=1

[1 − yiθ(xi)]+ + const.

= −1

2
‖w‖2 +

1

2
b2

∫
K−1(x, x′)dxdx′ − C

l∑
i=1

[1 − yia(xi)]+ + const.

We adopt the Gaussian process prior on a(x) + b = w · φ(x) instead of a(x), i. e.,

π(a) ∝ exp{−1

2

∫
(a(x) + b)K−1(x, x′)(a(x′) + b)dxdx′}N l(a). (7)

Then the posterior probability becomes

log p(a|D) = −1

2
‖w‖2 − C

∑
i

[1 − yia(xi)]+ + const.

Therefore the maximization of the posterior probability corresponds to the optimization
in the SVMs’ quadratic problem.

In Sollich’s paper, it is suggested to maximize

−1

2
‖w‖2 − 1

2
b2B−2 − C

∑
i

[1 − yia(xi)]+ (8)

for an adequately selected B > 0. This corresponds to assuming the prior distribution on
the bias parameter b. While this modification of the original SVMs sometimes approves
the performance, we use the original SVMs and the corresponding Bayesian model with
the prior (7). We give further discussions on the bias term b in section 9.

5 Regularization information criterion (RIC)

The regularization information criterion (RIC) for a regularization model

L(D; θ; λ) = log p(D|θ) − λk(θ)

is defined by
RIC := 2[− log p(D | θ∗) + trace[IJ−1]], (9)

where

J := Ep0

[
−∂2L(D; θ; λ)

∂θ∂θ�
|θ=θ∗

]
,

I := Varp0

[
∂L(D; θ; λ)

∂θ
|θ=θ∗

]
,
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p0 is the unknown true probability measure on D and θ∗ = θ∗(D, λ) maximizes L(D; θ; λ).
For calculation of J and I, instead of expectations with respect to the unknown true
density p0, the sample means are usually used.

The derivation of RIC is similar to that of Takeuchi’s information criterion (TIC)
(Takeuchi (1978) and Burnham & Anderson (2002)), which is a modification of AIC. It
is proved in Shibata (1989) that

∫
p0(D

′)KL(p0(D)||p(D|θ∗(D′, λ)))dD′

=

∫
p0(D) log p0(D)dD +

1

2
RIC + o(1) (10)

where KL(p||q) represents the Kullback-Leibler divergence from p to q. The first term of
the right-hand side does not depend on λ. Thus, the minimization of the RIC with respect
to the parameter λ corresponds to the minimization of the expectation of the Kullback-
Leibler divergence from the true probability measure to the estimated probability measure
in the regularization model (9) with parameter λ.

6 The Kernel regularization information criterion (KRIC)

In this section, we recognize KLR and SVMs as regularization models and propose a novel
criterion for parameter tuning, kernel regularization information criterion (KRIC).

We assume that the reproducing kernel Hilbert space is finite dimensional. Let d be
the dimension. It is for using the matrix representation instead of the operational repre-
sentation on the Hilbert space. This assumption does not hold for general kernel functions
(e.g. the Gaussian kernel). However, if the kernel function satisfies Mercer’s condition,
for any degree of accuracy, there is a matrix representation for each Hilbert space that
approximates the operational representation to the degree of accuracy. Therefore, we use
the matrix representation for simplicity of the notation.

First, we consider the logistic Bayesian model for SVMs. In the logistic Bayesian
framework, we maximize

L(D; w, b; λ, π) = log p(D | w, b, π) − λ

2
‖w‖2. (11)

This model can be recognized as a regularization model (Smola et al. (1998)). Therefore,
we can use RIC in order to optimize the regularization parameter λ.

We evaluate the value of RIC. Let w̃� = [w� γ−1b] and z̃�
i = [z�

i − γ] where γ is an
arbitral positive constant. Then J and I in the RIC is evaluated as follows:

J = Ep0

[ ∂2

∂w̃∂w̃�{−
∑

i

log p(xi)p(yi | xi, w̃, π) +
λ

2
‖w‖2} | w̃ = w̃∗

]

=
∑

i

tiz̃iz̃
�
i (1 + O(l−1/2)) + λĨd, (12)
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where

Ĩd :=

[
Id 0
0� 0

]
(13)

and

ti :=
∂2

∂a2
i

log p(yi = 1 | xi, w̃
∗, π). (14)

In the same way,

I = Varp0

[ ∂

∂w̃
{−

∑
i

log p(yi | xi, w, π) +
λ

2
‖w‖2} |w̃=w̃∗

]

= (
∑

i

m2
i z̃iz̃

�
i − 1

l

∑
i

miz̃i

∑
j

mj z̃
�
j )(1 + O(l−1/2)), (15)

where

mi :=
∂

∂ai

log p(yi = 1 | xi, w̃
∗, π). (16)

In (12) and (15), the law of large numbers is used. Since J and I depend on the unknown
real probability measure p0, we replace J and I by

Ĵ =
∑

i

tiz̃iz̃
�
i + λĨd, (17)

Î =
∑

i

m2
i z̃iz̃

�
i − 1

l

∑
i

miz̃i

∑
j

mjz̃
�
j .

