
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Electric Network Classifiers
for Semi-Supervised Learning on Graphs

Hiroshi HIRAI, Kazuo MUROTA, and
Masaki RIKITOKU

METR 2005–24 August 2005

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm



The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.



Electric Network Classifiers

for Semi-Supervised Learning on Graphs

Hiroshi HIRAI
Research Institute for Mathematical Sciences,

Kyoto University, Kyoto 606-8502, Japan
hirai@kurims.kyoto-u.ac.jp

Kazuo MUROTA
Department of Mathematical Informatics,

Graduate School of Information Science and Technology,
University of Tokyo, Tokyo 113-8656, Japan

murota@mist.i.u-tokyo.ac.jp

Masaki RIKITOKU
Justsystem Corporation Innovative Technology R&D Dept.
Aoyama bldg. 1-2-3, Kita-Aoyama, Tokyo 107-8640, Japan

Masaki Rikitoku@justsystem.co.jp

August 2005

Abstract

We propose a new classifier, named electric network classifiers, for
semi-supervised learning on graphs. Our classifier is based on nonlinear
electric network theory and classifies data set with respect to the sign of
electric potential. Close relationships to C-SVM and graph kernel meth-
ods are revealed. Unlike other graph kernel methods, our classifier does
not require heavy kernel computations and obtain the potential directly
using efficient network flow algorithms. Furthermore, with flexibility of
its formulation, our classifier can incorporate various edge characteristics;
influence of edge direction, unsymmetric dependence and so on. There-
fore, our classifier has the potential to tackle large complex real world
problems. Experimental results show that the performance is fairly good
compared with the diffusion kernel and other standard methods.

1 Introduction

We consider semi-supervised classification problems on graphs, in which some
vertices of the graph are labeled as positive or negative, and others are unlabeled.
The task is to classify the unlabeled data. Such problems arise in biological
networks [14] and text classification [6]. One possible approach to this problem
is SVM and other kernel-based methods [11]. The central issue in kernel-based
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methods is how to construct or learn a kernel from a given graph. The diffusion
kernel [7] is such a graph kernel constructed from the graph Laplacian. Beyond
the diffusion kernel, several learning kernel algorithms have been proposed (see
[12, 6, 15, 13]). However, to construct kernel matrix using graph Laplacian is
a very heavy computational task; it requires a large amount of memory for the
kernel matrix, diagonalizations, and optimizations on the matrix space.

Here we introduce a new binary classifier, named electric network classifier,
for semi-supervised learning on graphs, based on nonlinear electric network the-
ory. Our approach constructs a kernel only implicitly and classifies unlabeled
data directly using electric potential. In so doing, we can avoid heavy kernel
computations and obtain the potential using fast network flow algorithms. Fur-
thermore, our classifier can incorporate the influence of edge direction (unilateral
or unsymmetric dependence) and other edge characteristics unlike other graph
kernels considered so far. Thus our classifiers have the potential to tackle large
complex real-world problems. Experimental results show that the performance
is fairly good compared with diffusion and linear kernels. Our classifiers can
be understood as a kind of discrete version of coulomb classifiers introduced by
Hochreiter, Mozer, and Obermayer [4] that relies on an analogy with electro-
statics. They can also be regarded as a nonlinear extension of semi-supervised
learning on graph based on Gaussian random field model proposed by Zhu,
Ghahramani, and Lafferty [15]. Therefore, a random walk interpretation is also
possible; see [1] for the relationship between electric networks and random walks.

This paper is organized as follows. In Section 2, before introducing our
classifier, we discuss a general framework for semi-supervised learning using
monotropic programming. This framework is very flexible and clarifies the math-
ematical structure of our classifier. Then we introduce electric network classifiers
as its special case. In Section 3, we show experimental results.

