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Abstract

It is proposed to use interval arithmetic for analysis of nonlinear systems, in particular,
for computation of their output admissible sets, which play an important role in constrained
control. A discrete-time system whose dynamics is expressed in polynomials is considered
first. When the initial state of such a system is known to belong to some multi-dimensional
interval, interval arithmetic enables us to compute an interval that includes all the possi-
ble state after some time steps. This fact together with polynomial optimization is used
to compute an output admissible set. Numerical examples show effectiveness of the pro-
posed approach. Extensions are considered to non-polynomial systems and continuous-time
systems.

1 Introduction

The purpose of this paper is to introduce interval arithmetic into the field of control theory
and to show its usefulness, in particular, in computation of an output admissible set, which is
important in constrained control.

Interval arithmetic is a technique developed in numerical analysis for evaluation of the effect
of a round-off error. The idea is to express an uncertain value using an interval that includes
all its possible values and redefine the arithmetic operations so as to use intervals rather than
numbers. For example, the sum of two intervals [z, Z] and [y, 7] is defined as [z+y, T+7]. Similar
definition is possible on subtraction, multiplication, division and also elementar} functions such
as exponential, logarithmic, and sinusoidal functions. It is easily seen how useful this idea
is in control. Consider a nonlinear discrete-time system whose initial state is uncertain but is
contained in a box-shaped set, that is, each coordinate of the initial state belongs to some known
interval. By applying interval arithmetic, it is possible to compute a set that includes all possible
states generated after some time steps. In this paper, this idea is extended to computation of
an output admissible set.
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An output admissible set plays an important role in controller design for a constrained
system, in which the state is required to satisfy some constraints for avoidance of undesirable
saturation or damage of the system. An output admissible set is a set of initial states such that
the state trajectory starting from that initial state satisfies the constraints for all the time. We
are especially interested in the mazimal output admissible set, which roughly means the set of
all initial states that can be handled with the current system configuration. In order to handle
an initial state outside of the maximal output admissible set, we need to switch a controller.

Gilbert and Tan (1991) proposed an algorithm to compute the maximal output admissible set
for linear systems. Hirata and Ohta (2005) extended this algorithm for nonlinear systems whose
dynamics are expressed in polynomials. This latter algorithm enables us to exactly compute
the maximal output admissible set. On the other hand, it has a drawback that it requires high
computational efforts. Indeed, it repeatedly solves polynomial optimization problems (Lasserre,
2001; Parrilo, 2003) and the degrees of the considered polynomials exponentially increase as
the repetition proceeds. In order to overcome this drawback, we propose in this paper a new
algorithm based on interval arithmetic. This algorithm only computes an output admissible set,
a subset of the maximal output admissible set, while the computed set is guaranteed to converge
to the maximal one if we allow large computational efforts. A numerical experiment shows that
it gives an almost maximal output admissible set within a much less computational time than
the algorithm of Hirata and Ohta. The details can be found in Section 6.

The algorithm proposed in this paper consists of two procedures. First, it computes an
invariant set satisfying the given constraints for the given nonlinear system. This invariant set
is already one output admissible set though it may be much smaller than the maximal one.
The second procedure is to enlarge this set using interval arithmetic. Although we limit our
discussion to discrete-time systems whose dynamics are expressed in polynomials, extension to
more general nonlinear systems and to continuous-time systems is possible. A basic idea is given
in Section 7.

The construction of this paper is as follows. Interval arithmetic is introduced in Section 2.
An output admissible set is discussed in Section 3. The first procedure of the algorithm is
explained in Section 4 while the second procedure in Section 5. A numerical example is given
in Section 6 and extension of the algorithm is considered in Section 7. Section 8 concludes the
paper.

The inequality X > O means that the real symmetric matrix X is positive definite, that is,
all of its eigenvalues are positive. Similarly, X > O means that X is positive semidefinite. The
symbol T stands for a transpose of a matrix or a vector.