For the logistic Bayesian model of SVMs, p(yi|xi, w̃, π) is defined as (5). Thus, ti and
mi become as

ti := η2 exp(−ηaiyi)

{1 + exp(−ηaiyi)}2
, (18)

mi := −η
yi exp(−ηaiyi)

1 + exp(−ηaiyi)
, for i = 1, . . . , l.

The direct calculation of matrices Ĵ and Î needs the evaluation of each z̃iz̃
�
j .

However, it is difficult to obtain the value of z̃iz̃
�
j because z̃i and z̃j cannot be

calculated explicitly. In order to solve this difficulty, we use the eigenvalues of the matrix

Ĵ
−1

Î , which can be calculated explicitly1.
Let {ρk} and {ṽk} be the eigenvalues and the corresponding normalized eigenvectors

of Ĵ
−1

Î, respectively. Then we have

Ĵ
−1

Î ṽk = ρkṽk, and

Î ṽk = ρkĴ ṽk. (19)

1Since every ti in (18) is positive, Ĵ is positive definite and, therefore, invertible.
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Substituting (12) and (15) into (19), we obtain

∑
i

{m2
i (z̃

�
i ṽk) − 1

l
mi

∑
j

mj(z̃
�
j ṽk)}z̃i =

∑
i

ti(z̃
�
i ṽk)z̃i + λĨdṽk.

Because ṽk is normalized, when we take γ → 0, the equation (20) becomes

∑
i

{m2
i (z

�
i vk) − 1

l
mi

∑
j

mj(z
�
j vk)}zi =

∑
i

ti(z
�
i vk)zi + λIdvk. (20)

Therefore, vk is represented as a linear combination of zi. We set vk =
∑

i µkizi.
Take the inner products of each side of (20) and a particular zq. The left hand side

of the equation is equal to

∑
i

µki

(∑
j

m2
jKijKjq − 1

l

∑
j

mjKji

∑
p

mpKpq

)

where Kij := z�
i zj and K = (Kij). The right hand side is equal to

ρk

∑
i

µki

∑
j

tjKjiKiq + λKkq

Thus we have

K(diag(m) − 1

l
mm�)Kµk = ρk(Kdiag(t) + λI l)Kµk.

Let µ′
k = Kµk. Since (Kdiag(t) + λI l) is invertible2, we get the following eigenvalue

equation:

(Kdiag(t) + λI l)
−1(Kdiag(m)2 − 1

l
Kmm�)µ′

k = ρkµ
′
k. (21)

By solving the eigenvalue equation (21), we have

trace(Ĵ
−1

Î) =
∑

i

ρi

= trace[(Kdiag(t) + λI l)
−1(Kdiag(m)2 − 1

l
Kmm�)]. (22)

By substituting (22) into (11) and approximating w̃∗T by [ŵ� γ−1b̂] selected by the
SVM, we obtain the kernel regularization information criterion (KRIC)

The KRIC for the logistic Bayesian model for SVMs

KRIC = 2
[∑

i

log{1 + exp(−ηaiyi)}

+ trace{(Kdiag(t) + λI l)
−1(Kdiag(m)2 − 1

l
Kmm�)}

]
(23)

2|Kdiag(t) + λI l| = |diag(t)||K + λdiag(t)−1| > 0. Thus, (Kdiag(t) + λI l) is invertible.
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where ti and mi are (14) and (16). The KRIC for the KLR is the same as the one for the
logistic Bayesian model (23) with η = 1 in (14) and (16).

Next, we construct the KRIC for Sollich’s Bayesian model for SVMs. The Bayesian
model corresponds to the following regularization model,

LS(D; w, λ, π) = log pS(D|w, π) + kS(w; λ)

where
log pS(D|w, π) = log p(D|w, π) − l log N(a)

and

kS(w, λ) =
λ

2
‖w‖2 + l log N(a).

Since LS(D; w; λ, π) = L(D; w; λ, π), the value of Ĵ and Î are same as those of the
logistic Bayesian model. Therefore, the difference between KRIC for Sollich’s model and
that for the logistic model is only the likelihood term.

Since p0(x) is the unknown true probability measure, we use N̂(a) =
∑l

i=1 ν(a(xi))
instead of N(a). Consequently, the KRIC becomes as follows:

the KRIC for Sollich’s Bayesian model for SVMs

KRIC = 2
[∑

i

log{1 + exp(−ηaiyi)} − l log
l∑

i=1

ν(a(xi))

+ trace{(Kdiag(t) + λI l)
−1(Kdiag(m)2 − 1

l
Kmm�)}

]

where ti and mi are (14) and (16).

