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Abstarct

Suppose that we have a timetable of a round-robin
tournament with a number of teams, and distances
among their homes. The home-away assignment
problem is to find a home-away assignment that min-
imizes the total traveling distance. We propose a for-
mulation of the home-away assignment problem as
an integer program, and a rounding algorithm based
on the Bertsimas, Teo and Vohra’s dependent ran-
domized rounding method [2]. Computational exper-
iments show that our method quickly generates feasi-
ble solutions close to optimal.

1 Introduction

Sports scheduling recently has become one of the
main topics in the area of scheduling (e.g., see “Hand-
book of Scheduling” Chapter 52 (Sports Schedul-
ing) [5]). This paper deals with the home-away as-
signment problem in sports scheduling, which assigns
home or away to each match of a round-robin tourna-
ment so as to minimize total traveling distance. We
propose an approach based on the Bertsimas, Teo and
Vohra’s dependent randomized rounding method [2]
and the home-away assignment generation algorithm
proposed in [12].

This paper is organized as follows: Section 2 de-
fines the home-away assignment problem, and pro-
poses formulations of the problem as an integer pro-
gram; after describing our rounding algorithm in Sec-
tion 3, we discuss its approximation ratio in Section 4;
Section O reports the results of computational exper-
iments; Section 6 states conclusions.

In [16], authors proposed technique to transform
the home-away assignment problem to MIN RES
CUT, and applied Goemans and Williamson’s algo-
rithm for MAX RES CUT [9] based on the positive
semidefinite programming relaxation. We have shown
that the above approach gives solutions with high
quality. However, the computational effort for solving
positive semidefinite programming problems is not ig-
norable. In this paper, we propose algorithms based
on linear programming relaxation, and the computa-
tional experiments show that our algorithm efficiently
produces feasible solutions close to optimal. Surpris-
ingly, in many cases the quality of obtained solutions
is competitive with or better than that of solutions
obtained by the positive semidefinite programming
approach.

For a given timetable, the problem to find a home-
away assignment that minimizes the number of breaks
(consecutive pairs of home-games or away-games)
is called the break minimization problem. There
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Figure 1: A timetable and home-away assignment of
six teams

are several previous results on this problem (see
[14, 17, 6, 11, 12]). In [12], Miyashiro and Matsui
showed that the break minimization problem is essen-
tially equivalent to the problem for minimizing the
total traveling distance when the distance of every
pair of homes is equal to 1. Thus we can apply the
algorithm proposed in this paper to the break mini-
mization problem.

2 Home-Away Assignment Problem

We introduce a mathematical definition of the home-
away assignment problem. Throughout this paper,
we deal with a round-robin tournament with the fol-
lowing properties:

e the number of teams (or players etc.)
where n is a positive integer;

is 2n,

e the number of slots, i.e., the days when matches
are held, is 2n — 1;

e each team plays one match in each slot;

e cach team has its home and each match is held
at the home of one of the playing two teams;

e cach team plays every other team once.

Figure 1 is a schedule of a round-robin tournament,
which is described as a pair of a timetable and home-
away assignment defined below.

We denote a set of teams by T' = {1,2,...,2n} and
aset of slots by S = {1,2,...,2n—1}. A timetable T
is a matrix whose rows and columns are indexed by
the set of teams T and set of slots S, respectively.
Each entry 7(¢,s) ((t,s) € T x S) of a timetable T
shows the opponent of team ¢ in slot s. Thus, a
timetable 7 should satisfy the following conditions:

e for each team ¢t € T, the t-th row of 7 contains
each element of T\ {t} exactly once;

e for any (t,s) € T x S, 7(7(¢,s),s) = t.

For example, team 2 of Fig. 1 plays team 4 in slot 5,
and accordingly team 4 plays team 2 in slot 5.

A team is at home in slot s if the team plays a
match at its home in s, otherwise said to be at away
in s. A home-away assignment (HA-assignment for
short), say A, is a matrix whose rows are indexed by T'
and columns by S. Each entry a;s ((t,s) € T x S)
of A iseither ‘H’ or ‘A,” where ‘H’ means that in slot s
team t is at home and ‘A’ is at away.

Given a timetable 7, an HA-assignment A is
said to be consistent with T if V(¢,s) € T x
S, {at,s,0-(1,5),s} = {A,H} holds. A schedule of a
round-robin tournament is described as a pair of a
timetable and an HA-assignment consistent with the
timetable, as Fig. 1.

A distance matriz D is a matrix with zero diago-
nals whose rows and columns are indexed by 7' such
that the element d(t,t") denotes the distance from the
home of team ¢ to that of team #'. In this paper, we
assume that D is symmetric and satisfies triangle in-
equalities. Given a consistent pair of a timetable and
an HA-assignment, the traveling distance of team ¢ is
the length of the route that starts from ¢’s home, vis-
its venues where matches are held in the order defined
by the timetable and HA-assignment, and returns to
the home after the last slot. The total traveling dis-
tance is the sum total of the traveling distances of all
teams.

Given only a timetable of a round-robin tourna-
ment, one should decide a consistent HA-assignment
to complete a schedule. In practical sports
timetabling, the total traveling distance is required
to be reduced [15]. In this context, the home-away
assignment problem is introduced as follows.

Home-Away assignment problem

Instance: a timetable 7 and distance matrix D.