2 Interval Arithmetic

Interval arithmetic is the arithmetic using intervals rather than numbers (Moore, 1962; Alefeld
and Herzberger, 1983; Neumaier, 1990). For given intervals, the result of interval arithmetic is
defined to be the smallest interval that includes all the possible elementwise arithmetic results.
More explicitly, for two intervals X = [z,7] and Y = [y, 7], their addition and multiplication are



defined as

X+Y={z+y|zeX,yeY}
X-YV={ay|oveX,yeY}

It is easy to see that

X+Y=[z+yT+Y)
XY= [mln{gg, Y, 2Y, fg}a max{@ga Y, 2Y, fg}]

Although it is possible to extend this idea to elementary functions, we rather limit our scope in
this paper for the sake of simplicity. We also define the width of X as T — z. In some cases, we
consider an n-dimensional interval U = [u;,a1] X - - - X [u,,, Up]. The width of U is defined as the
maximum of Uy — uy,..., U, — U,.

In order to see how we can use this technique in control theory, let us consider a nonlinear
discrete-time time-invariant system

x(t+1) = f(a(t)), (1)
where the real vector & = (21,...,2,)" denotes its state. We make two assumptions.
(i) Each element of f(x) = (fi(x),..., fu(x))T is a polynomial in z1,...,z,.
(ii) The origin is an equilibrium of the system (1), i.e., f(0) = 0.

Suppose that the initial state x(0) is known to be an element of a given n-dimensional interval
U(0). Then, by evaluating f(x(0)) with interval arithmetic, we can obtain an n-dimensional
interval U(1), which includes all (1) that can result from an x(0) belonging to U(0). By
repeating the same procedure to the obtained interval, we can also obtain U (t), an interval that
includes all the possible x(t) for ¢ = 2,3,.... Here, we consider that the coefficients of the
polynomials fi(x), fo(x),..., fn(x) are exact, that is, they are intervals of width zero. When
we compute XZ + X - X, for example, we first compute two intervals X 12 and X - X5 and then
sum them up just as they are two independent intervals. Note that the resulting interval may
be larger than {z1? + 2122 ‘ z1 € X1,29 € Xo}. By the same reason, U(t) may be larger than
the smallest interval that includes all x(t).

There are several techniques to make U (t) not too large. The idea is to compute U(¢) not
only from U(t — 1) but also from U(0),U(1),...,U(t —2) in order to avoid accumulation of the
error (Nickel, 1985; Corliss, 1995). In this paper, we employ the following technique. Let A be
the Jacobian matrix of f(x) at * = 0 and write h(x) := f(x) — Az. Then, the system (1) is
written as

x(t+1) = Az(t) + h(x(t)), (2)

where each term of h(x) is of order two at least due to Assumption (ii).
Suppose that we have the intervals U(i), i = 0,1,...,¢t — 1, and want to compute U(t). A
solution of the difference equation (2) is

z(t) = A'z(0) + Y A h(2(i - 1)). (3)
=1
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Noting this formula, we first compute an n-dimensional interval U; that includes {h(z(i — 1)) |

x(i —1) € U(i — 1)} for each i = 1,2,...,t. Then we compute an n-dimensional interval U
containing A’U(0) and an n-dimensional interval U; containing A'~*U; for each i = 1,2,...,t.

The desired interval U(t) can be computed as
Ut)=Up+ Uy -+ Uy, (4)

where the addition is performed elementwise.

Interval arithmetic is considered to be useful for various analysis of nonlinear systems such as
computation of a domain of attraction. In the rest of this paper, we show how one can compute
an output admissible set, which is useful for control of a constrained system.

3 Output admissible set

We consider the nonlinear discrete-time system (1). In addition to Assumptions (i) and (ii), we
assume that

(iii) The Jacobian matrix of f(x) at & = 0 has all the eigenvalues in the open unit disk.

We want to make the state x(t) of the system satisfy

g1(x(t)) >0, ga(2(t)) > 0, ..., gm(2(t)) 2 0 (5)
for t =0,1,... in order to avoid undesirable saturation or damage of the system. Let us denote
the feasible region as

G={z|g(z) 20,02() > 0,...,9m(x) > 0}. (6)

On these constraints, the following assumptions are made.
(iv) Each of gi(x),...,gm(x) is a polynomial in x1,...,x,.
(v) The origin belongs to the interior of G.

Descriptions of constraints considered here are not explicit output constraints and can handle
any state and control constraints. Here, we want to find the set of all initial states such that the
state trajectory starting from that initial state is included in G. This set is called the mazimal
output admissible set.