2 Electric Network Classifiers

In this section, we introduce electric network classifiers and investigate their
mathematical properties, with emphasis on its connection to the standard C-
SVM framework of [11]. First, we propose a general framework for semi-
supervised learning using monotropic programming of R.T. Rockafellar [10] and
discuss its relationship to kernel methods. Next, we introduce electric network
classifiers as its special case.

2.1 Monotropic Programming Framework
for Semi-Supervised Learning

Let V be an input data space, U ⊆ V a training data set, and y : U → {−1, 1}
its label. To design a classifier, we assume an auxiliary space E together with a
linear map A : RE → RV , or a matrix called structure matrix, which represents
a discrete structure of V . In the canonical case of a directed graph, V is the
vertex set, E is the edge set, and A is the incidence matrix. More generally, in
the case of simplicial complex, we can choose V to be n− 1 dimensional faces,
E to be n dimensional faces and A to be the boundary operator.

The proposed classifier constructs discriminant potential p∗ : V → R and
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classify the data set according to the sign of p∗ as
{

p∗i ≥ 0 ⇒ the label of i is +1,
p∗i < 0 ⇒ the label of i is −1.

(2.1)

This potential p∗ is constructed from the optimal solution of a monotropic pro-
gramming problem [10], which consists of the following dual pair of convex
optimization problems.

[P]





min
ξ∈RE ,u∈RU

∑

e∈E

fe(ξe) +
∑

j∈U

gj(uj)

s.t. (Aξ)i =
{

0 if i ∈ V \ U,
ui if i ∈ U,

(2.2)

[D]





min
η∈RE ,p∈RV

∑

e∈E

f∗e (ηe) +
∑

j∈U

g∗j (−pj)

s.t. η = A>p,
(2.3)

where fe, gj : R → R∪{+∞} are convex functions and f∗e , g∗j : R → R∪{+∞}
are the Legendre transforms of fe and gj defined, respectively, as

f∗e (ηe) = sup
ξe∈R

{ηeξe − fe(ξe)}, g∗j (qj) = sup
uj∈R

{qjuj − gj(uj)}. (2.4)

In this optimization problem [P], the convex functions gj and the variables
uj play the role of teaching signals by the training set. In particular, we choose
g∗j as a kind of a penalty function like

g∗j (−pj)
{

= 0 if 1− yjpj ≤ 0,
> 0 otherwise. (2.5)

The convex functions fe, f
∗
e play the role of the regularization. The canonical

choice of fe, f
∗
e is the following squared-norm type function

fe(ξe) = reξ
2
e/2, f∗e (ηe) = η2

e/2re (e ∈ E), (2.6)

where re is a positive parameter. On the basis of an optimal solution (η∗, p∗)
to [D], we classify data set V according to the sign of p∗ as (2.1). We call this
p∗ an optimal discriminant potential.

The relationship between our approach and kernel methods is revealed in the
special case of fe given by (2.6). Let A+ : RV → RE be a reflexive minimum-
norm generalized inverse of A with respect to the squared norm

∑
e∈E fe in

(2.6), i.e., A+ satisfies

AA+A = A, A+AA+ = A+ (2.7)

and that for any y ∈ ImA, A+y is the minimum norm point of {x ∈ RV | Ax =
y}; see [8] for generalized inverses. From A+, we define a positive semidefinite
kernel K : V × V → R as

K(i, j) = ((A+)>RA+)ij (i, j ∈ V ), (2.8)

where R is the diagonal matrix whose diagonal entries are {re}e∈E , and let D
be a matrix satisfying Im A = Ker D. Then, we have the following.
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Theorem 2.1. The problem [P] with fe of (2.6) is equivalent to

[P′] min
u∈RU

1
2

∑

i,j∈U

K(i, j)uiuj +
∑

j∈U

gj(uj) (2.9)

s.t.
∑

j∈U

Dkjuj = 0 (∀k : row index of D). (2.10)