7 The Nyström approximation method for calcula-

tion of the KRIC

In this section, we present an approximation for the KRIC by the Nyström method
(Williams & Seeger (2001)). The computational cost for the KRIC is O(l3) because
it solves the eigenvalue equation for l × l matrices. When we use the SMO algorithm,
the computational cost for the SVMs’ optimization is smaller than O(l3). Thus, the
computational cost for the M-fold cross validation is smaller than O(Ml3) for a fixed
M . This means that if the size of the training data becomes large, KRIC requires higher
computational cost than the M-fold cross validation does. We apply the Nyström method
to calculations of the KRIC and solve this problem.

In Nyström method, the Gram matrix K = (Kij) is approximated by a reduced-rank
matrix K̃. Let (i1, . . . , im) be randomly chosen m indexes such as 1 ≤ i1 < i2 < · · · <
im ≤ l. Define matrices Km,m and K l,m as Km,m(j, k) = K(ij , ik) for 1 ≤ j, k ≤ m and
K l,m(i, k) = K(i, ik) for 1 ≤ i ≤ l and 1 ≤ k ≤ m. Then Km,m is the restriction of the

13



Gram matrix K to the randomly chosen m rows and columns and K l,m be the l × m
restricted matrix of K with the same rows as Km,m.

Let λ
(m)
i and u

(m)
i be the i-th largest eigenvalue and the corresponding eigenvector.

We approximate K by

K̃ =

p∑
i=1

λ̃
(l)
i ũ

(l)
i (ũ

(l)
i )�

where

λ̃
(l)
i :=

l

m
λ

(m)
i ,

and

ũ
(l)
i :=

√
m

l

1

λ
(m)
i

K l,mu
(m)
i .

Let Ũ be an l×p matrix whose column vectors are ũ
(l)
i (i = 1, . . . , p) and Λ̃ be a p×p

diagonal matrix whose (i, i) component is Λ̃
(l)

i . Thus,

K̃ = ŨΛ̃Ũ
�
.

Using K̃ as an approximation of K, the value of trace(Ĵ
−1

Î) becomes as follows:

trace(Ĵ
−1

Î)

= trace[(Kdiag(t) + λI l)
−1(Kdiag(m) − 1

l
Kmm�)]

	 trace[(K̃diag(t) + λI l)
−1(K̃diag(m)2 − 1

l
K̃mm�)] (24)

By the matrix inversion lemma, the most right-hand side of (24) is described using Ũ and
Λ̃ as follows (see the appendix A):

trace[(K̃diag(t) + λI l)
−1(K̃diag(m)2 − 1

l
K̃mm�)]

= trace[(Ũ
�
diag(t)Ũ + λΛ̃

−1
)−1Ũ

�
(diag(m)2 − 1

l
mm�)Ũ ]. (25)

This is the approximation of the second term of the KRIC by the Nyström method.
Consequently, the KRIC by the Nyström method becomes as follows:

The KRIC for the SVMs by the Nyström method

KRIC = 2
[
log p(D|ŵ, b̂, π)

+ trace[(Ũ
�
diag(t)Ũ + λΛ̃

−1
)−1Ũ

�
(diag(m)2 − 1

l
mm�)Ũ ].

The computational cost for calculating the KRIC by the Nyström method is O(m2l).
If we set m 
 l, the computational cost for the KRIC becomes much smaller than that
for the M-fold cross validation especially when the sample size l is large.

14



Table 1: Properties of each data set.

data property
name dim #train. #test
bld 6 230 115
cra 6 133 67
hea 13 180 90
ion 33 234 117
rsy 2 250 1000
snr 60 138 70

8 Experiments

We compared the performance of the KRIC and three other criteria, 10-fold cross valida-
tion, the evidence calculated by Laplace’s method (Kwok (2000)) and the ξα-estimation
(Joachims (2000)).

When we calculate the evidence, we assume the logistic Bayesian model for SVMs.
The evidence becomes

log

∫
p(D|w)p(w|λ)dθ

	 log p(D|ŵ) − 1

2
log |1

λ
diag(t)1/2Kdiag(t)1/2 + I l| + (independent of λ)

where ŵ is the optimal value calculated by SVMs or KLR, and t and K are the same
value used in the KRIC.

The ξα-estimation is defined by

Errl
ξα =

1

l
|{i; (ραiR

2
∆) ≥ 1}|

where ρ = 2, R2
∆ = 1 as set in Joachims (2000). We omit the detail of Wahba’s GACV.