The maximal output admissible set and a concept of set invariance play fundamentally
important role in analysis and control design of systems with constraints. They have been
used extensively throughout analysis and design methodologies including multimode controller
switching strategies (Hirata and Fujita, 2000; McClamroch and Kolmanovsky, 2000), reference
management problems (Bemporad, 1998; Gilbert and Kolmanovsky, 1999, 2002; Hirata and
Fujita, 1999) and persistent disturbance rejection problems (Shamma, 1996; Lu, 1998). More
detailed descriptions can be found in references therein and a survey paper (Blanchini, 1999).
Gilbert and Tan (1991) gave an algorithm to compute maximal output admissible sets in the
special case that f(x) is linear in . Recently, Hirata and Ohta (2005) extended the algorithm



so as to be applicable to the present setting with polynomial f(x), and this makes it possible
to determine the maximal output admissible set in a constructive way. An advantage of this
algorithm is that exact computation of maximal output admissible sets is possible in case of poly-
nomial f(z). On the other hand, the degrees of the polynomials represent specific optimization
problems required by the algorithm grow exponentially as iterative computations proceeds. As
a result, this algorithm requires high computational efforts.

Motivations of the present work come from controlling nonlinear systems with state and
control constrains. It is true that the maximal output admissible set or set invariance properties
have been utilized in control design problems in nonlinear settings (Bemporad, 1998; Lu, 1998;
McConley et al., 2000; Miller et al., 2000; Gilbert and Kolmanovsky, 2002). However, due to the
difficulties of issues for exactly computing maximal output admissible sets for nonlinear systems,
certain subset of the maximal output admissible set such as sublevel set of Lyapunov functions
or simulation based estimations of constraints admissible regions are used. Computationally
efficient exact determinations or precise approximations of maximal output admissible sets may
have direct applications with theses control design approaches.

Motivated by this fact, we consider an alternative approach using interval arithmetic. Since
our system is nonlinear, it may have an equilibrium at a different point from the origin. Con-
centrating on the equilibrium at the origin, we define the maximal output admissible set as

Ox = {:B(O) ‘ x(t) € Gfort=0,1,... and lim x(¢) = 0}.

t—00

Our approach is to compute an output admissible set, i.e., a subset of the maximal output
admissible set, and to enlarge it using interval arithmetic. The first procedure is explained in
Section 4 while the second in Section 5.

4 Finding a Subset

This section explains how we can find an output admissible set. First, we linearize the given
system at the origin, and find a quadratic Lyapunov function V(z) = &' Px for the linearized
system. If we choose a level set of V' (x) small enough, the function V' (x) works as a Lyapunov
function of the original system in that set and the constraints (5) are also satisfied, there. This
means that this level set is an output admissible set.

Using the notation in (2), we write the given system as

x(t +1) = f(=(t) = Az(t) + h(2(t)),

where A is the Jacobian matrix of f(x) at £ = 0. We compute a quadratic Lyapunov function

for the linearized system x(¢t + 1) = Ax(t). For that purpose, we consider the semidefinite
program:
maximize ¢
subject to P — AYPA = tI, (7)
Pt

where the optimization variables are the scalar ¢ and the symmetric matrix P. By Assump-
tion (iii), its maximum value is positive and the maximizing P gives a desired Lyapunov function

V(z) =z Pz.



Let us define a level set of V' (x) by

Lv(y) ={z | V(z) <~}.

If we choose v small enough, V() can be a Lyapunov function of the original system in Lv(7).
This is stated in the next proposition, whose proof is easy and omitted.

Proposition 1. There exists a positive number v such that
(Az + h(z))" P (Az + h(z)) — TPz < 0
holds for any nonzero x € Lv(y).

Suppose that v is a number as in Proposition 1. Then, if £(0) € Lv(y), the state x(1) =
Az (0)+h(x(0)) satisfies V(2(1)) < V(2(0)) and thus (1) € Lv(y). By repeating this reasoning,
we can see that x(t) belongs to Lv(y) for all t = 1,2,... if it evolves according to the original
system x(t + 1) = Ax(t) + h(x(t)). In other words, the level set Lv(y) is an invariant set.
Moreover, V(x(t)) approaches zero as t becomes larger (Lemma 5. 3. 40 of Vidyasagar (1993)).
Hence, limy_, @ (t) = 0. These are desirable properties for us because such Lv(7) becomes an
output admissible set if it has the additional property Lv(v) C G.

In order to find a 7 as in Proposition 1, we solve the following polynomial optimization
problem with  being the optimization variable:

minimize &' Pz
subject to  (Ax + h(z)) P (Az + h(z)) ®)
—zTPx >0,
T Px > ¢.