Let u∗ be an optimal solution to [P′] and µ an optimal Lagrange multiplier of
the equality constraints (2.10). Then an optimal discriminant potential p∗ is
given as

p∗i =
∑

j∈U

K(i, j)u∗j + (D>µ)i (i ∈ V ). (2.11)

Recall C-SVM classifier [11], which is obtained by solving the following op-
timization problem

[C-SVM]: min
α∈RU

1
2

∑

i,j∈U

αiαjyiyjK(i, j)−
∑

i∈U

αi

s.t.
∑

i∈U

yiαi = 0, 0 ≤ αi ≤ C (i ∈ U),

where C is a penalty parameter that is a positive real number or +∞. Let α∗

be an optimal solution of [C-SVM] and b∗ an optimal Lagrange multiplier of the
equality constraint. Then SVM decision function f : V → R is given as

f(i) =
∑

j∈U

yjα
∗
jK(j, i) + b∗ (i ∈ V ). (2.12)

The relationship to C-SVM framework is summarized as follows.

Corollary 2.2. If ImA = Ker1 and

gj(uj) =
{ −yjuj if 0 ≤ yjuj ≤ C,

+∞ otherwise, (2.13)

g∗j (qj) = C max(0, 1 + yjqj) (2.14)

for j ∈ U with some positive parameter C, then the problem [P′] coincides with
C-SVM and the optimal discriminant potential p∗ defined as (2.11) coincides
with SVM decision function.

Remark 2.3. In semi-supervised learning, we may assume that data set V and
structure matrix A are stacked in a computer memory. Hence the computation
of kernel matrix K is not necessary since we can obtain potential p∗ by solving
the dual problem [D] directly. This p∗ generally does not coincide with (2.11)
if the optimal potential is not unique.

2.2 Electric Network Classifiers

We introduce electric network classifiers on graphs as a special case of the
monotropic programming framework. Let G = (V, E) be a directed graph,
U ⊆ V a training set, and y : U → {−1, 1} its label. We treat the vertex set
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Figure 1: Physical interpretation of electric network classifiers

V as the data space, the edge set E as the auxiliary space, and the incidence
matrix

A(v, e) =





1 if e leaves v,
−1 if e enters v,

0 otherwise,
(v ∈ V, e ∈ E) (2.15)

as the structure matrix. In this setting, we consider the optimization problems
[P] and [D] with some convex functions {fe}e∈E and {gj}j∈U . This problem
is exactly the same as the nonlinear network flow problem [5, 10]. Then the
following physical interpretation is valid; see also Figure 1.

ξ ∈ RE : currents on edges
u ∈ RU : currents flowing into labeled vertices from the earth
fe, gj : current energy on edges
η ∈ RE : potential differences on edges
p ∈ RV : potential on vertices
f∗e , g∗j : potential energy on edges

Each potential on vertices is normalized so that the earth has zero potential. We
call this classifier an electric network classifier. With general convex functions
on the edges, the electric network classifier can incorporate various types of edge
characteristics; influence of edge direction, unsymmetric dependence, and so on.

When the electric network consists exclusively of Ohmic resistors, we have

fe(ξe) = reξ
2
e/2 (e ∈ E), (2.16)

where re denotes the resistances. With the choice of gj given in (2.13) our
electric network classifier coincides with C-SVM using kernel (2.8), where the
graph (V,E) is assumed to be connected. Furthermore, this kernel admits an
intuitive interpretation, as follows.

Theorem 2.4 ([3]). For fe in (2.16), kernel K in (2.8) can be taken as

K(i, j) = {d(i, i0) + d(j, i0)− d(i, j)}/2 (i, j ∈ V ), (2.17)

where d : V × V → R is the electric distance defined as

d(i, j) = the electric resistance between i and j (i, j ∈ V ) (2.18)
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Figure 2: A series connection of a diode and a resistor

and i0 ∈ V is an arbitrarily fixed root vertex.