See Wahba (1998), for example.
In the experiment, Gaussian kernel K(xi, xj) = exp(−‖xi − xj‖2/2σ2) is used. The

regularization parameter C is tuned by each criterion. We use the data sets in Gestel
et al. (2002). The BUPA Liver Disorders (bld), the Statlog Heart Disease (hea), the
John Hopkins University Ionosphere (ion), and the Sonar (snr) were downloaded from
UCI benchmark repository (Blake & Merz (1998)). The synthetic data set (rsy) and
Leptograpsus crabs (cra) are described in Ripley (1996). The property of each data set is
Table 1. “dim”, “#train”, and “#test” denote the input dimension, the size of training
data and the size of test data, respectively.

Each data set is split up into training data sets (2/3) and test data sets (1/3), except
for the rsy data set, which was originally divided 250 training data set and 1000 test
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data set. Each data set is divided into training datasets and test datasets randomly. We
repeated the random separation 100 times and make 100 different data sets. Each data
set {xi = (xi1, . . . , xin)�}L

i=1 is normalized as
∑l

i=1 x2
ij = 1 for j = 1, . . . , n, where L is

the sum of the number of the training and test datasets.
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Figure 3: An example of regularization parameter tuning by the KRIC. We use rsy

data set. The solid line and dashed line represent the KRIC value and test error rate,
respectively. The scale parameter in the Gaussian kernel, σ, is fixed at 10−1.

We set the parameter space as C = {10k/2−2}19
k=0. We select the best value of C in

the set C by maximization or minimization of each criterion. The scale parameter in the
Gaussian kernel σ is set as 10.0.

Tables 2 and 3 are the results of comparison of the performance of the criteria for
SVMs and KLR, respectively. We compare KRIC (the logistic model), GACV, 10-fold
cross validation, KRIC (Sollich’s model), the evidence calculated by Laplace’s method and
ξα-estimation. The two types of KRIC and the evidence are calculated by the Nyström
approximation. In the Nyström approximation, the size of randomly selected submatrix
is set as m = 50. The number of selected principal components is set as p = 30. ERROR
denotes the average test error rate together with the standard deviation. TIME denotes
the average CPU time in seconds consumed by calculation of each criterion for tuning the
regularization parameter together with the standard deviation.

Each SVM and 10-fold cross validation was calculated by OSU-SVM algorithm, which
is a Matlab’s mex program created and distributed by J. Ma, Y. Zhao, and S. Ahalt. We
used 1.6-GHz Pentium machine. We made a Matlab code (which is not compiled as mex
program) for evaluating KLR by the SMO algorithm based on the works, Keerthi et al.
(2002) and Zhu & Hastie (2002).

We computed p-value for the paired t-test on error difference between the KRIC with
Nyström method and the other criteria. We also computed the p-value on CPU time
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difference. A p-value threshold of 0.05 was used to decide the significant difference. In
table 2 and 3, each mark * (or @) on the left of the p-value of a criterion represents that
the performance of the criterion is significantly better (or worse) than that of the KRIC.

From the result, we say that there is no criterion whose average test error is significantly
lower than that of the KRIC. The error rate of the KRIC for the logistic Bayesian model
is lower than that of the GACV and ξα-estimation. Average computational cost of the
KRIC is lower than that of the 10-fold cross validation and calculation of the evidence
by Laplace’s method. On the other hand, the calculation of ξα-estimation and GACV is
faster than that of KRIC. The average test error given by the KRIC for Sollich’s Bayesian
model is significantly worse than that for the logistic Bayesian model for some data set.

We note that the test error rate given by the KRIC for KLR is better than that for
SVMs in comparison with other criteria. In particular, the average error rate given by
the KRIC is better than the one given by the 10-fold cross validation and the evidence
for most of the data sets though the difference is not significant in the t-test.

Figure 3 is an example of regularization parameter tuning by the KRIC. We used rsy

data set. The kernel parameter σ is fixed at 10−1.

9 Conclusion and discussion

The kernel information criterion (KRIC) was introduced for tuning the regularization
parameter in the SVMs and the KLR. The criterion can be calculated with low compu-
tational cost if we used some approximation methods.

First we constructed the statistical models of SVMs and KLR. Two different Bayesian
models for SVMs are considered. In the first model, the logistic Bayesian model, is the
hinge loss function of SVMs is approximated by a logistic function. Thus, the Bayesian
model corresponds to that of KLR. The second model, proposed by Sollich, is an exact
Bayesian model for SVMs.

We considered two regularization models corresponding to each of the Bayesian models
for SVMs. The regularization information criterion (RIC) for these models cannot be
directly evaluated because the parameter space is the reproducing kernel Hilbert space.
In order to derive the RIC, we introduce an eigenvalue problem and prove that the RIC
is calculated by the eigenvalues. We call the RIC calculated in this way as the kernel RIC
(KRIC).