Here, ¢ is some small positive number, which is introduced for exclusion of the trivial solution
x = 0. In the case that the value obtained as the minimum is equals to ¢, replace € by a smaller
number and solve the problem again.

Let us denote by 7y the value computed as the minimum. Suppose for a while this rg is
really the minimum of the problem (8). Then the situation is as in Figure 1. Here, the first
constraint of the problem (8), i.e., (Az + h(z))" P (Az + h(z)) — 2T Pz > 0, is satisfied in the
shaded region while it is not in the white region. The set Lv(ry) shown as an ellipse touches
but does not deeply intersect the shaded region. This means that r¢ can be a v that appeared
in Proposition 1.

We actually solve a polynomial optimization problem by relaxing the constraints (Lasserre,
2001; Parrilo, 2003), which means that the obtained ry may be a lower bound of the minimum
value. In this case, Lv(rg) is an ellipse smaller than the ellipse in Figure 1. Note that, still in this
case, Lv(rg) is included in the white region. Therefore, y can be used as a 7 in Proposition 1.

As is explained before, if the considered level set is further included in G, this becomes
an output admissible set. In order to find such a level set, we solve the following polynomial
optimization problem for each z =1,...,m:

minimize ! Pz (9)
subject to  g;(z) <O0.
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Figure 1: The level set obtained by solving the problem (8).

Let us denote the obtained value by r; for each i = 1,...,m. Then, Lv(r;) is contained in the
region {x ‘ gi(x) > 0} by a similar reasoning as before. (If r; is really the minimum of problem
(9), Lv(r;) is the maximal level set contained in this region.) Define r := min{ro,r1,...,7m}.

We can now see that Lv(r) is an output admissible set. We conclude this section by summarizing
the procedure.

Procedure 1. Step 1 Solve the semidefinite program (7) to obtain a quadratic Lyapunov func-
tion of the linearized system x(t + 1) = Az (t). Write the obtained Lyapunov function as
V(z) =x"Px.

Step 2 Solve the polynomial optimization problem (8) to find Lv(rg) in which V(x) is a Lya-
punov function of the original system.

Step 3 Solve the polynomial optimization problem (9) to find Lv(r;) contained in the region
{x ‘ gi(x) > 0} for eachi=1,...,m.

Step 4 Denote by r the minimum of ro,71,...,rm. Then, Lv(r) is an output admissible set.

5 Enlarging a Set

Since the output admissible set Lv(r), which was obtained in Section 4, can be much smaller
than the maximal output admissible set Oy, we consider in this section how we can enlarge this
set. The idea is to divide the region surrounding Lv(r) into small n-dimensional intervals and
to make them evolve using interval arithmetic as was described in Section 2. See Figure 2. Let
U(0) be one such initial interval and U(t) be the interval obtained for the time ¢. Suppose that
there exists ¢y such that

U(ty) C Lv(r), (10)
Ult)CG fort=0,1,...,t. (11)

In this case, if the initial state x(0) is an element of U(0), the state x(t) resulting from this
x(0) belongs to G for t =0,1,...,ty because x(t) € U(t) and U(t) C G. Moreover, x(t) belongs
to G also for t = tg + 1,tp + 2,... and x(t) approaches the origin as ¢ becomes larger because
x(tp) C Lv(r) and Lv(r) is an output admissible set. This means that this U(0) is itself an



Figure 2: The idea to enlarge Lv(r).

output admissible set and so is the set Lv(r) UU(0). Thus, we can make an output admissible
set larger. It is not difficult to check the inclusions (10) and (11). Note that both U(ty) and
Lv(r) are convex. Hence, in order to check U(tg) C Lv(r), it suffices to check whether all vertices
of U(tg) belong to Lv(r). If G happens to be convex, we can use the same technique to see if
U(t) € G. If this is not the case, we use interval arithmetic. Compute an interval C; = [c;, ;]
containing g;(U(t)) for j = 1,2,...,m. If ¢; > 0 for all j, we can conclude U(t) C G. This
latter method may be useful even for a convex G when the dimension n is considerably large.

Based on the preceding discussion, we can construct the following algorithm. Here, Z,..
stands for the set of intervals judged to be an output admissible set; Z¢; the set of intervals not
judged to be an output admissible set; Z., the set of intervals not yet checked.

Procedure 2. Step 1 Set Z,.. + 0, Lrej < 0, and Zepe < {U ‘ U is an n-dimensional interval
intersecting Lv(r) but not contained in Lv(r)}.