This kernel K is called the electric network kernel and its explicit formulas
for some classes of graphs are known [3]. This electric network classifier with
Ohmic resistors, however, does not make use of the direction of edges, since
fe(ξe) = fe(−ξe). To express the link structure of the Web or the citation
graph of papers, for example, it is necessary to consider the influence of the
edge direction. For this, we introduce unsymmetric electric resistors as follows.
Set the current energy fe to

fe(ξe) =

{
r+
e ξ2

e/2 if ξe ≥ 0

r−e ξ2
e/2 if ξe < 0

(2.19)

for each edge e ∈ E, where r+
e and r−e are electric resistances (> 0) of posi-

tive and negative directions, respectively. With this approach, electric network
classifiers with general convex functions can incorporate the influence of the
edge direction. In particular, taking sufficiently large r−e , we can represent a
series connection of a diode and a resistor as Figure 2. Furthermore, C-SVM
interpretation is also possible.

Theorem 2.5. Consider the problems [P] and [D] with fe as (2.19) for each
edge e ∈ E and some convex functions {gj}j∈U . Let (ξ∗, u∗) and (η∗, p∗) be
optimal solutions to [P] and [D], respectively. Consider the modified problems
[P∗] and [D∗] with f̃e defined as

f̃e(ξe) = r̂eξ
2
e/2 with r̂e =

{
r+
e if ξ∗e ≥ 0

r−e if ξ∗e < 0
(2.20)

for each edge e ∈ E and the same {gj}j∈U . Then (ξ∗, u∗) and (η∗, p∗) are also
optimal to [P∗] and [D∗]. In particular, if we choose gj as (2.13), u∗ is an
optimal solution to the C-SVM problem with some electric network kernel.

2.3 Proofs

We use some basic notation and properties from convex analysis [9]. First,
we note that (ξ∗, u∗) and (η∗, p∗) are optimal to the monotropic programming
problems [P] [D] if and only if they are feasible and satisfy

fe(ξ∗e ) + f∗e (η∗e ) = ξ∗eη∗e , (e ∈ E), (2.21)
gj(u∗j ) + g∗j (−p∗j ) = −u∗jp

∗
j (j ∈ U) (2.22)
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(see [10, Chapter 8] [5, Chapter IV] for optimality conditions for nonlinear
network flow problems and also see [10, Chapter 11] for generall monotropic
programming). Second, for a convex function f : Rn → R ∪ {+∞}, x∗ ∈ Rn

is a minimizer of f if and only if it satisfies 0 ∈ ∂f(x∗), where ∂f(x∗) := {p ∈
Rn | f(x)− f(x∗) ≥ p>(x− x∗)} is called the subdifferential of f at x∗ (see [9,
Section 72] for optimality conditions of convex functions using subdifferential).

Proof of Theorem 2.1. The problem [P] with fe defined as (2.6) is rewritten as

min
u∈RU

min
ξ

{
ξ>Rξ/2

∣∣∣∣ Aξ =
(

0
u

)}
+

∑

j∈U

gj(uj) s.t. D

(
0
u

)
= 0.

(2.23)
Hence, using a reflexive minimum-norm generalized inverse A+, the inner opti-
mizer ξ∗ is given as

ξ∗ = A+

(
0
u

)
. (2.24)

Then, the inner optimal value is given by 1/2
∑

i,j∈U ((A+)>RA+)ijuiuj . Thus,
we obtain the first statement of Theorem 2.1. Next, we show that p∗ defined as
(2.11) and η∗ := A>p∗ are optimal to [D]. Let u∗ be an optimal solution of [P′]
and µ an optimal Lagrange multiplier of Lagrange function of [P′]

1
2

∑

i,j∈U

K(i, j)uiuj +
∑

j∈U

gj(uj) + µ>D

(
0
u

)
. (2.25)

Then, the subdifferential of the Lagrange function (2.25) at (u∗, µ) contains zero
(see [9, Theorem 28.3]). From this, we have