Next an approximation of the KRIC by using the Nyström method was presented.
In the Nyström method, the Gram matrix is approximated by the submatrix and the
principal components. Therefore, the computational cost for calculation of the KRIC
by Nyström method becomes very low. Then the model selection by the KRIC with the
approximation becomes much faster than the one by the cross-validation when the sample
size is large.

From the experimental result, the average test error rate with the regularization pa-
rameter tuned by KRIC for the logistic Bayesian model is lower than the one by the
GACV and the ξα-estimation. The average error rate is comparable with the one by the
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10-fold cross validation and the evidence evaluated by Laplace’s method. Computational
cost for calculating the KRIC is significantly lower than the one for these two criteria.

In the present work, the KRIC is used only for tuning the regularization parameter.
However, the kernel parameters and kernel function can be tuned by the KRIC.

We explain the reason. The KRIC evaluates the left-hand side of (10) where p0(D) is
the true density function and θ∗(D′, λ) maximizes L(D′; θ; λ). Since the value of L(D′; θ; λ)
depends on the kernel parameter π and the kernel function K, θ∗(D′, λ) also depends on
π and K. It is the reason why the KRIC can be used for selecting π and K, too.

We carried out some experiments for evaluating the tuning of the kernel parameter
by the KRIC. We use the same data sets as the one used in section 8 for selecting both
of the scale parameter σ in the Gaussian kernel and the regularization parameter C. The
scale parameter σ is tuned well by the KRIC when we restrict σ on σ � 10−4. When we
consider σ � 10−4, the KRIC takes a global minimum in such a region of σ. However,
the global minimum of the test error is not attained in the region.

One naive solution of this problem is to exclude the case σ is smaller than a particular
value (for example 10−4 in the above experiments.) At least in the experiments, the
optimal parameters (in the sense of the lowest test error) were not in the excluded region
because σ is so small that the overfitting occurs. Thus the setting of the region of σ
is reasonable. Moreover, the boundary value as 10−4 should be taken depending on the
sample size. Further research on the selection of kernel parameters and kernel functions
by the KRIC is a future work.

In Sollich (2002), he suggested introducing a prior distribution on the bias parameter
b in the Bayesian model for the SVMs. If we assume a prior distribution on the bias
parameter b, the original quadratic problem of SVMs are changed. In the present work,
we have been assumed no prior distribution on the bias b.

However, our results can be easily applied to the modified SVMs which have a square
penalty on the bias. Consider the modified objective function (8). Then the regularization
likelihood (11) changes to

L(D; w, b; λ, π) = log p(D | w, b, π) − λ

2
‖w‖2 − λB−2

2
b2.

Let w̃� = [w�B−1b] and z̃� = [z�−B]. The KRIC for this model is given by substituting

Ĩd := Id+1

to (12) and (17) instead of (13).
The above regularization model has two regularization parameters. If we tune both

of the regularization parameters, the least value of the KRIC becomes smaller than the
one given by tuning only one regularization parameter. This means that we cannot
compare models which have different numbers of regularization parameters by the KRIC.
In other words, the KRIC cannot avoid the overfitting with respect to the regularization
parameters.

As the KRIC in the regularization models, we cannot compare Bayesian models which
have different number of hyper parameters by the type-II likelihood. One solution of this
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problem for the type-II likelihood is using the Akaike’s Bayesian information criterion
(ABIC) (Akaike (1980)):

ABIC = −2 log

∫
p(D|w)p(w|λ)dw + 2dim(λ).

ABIC is recognized as AIC for the type-II likelihood.
As the KRIC, ABIC can be used not only for selecting the regularization parameter

but also for the kernel parameters i.e.

ABIC = −2 log

∫
p(D|w, π)p(w|λ, π)dw + 2dim(λ, π).

If we use some kernel generating methods presented in Cristianini & Shawe-Taylor (2000),
we can obtain very large class of kernel functions. When kernel functions are generated
by using these methods, the dimensions of the kernel parameters can become large.

Although there are a lot of researches on evaluating the first term of ABIC (i.e. the
type-II likelihood), there is no method whose accuracy is reliable comparing with the
second term. The model selection by the KRIC, ABIC and other criteria is a future work
when the number of the regularization and kernel parameters in each model is different.

The effective number of parameters (Bishop (1995)) for the regularization model with
the regularization parameter λ is ∑

j

λj

λj + λ

where λj are eigenvalues of the Hessian matrix. In the Bayesian model for the SVMs,

λj =
∑

i

ti(z̃
�
i z̃j)

and ti is given by (18). This might seem to be similar to the KRIC’s penalty term.
However, these two criteria are totally different ones. The effective number of parameters
is derived from evaluation of the evidence value for Gaussian inferences. The KRIC is
derived from minimization of a Kullback-Leibler divergence. We have interest in some
potential connections between these two criteria if they exist.