Step 2 If Zohe s empty, then stop.
Step 3 Pick one interval W from Lo and set it to be U(0). Set Zene <— Zene \ {W} and t < 0.
Step 4 If we cannot verify U(t) C G, set Lrej < Lrej U {U(0)} and go back to Step 2.

Step 5 If we can see U(t) C Lv(r), set Zace < Zace U{U(0)} and Zepe < Zene U{U ‘ U is an
n-dimensional interval adjacent to U(0) and not belonging to TaccULej}. Go back to Step
2.

Step 6 Sett <+ t+ 1 and go back to Step 4.

After executing this procedure, consider the union of Lv(r) and all the intervals in Z,... This
union is an output admissible set and is expected to be considerably larger than Lv(r). Indeed,
the obtained output admissible set converges to the maximal one Oy, as we make the width of
the initial intervals smaller, which we show in Proposition 2.

Proposition 2. Let g be any point in the interior of O. Let ty be a number such that x(to)
belongs to the interior of Lv(r) when the system (1) evolves from x(0) = xo. Then, there exists
a positive number w such that, if an interval U(0) contains xy and has the width less than w,
the corresponding U (t) satisfies (10) and (11).

Proof. As the width of U (0) approaches zero, the width of U (t) converges to zero by the definition
of interval arithmetic. Thus, the proposition follows. O
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Figure 3: The output admissible sets computed when the width of the initial intervals is (a) 0.05,
(b) 0.03, and (c) 0.01, respectively. The rough shape of the maximal output admissible set is
shown in (d).

6 Numerical Examples

In this section, we show two examples. From them, one can see that the obtained output
admissible set converges to the maximal one as the width of the intervals gets smaller. It is also
seen that the present algorithm stops with much shorter running time than the algorithm of

Hirata and Ohta (2005).

The algorithm is implemented with MATLAB. The polynomial optimization problems are
solved by SOSTOOLS (Prajna et al., 2004) with SeDuMi (Sturm, 1999) as a solver for semidef-
inite programming. All the experiments were made on the 2.2 GHz Athlon processor with 2.0
GByte memory. Consider the system

z1(t+1) = —0.07071z,> + 0.07071z, 2 + 0.70862; — 0.12x>,
zo(t + 1) = 0.035362,% — 0.035362,% + 0.07071x;
— 0.0353625° + 0.0353625> + 0.92929z5,

with the constraints —0.5 < 1 < 15 and —0.5 < 29 < 20. Here, we omit the dependence in ¢
to make the description simple. Since this system satisfies Assumptions (i)—(v), we can apply
the proposed algorithm to the system. Figure 3 (a), (b), and (c¢) show the computed output
admissible sets (the black regions) when the width of the initial intervals is set to 0.05, 0.03, and
0.01, respectively in Procedure 2. In Figure 3 (c), the level set Lv(r) obtained in Procedure 1 is
also shown (the ellipse). The rough shape of the maximal output admissible set Oy is shown in
Figure 3 (d). Here, we check membership to O for each grid point of distance 0.1 by letting
the system evolve from each grid point. One can see from the numerical results that the output
of the present algorithm converges to the set O as is expected in Proposition 2. The time to
compute (c) was 389.4 seconds. Although we applied the algorithm of Hirata and Ohta to the
same example, we were not able to get a result due to a shortage of memory. With the present



algorithm, it is possible to make the running time even shorter by implementing the program
for interval arithmetic with Java. The result was 104.5 seconds.

Next, we computed output admissible sets for the same system but with replacing the con-
straints by —0.5 < z; < 1.0 and —0.5 < 22 < 1.0. The running time of the present algorithm
was 99.9 seconds whereas that of Hirata and Ohta’s is 2865.7 seconds. The obtained results are
almost the same between the two algorithms.

7 Extensions

It is possible to extend the present algorithm so as to be applicable to two classes of systems:
non-polynomial systems and continuous-time systems. We give in this section an idea for the
extensions.

Suppose that the function f(x) of the given system x(t + 1) = f(x(t)) is expressed not
only with polynomials in « but also with elementary functions like sinusoidal, exponential, and
logarithmic functions. Suppose the same for g;(x),. .., gn(x) in the given constraints. Even in
this case, we can execute the latter half of our algorithm, i.e., Procedure 2, to enlarge an output
admissible set, since we can perform interval arithmetic with elementary functions. Only the
problem is that we cannot utilize polynomial optimization in the former half of the algorithm,
i.e., Procedure 1, to obtain a small output admissible set Lv(r). Hence, we take the following
approach instead.