∂gi(u∗i ) 3 −
∑

j∈U

K(j, i)u∗j − (D>µ)i = −p∗i (i ∈ U). (2.26)

Hence, −p∗i ∈ ∂gi(u∗i ) implies (2.22) (see [9, Theorem 23.5]). On the other hand,
we have

η∗ = A>p∗ = A>
{

(A+)>RA+

(
0
u∗

)
+ D>µ

}

= RA+AA+

(
0
u∗

)
= RA+

(
0
u∗

)
= Rξ∗,

where the third equality follows from RA+A = (A+A)>R and Im A = Ker D,
and the fourth follows from reflexivity of A+. From η∗e = reξ

∗
e , we obtain

(2.21).

Proof of Corollary 2.2. From transformation αi = yiui for i ∈ U , we obtain the
standard C-SVM formulation.

Proof of Theorem 2.5. It is easy to check that in the modified problem, (ξ∗, u∗)
and (η∗, p∗) satisfy the optimality conditions (2.21) and (2.22).
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3 Experimental Results

We use the nonlinear cost network solver code asspg by Guerriero and Tseng [2],
available at http://www.math.washington.edu/˜tseng/. Since this program uses
a primal-dual type algorithm, we can obtain an optimal potential from this
program.

We use 20 newsgroups corpus for the performance evaluations. These are
available at http://www.cs.umass.edu/˜mccallum/. Each document of the 20
newsgroups is processed into the bag of words representation by Mallet tool kit.
We select three binary problems,

(1) rec.auto vs. rec.motorcycles,
(2) soc.religion.christian vs. alt.atheism, and
(3) comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware.

Graph structures are constructed as follows. We connect each document to
its 5-nearest neighbors, where the distance on documents is measured by the
cosine similarity. We use this distance as edge weight. Resulting graph sizes
are (1) 1995 vertices and 17963 edges (2) 1996 vertices and 19960 edges (3)
1993 vertices and 19930 edges. For electric network classifier, we take fe as
(2.16), re as edge weight, and gj as (2.13). For comparison, we use C-SVM
with linear and diffusion kernel which are implemented to LIBSVM package
which is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm/. For the dif-
fusion kernel, we use weighted Laplacian, i.e., L(i, j) = −1/w(i, j)(i 6= j) and
L(i, i) =

∑
j 1/w(i, j), where w is the edge weight. Then the diffusion kernel

is defined by (exp(−βL))(i, j) for the diffusion parameter β > 0. The C-SVM
parameter C is selected as C = 5. The diffusion parameter β is selected as (1)
β = 0.2, (2) β = 0.2 and (3) β = 0.3 by preliminary experiments. A half of
whole documents are randomly selected as unlabeled test data. The rest are
used for training data set consisting of labeled and unlabeled data. Experiments
are carried out, by varying the ratio of labeled data. This procedure is repeated
for 10 times. Averages of accuracy are reported in Figure 3.

Results show that the performance of our electric network classifier is fairly
good, compared with C-SVM with linear and diffusion kernel. In particular,
in the range of small ratio of labeled data, our classifier shows good perfor-
mance. This implies effectiveness of semi-supervised learning. Furthermore we
emphasize that learning time of our classifier is very short compared with diffu-
sion kernel, since diagonalization for computing diffusion kernel matrix is quite
heavy. Indeed, average learning times of our classifier using asspg for data sets
(1), (2), and (3) are 0.97 (s), 1.02 (s), and 1.27 (s), respectively. On the other
hand, average computational times for the construction of diffusion kernel ma-
trix exp(−βL) through diagonalizations for (1), (2), and (3) are 92.4 (s), 91.4
(s), and 92.5 (s), respectively. This experiment was done by Athron 64 2.2GHz
CPU machine with 2GB memory, and matrix diagonalizations for diffusion ker-
nel were done by Matlab. This indicates that our classifier has the scalability
for large problems.
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