If the dimension of parameters is finite, RIC is proved to be an asymptotic unbiased
estimator of the penalized log likelihood (Konishi & Kitagawa (1996)). However, the
Bayes models corresponding to SVMs have parameters whose dimension is as many as
the number of the samples; sometimes infinity. Thus, further studies are required to
validate KRIC rigorously.

Recently, a lot of attention is paid to least-square SVMs, flexible discriminant analysis
(Hastie et al. (2001)) and dual penalized logistic regression machines (Tanabe (2001))
as substitutions of ordinary SVMs (Gestel et al. (2002)). It has been presented that all
of them sometimes perform better than ordinal SVMs. Our research presented in this
chapter could be generalized for these models.
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10 Appendix: The derivation of (25)

We prove the (25):

trace[(K̃diag(t) + λI l)
−1(K̃diag(m)2 − 1

l
K̃mm�)]

= trace[(Ũ
�
diag(t)Ũ + λΛ̃

−1
)−1Ũ

�
(diag(m)2 − 1

l
mm�)Ũ ].

Let M := diag(m) and T := diag(t) for shortage of the description.
Using the matrix inversion lemma,

trace[(KT + λI l)
−1K(M 2 − 1

l
mm�)]

= trace[
1

λ
T−1{T − T Ũ(λΛ̃

−1
+ Ũ

�
T Ũ)−1Ũ

�
T }K(M 2 − 1

l
mm�)]

=
1

λ
trace[{I l − Ũ(λΛ̃

−1
+ Ũ

�
T Ũ)−1Ũ

�
T }K(M 2 − 1

l
mm�)]

=
1

λ
trace[ŨΛ̃

−1
Ũ

�
(M 2 − 1

l
mm�)]

− 1

λ
trace[(λΛ̃

−1
+ Ũ

�
T Ũ)−1Ũ

�
T ŨΛ̃Ũ

�
(M 2 − 1

l
mm�)Ũ ] (26)

The second term of the most right side is evaluated as follows:

trace[(λΛ̃
−1

+ Ũ
�
T Ũ)−1Ũ

�
T ŨΛ̃Ũ

�
(M 2 − 1

l
mm�)Ũ ]

= trace[(λΛ̃
−1

+ Ũ
�
T Ũ)−1(λΛ̃

−1
+ Ũ

�
T Ũ)Λ̃Ũ

�
(M 2 − 1

l
mm�)Ũ ]

− trace[λ(λΛ̃
−1

+ Ũ
�
T Ũ)−1Ũ

�
(M 2 − 1

l
mm�)Ũ ]

= trace[Λ̃Ũ
�
(M 2 − 1

l
mm�)Ũ ] − trace[λ(λΛ̃

−1
+ Ũ

�
T Ũ)−1Ũ

�
(M 2 − 1

l
mm�)Ũ ]

Substituting this to (26),

trace[(KT + λI l)
−1K(M 2 − 1

l
mm�)]

=
1

λ
trace[Ũ Λ̃

−1
Ũ

�
(M 2 − 1

l
mm�)] − 1

λ
trace[Λ̃Ũ

�
(M 2 − 1

l
mm�)Ũ ]

+ trace[(λΛ̃
−1

+ Ũ
�
T Ũ)−1Ũ

�
(M 2 − 1

l
mm�)Ũ ]

= trace[(λΛ̃
−1

+ Ũ
�
T Ũ)−1Ũ

�
(M 2 − 1

l
mm�)Ũ ]

Thus, (25) is valid.
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Table 2: Comparison of criteria for tuning the regularization parameter of SVMs (Gaus-
sian kernel, σ = 10.0). We compare KRIC (for the logistic model), GACV, 10-fold cross
validation, KRIC (for Sollich’s model), the evidence calculated by Laplace’s method, and
the ξα-estimation. The Nyström approximation is used in the calculation of the two types
of KRIC and the evidence.

data set bld cra

ERROR or TIME p-value ERROR or TIME p-value
optimal ERROR 0.2821 ± 0.0344 - 0.0000 ± 0.0000 -

TIME(s) 1.6829 ± 1.1600 - 0.1070 ± 0.1428 -
KRIC ERROR 0.2888 ± 0.0355 - 0.0009 ± 0.0036 -
(logistic) TIME(s) 0.2456 ± 0.0128 - 0.1088 ± 0.0080 -
GACV ERROR 0.4131 ± 0.0381 @0.0456 0.5391 ± 0.0285 @ 0.0000