Let us write as g—i(m) the Jacobian matrix of f(zx) evaluated at . Note that g—i(m) is
again expressed with elementary functions. Choose a small n-dimensional interval X containing
the origin. By evaluating g—g;(:c) with interval arithmetic, we can obtain matrices A, ... A®)

such that their convex hull includes g—i(w) | @ € X}. Next, find a positive definite matrix P

such that P — AOT pA® = O for i = 1,...,p by semidefinite programming. If there exists
such a P, choose v so that the level set {x ‘ x'Px < 7} is contained in X and also in
G = {=x ‘ gi(x) > 0,...,9m(x) > 0}. This task is accomplished with interval arithmetic
again. The obtained level set is an output admissible set. If there is no P satisfying the above
inequalities, choose the interval X smaller and repeat the same procedure.

Next, suppose that we are given a continuous-time system expressed in polynomials. We
can adapt Procedure 1 to this case with replacing the Lyapunov inequality by the continuous-
time counterpart. In order to adapt Procedure 2, however, we need a device to solve &(t) =
f(x(t)) with interval arithmetic. There are several techniques to solve an ordinary differential
equation with interval arithmetic (Corliss, 1995). We use here the technique of Iri and Amemiya
(1995) (see also Kubota and Iri (1998)). Its basic idea is as follows.

We solve &(t) = f(x(t)) with the initial value x(0) belonging to the given interval U(0).
Suppose that we have an interval U(#;) that includes all the possible values of (). For some
tpr1 > tx, we will obtain an interval U (¢, 1) that includes all the possible values of @ (¢ 1). For
this purpose, we note that the Taylor expansion of x(t) gives

@(tgpe1) = 2(ty) + (toyr — tr)&(te) + - - -

4+ e = 0)" )
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Figure 4: The output admissible set computed for the given continuous-time system (the black
region) and the associated level set Lv(r) (the ellipse).

where 7 is some number between t; and t; ;. Using the relation &(t) = f(«x(t)), it is possible
to express &(t),..., 2" (t), 2Pt (t) as functions of «(t). Namely, they are polynomials in a(t)
since so is f(-). Thus, it is possible to evaluate all the terms of (12) but the last using interval
arithmetic under the condition x(t;) € U(ty). If we further have an interval Vj, that includes all
the possible values of x(t), t; <t < tr11, we can also evaluate the last term of (12) and obtain
an interval U (t;4+1) that includes @(¢541). In order to compute Vj, we consider the inequality

V2 U(tk) + fF(V) (k1 — k), (13)

where V' is an interval and f(V') is the result of interval arithmetic to evaluate f(x) for x € V.
If we can find V satisfying this inequality, we can use it for V. Hence, we begin with some small
interval V', check (13), and enlarge V' if we fail. Once we can find an appropriate interval V,
we can compute U(tg41) that includes a(t;+1) and we can step further.

As an example, consider the system

d

% — —0.007072,% + 0.007072,2 — 0029142, — 0.024x5,
d.TQ o 3 2

2 = 0.003542," — 0.003542,” + 0.00707a,

—0.00354x5% + 0.00354x5% — 0.00707 5,

with the constraints —1.5 < z; < 15 and —1.5 < x5 < 20. We executed the algorithm sketched
so far. Figure 4 shows the computed output admissible set (the black region) and the level set
Lv(r) used in the former half of the algorithm (the ellipse).

8 Conclusion

In this paper, we proposed a new algorithm to find an output admissible set for a nonlinear
discrete-time time-invariant system expressed in polynomials. It is based on interval arithmetic.
The obtained output admissible set converges to the maximal one as we take higher computa-
tional efforts. Numerical examples show that the proposed algorithm stops in a much shorter
running time than the existing algorithm of Hirata and Ohta (2005).

In order to shorten the running time of our algorithm, it may be effective to use n-dimensional
intervals of different widths in the phase of enlarging an output admissible set. First, we enlarge

11



the set using intervals of width 6; and we get a larger output admissible set ©1. Secondly, we
divide the region surrounding ©; into intervals of width 6, (< ;) and we get an even larger
output admissible set ©,. In this way, we can gain a larger output admissible set efficiently.
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