TIME(s) 0.1575 ± 0.0040 *0.0000 0.0621 ± 0.0026 * 0.0000
10-fold ERROR 0.2908 ± 0.0377 0.4892 0.0004 ± 0.0013 0.4559
CV TIME(s) 13.2987 ± 4.2776 @0.0012 0.8745 ± 0.5552 0.0870
KRIC ERROR 0.3891 ± 0.0458 0.1085 0.4582 ± 0.0818 @ 0.0000
(Sollich) TIME(s) 0.2465 ± 0.0164 0.4883 0.1037 ± 0.0076 0.3705
evidence ERROR 0.3204 ± 0.0383 0.3340 0.0009 ± 0.0036 0.5000
(Lap.) TIME(s) 0.5258 ± 0.0201 @0.0000 0.1933 ± 0.0063 @ 0.0000
ξα-est. ERROR 0.4131 ± 0.0381 @0.0456 0.0009 ± 0.0036 0.5000

TIME(s) 0.1869 ± 0.0041 *0.0003 0.0826 ± 0.0017 * 0.0034

data set hea ion

ERROR or TIME p-value ERROR or TIME p-value
optimal ERROR 0.2109 ± 0.0307 - 0.0855 ± 0.0221 -

TIME(s) 2.2332 ± 1.6830 - 0.4544 ± 0.2921 -
KRIC ERROR 0.2340 ± 0.0371 - 0.1342 ± 0.0193 -
(logistic) TIME(s) 0.1959 ± 0.0144 - 0.1450 ± 0.0184 -
GACV ERROR 0.4622 ± 0.0645 @0.0124 0.1598 ± 0.0221 0.2680

TIME(s) 0.1474 ± 0.0058 *0.0083 0.2369 ± 0.0208 @ 0.0097
10-fold ERROR 0.2305 ± 0.0349 0.4806 0.1024 ± 0.0324 0.2696
CV TIME(s) 17.9704 ± 8.2644 @0.0159 2.9289 ± 1.3944 @ 0.0244
KRIC ERROR 0.3983 ± 0.1020 0.1188 0.1342 ± 0.0193 0.5000
(Sollich) TIME(s) 0.1975 ± 0.0159 0.4786 0.1424 ± 0.0174 0.4714
evidence ERROR 0.2321 ± 0.0341 0.4894 0.1111 ± 0.0248 0.3007
(Lap.) TIME(s) 0.4804 ± 0.0293 @0.0000 0.6176 ± 0.0746 @ 0.0000
ξα-est. ERROR 0.4233 ± 0.0980 0.0807 0.1205 ± 0.0195 0.3624

TIME(s) 0.1845 ± 0.0054 0.2828 0.0599 ± 0.0056 * 0.0000
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data set rsy snr

ERROR or TIME p-value ERROR or TIME p-value
optimal ERROR 0.1072 ± 0.0069 - 0.2057 ± 0.0345 -

TIME(s) 7.3261 ± 8.1287 - 0.0793 ± 0.0136 -
KRIC ERROR 0.1112 ± 0.0060 - 0.2429 ± 0.0517 -
(logistic) TIME(s) 0.1956 ± 0.0173 - 0.1090 ± 0.0277 -
GACV ERROR 0.4835 ± 0.0755 @ 0.0000 0.3071 ± 0.0828 0.3164

TIME(s) 0.1062 ± 0.0044 * 0.0000 0.1027 ± 0.0197 0.4472
10-fold ERROR 0.1100 ± 0.0073 0.4639 0.2371 ± 0.0358 0.4740
CV TIME(s) 38.4810 ± 14.2007 @ 0.0035 0.5163 ± 0.0670 @0.0000
KRIC ERROR 0.2858 ± 0.0706 @ 0.0113 0.2443 ± 0.0454 0.4941
(Sollich) TIME(s) 0.2113 ± 0.0095 0.2788 0.1069 ± 0.0182 0.4822
evidence ERROR 0.1138 ± 0.0065 0.4171 0.2229 ± 0.0382 0.4120
(Lap.) TIME(s) 0.3859 ± 0.0184 @ 0.0000 0.2975 ± 0.0436 @0.0041
ξα-est. ERROR 0.1080 ± 0.0076 0.4067 0.2430 ± 0.0516 0.4994

TIME(s) 0.1461 ± 0.0024 * 0.0058 0.2403 ± 0.0099 *0.0002
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Table 3: Comparison of criteria for tuning the regularization parameter of KLR (Gaussian
kernel, σ = 10.0). We compare KRIC (the logistic model), GACV, 10-fold cross validation,
KRIC (Sollich’s model), the evidence calculated by Laplace’s method, and ξα-estimation.
The two types of KRIC and the evidence are calculated by the Nyström approximation.
The p-value is for the paired t-test on error rate and CPU time with respect to KRIC
(the logistic model).

data set bld cra

ERROR or TIME p-value ERROR or TIME p-value
optimal ERROR 0.3374 ± 0.0426 - 0.0060 ± 0.0077 -

TIME(s) 12.2935 ± 0.4063 - 8.1325 ± 0.4327 -
KRIC ERROR 0.3409 ± 0.0430 - 0.0060 ± 0.0077 -
(logistic) TIME(s) 0.1519 ± 0.0102 - 0.0881 ± 0.0036 -
GACV ERROR 0.4200 ± 0.0318 0.1448 0.5313 ± 0.0316 @0.0000

TIME(s) 0.8097 ± 0.5817 0.1332 0.0893 ± 0.0047 0.4396
10-fold ERROR 0.3452 ± 0.0382 0.4786 0.0164 ± 0.0192 0.3489
CV TIME(s) 108.8243 ± 7.3829 @0.0000 71.6293 ± 5.6273 @0.0000
KRIC ERROR 0.4217 ± 0.0326 0.1422 0.3940 ± 0.0581 @0.0000
(Sollich) TIME(s) 0.1517 ± 0.0093 0.4971 0.0941 ± 0.0168 0.3844
evidence ERROR 0.3417 ± 0.0420 0.4959 0.0060 ± 0.0077 0.5000
(Lap.) TIME(s) 0.3304 ± 0.0238 @0.0000 0.1311 ± 0.0111 @0.0017
ξα-est. ERROR 0.4217 ± 0.0326 0.1422 0.5313 ± 0.0316 @0.0000

TIME(s) 0.1016 ± 0.0072 *0.0019 0.0327 ± 0.0043 *0.0000

data set hea ion

ERROR or TIME p-value ERROR or TIME p-value
optimal ERROR 0.2011 ± 0.0430 - 0.1077 ± 0.0352 -

TIME(s) 10.9960 ± 0.5419 - 14.9930 ± 0.8140 -
KRIC ERROR 0.2167 ± 0.0511 - 0.1103 ± 0.0355 -
(logistic) TIME(s) 0.1515 ± 0.0139 - 0.2555 ± 0.0370 -
GACV ERROR 0.2878 ± 0.1476 0.3603 0.1863 ± 0.0516 0.1910

TIME(s) 0.2352 ± 0.0278 @0.0224 1.0713 ± 0.1496 @0.0000
10-fold ERROR 0.2181 ± 0.0342 0.4931 0.1098 ± 0.0351 0.4976
CV TIME(s) 98.4162 ± 8.6210 @ 0 129.8559 ± 17.2304 @0.0000
KRIC ERROR 0.2456 ± 0.0543 0.3920 0.1265 ± 0.0471 0.4221
(Sollich) TIME(s) 0.1526 ± 0.0167 0.4858 0.2557 ± 0.0365 0.4991
evidence ERROR 0.2167 ± 0.0511 0.5000 0.1128 ± 0.0351 0.4855
(Lap.) TIME(s) 0.2826 ± 0.0308 @0.0017 1.3124 ± 0.2161 @0.0000
ξα-est. ERROR 0.4344 ± 0.1036 0.0797 0.3530 ± 0.0472 @0.0017

TIME(s) 0.0642 ± 0.0057 *0.0000 0.5334 ± 0.0868 *0.0124
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data set rsy snr

ERROR or TIME p-value ERROR or TIME p-value
optimal ERROR 0.1206 ± 0.0089 - 0.2143 ± 0.0243 -

TIME(s) 20.6412 ± 0.5797 - 9.3232 ± 0.7657 -
KRIC ERROR 0.1235 ± 0.0098 - 0.2343 ± 0.0279 -
(logistic) TIME(s) 0.3786 ± 0.0199 - 0.1755 ± 0.0201 -
GACV ERROR 0.2593 ± 0.1740 0.2301 0.4671 ± 0.0738 @0.0110

TIME(s) 0.8985 ± 0.0943 @0.0000 0.2693 ± 0.0488 0.0868
10-fold ERROR 0.1233 ± 0.0112 0.4968 0.2529 ± 0.0261 0.3656
CV TIME(s) 88.7065 ± 5.6848 @0.0000 84.3182 ± 10.6565 @0.0000
KRIC ERROR 0.2535 ± 0.0430 @0.0070 0.2729 ± 0.0353 0.2709
(Sollich) TIME(s) 0.3917 ± 0.0176 0.3628 0.1665 ± 0.0218 0.4145
evidence ERROR 0.1283 ± 0.0129 0.4163 0.2371 ± 0.0271 0.4793
(Lap.) TIME(s) 0.6113 ± 0.0193 @0.0000 0.5545 ± 0.0746 @0.0000
ξα-est. ERROR 0.4697 ± 0.1159 @0.0030 0.4643 ± 0.0817 @0.0180

TIME(s) 0.1487 ± 0.0030 *0.0000 0.1640 ± 0.0160 0.3745
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