Task: find an HA-assignment that is consistent
with 7 and minimizes the total traveling dis-
tance.

We propose a formulation of the Home-Away as-
signment problem as an integer programming prob-
lem. In the rest of this paper, we denote the last slot
by s, i.e., § = 2n — 1. We introduce 0-1 variables
yrs ((t,s) € T x S) such that y, s is 1 if and only if
team t is at away in slot s, and continuous variables
wys ((t,8) € T x S\ {§}) where w; , represents the
traveling distance of team ¢ between slots s and s+ 1.
Then we can formulate the Home-Away assignment
problem as follows:
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where wy s ((t,s) € T x S\ {§}) variables are free
continuous variables.

The constraints in IP are explained as follows. The
first and second constraints give the lower envelope
of the following four points (yis,Yt,s+1,Wrs) €
{(0,0,0), (1,0, d(t',¢)), (0,1,d(t, ")), (1,1,d(t',t"))}
where t' = 7(t,5) and ¢ = 7(t,s + 1), because
the distance matrix satisfies triangle inequalities.
The third constraints guarantee that every HA-
assignment, corresponding to a feasible solution is
consistent with the given timetable.

A linear relaxation problem LP is a linear pro-
gramming problem obtained from IP by substituting
the 0-1 constraints for variables y; , for nonnegativity
constraints y; s > 0 (V(t,s) € T x S). The follow-
ing theorem shows that LP has an optimal solution
satisfying half-integrality.

Theorem 1 In any extreme point optimal solution
of LP, y; s € {0, 3,1} holds for any (t,s) € T x S.
Proof. See Appendiz A.

A set of instances satisfying that all the non-
diagonal elements of D are 1 is called the constant
case. We show that in the constant case, IP becomes
an instance of MIN 2SAT. Given a set of clauses each
of which consists of at most two literals, MIN 2SAT
finds a true-false assignment to literals that mini-
mizes the number of satisfied clauses. We introduce a
propositional variable Y; , for each index (¢,s) € T'x S
that has the value TRUE if and only if y; s = 1. Then
the traveling distance w; s is equal to 1 if and only
if the clause Y; 5 V Y; 541 has the value TRUE. We can
express the term d(t,7(t,s)) y:,s appearing in the ob-
jective function of IP as a clause consists of one lit-
eral Y; 5. The equality y; s + Y- (1,5),s = 1 is essentially
equivalent to the property that Y; , is the negation
of Y7 (;,5),s- There are some results on MIN 25AT (see
[2, 1] for example).

3 Randomized Rounding Algorithms

In our algorithms, we solve the linear relaxation prob-
lem LP first. If an obtained solution is 0-1 valued, we

have an optimal solution for the original problem IP.
Otherwise, we construct a feasible solution of IP by
rounding the obtained solution. In the following, we
propose three randomized rounding algorithms. We
denote an optimal solution LP by (y*, w™).

3.1 Independent Randomized Round-
ing

The first algorithm is the independent randomized
rounding algorithm that generates a 0-1 valued so-
lution as follows. For each pair of teams {t,¢'}, we
decide the venue of the match between ¢ and t' in-
dependently. Let s be the slot when ¢ and ¢’ plays a
match, i.e., 7(t,s) = t. Then we construct a solution
y" of IP by setting the pair of variables (y;',, v} ,)
to (1,0) or (0,1) with probability y;; and 1 — y;,
respectively. The independent rounding algorithm is
similar to the LP-based approximation algorithm for
MAX 2SAT proposed by Goemans and Williamson in

[8].

3.2 Dependent Randomized Round-
ing

In Section 2, we described that IP becomes an in-
stance of MIN 2SAT in the constant case. For MIN
2SAT, Bertsimas et al. [2] proposes an approximation
algorithm based on randomized rounding introducing
dependencies in the rounding process. Our second
algorithm described below is a direct application of
their algorithm to a general case with a given dis-
tance matrix. First, we construct an HA-assignment
A* = (aj) consistent with a given timetable by
choosing one of two possible venues for each match
randomly. Next, we execute the following procedure.

Dependent Randomized Rounding

Step 0: Generate a uniform random number U €
(0,1].

Step 1: Set y;'; ((t,8) € T x S) as follows:

1 if [y; s > U and a; , is A]
or[yf s >1-U and a; , is H] )’

no__
yt,s -

0 if [y s < U and a; ; is A]
or [y, <1-Uanda;,isH] J°

Step 2: Generate an HA-assignment A" = (a},), by
assigning ‘A’ to ay  if y'; = 1, otherwise ‘H.’

It is easy to see that the above procedure outputs a
feasible solution of IP.

Bertsimas et al. [2] showed that expected objec-
tive value obtained by their rounding method for
MIN 2SAT is at most % times the optimal value. In



the constant case, since the Home-Away assignment,
problem corresponds to MIN 2SAT, the approxima-
tion ratio of the above algorithm is also bounded by
3. For MIN 2SAT, Avidor and Zwick [1] proposed
a 1.1037-approximation algorithm, which is based
on SDP-relaxation and sophisticated but complicated
randomizing technique.

3.3 Generating an Initial HA-

assignment

In our third algorithm, we generate an HA-
assighment A* = (a; ;) by an algorithm based on the
procedure proposed in [12] and execute the ‘Depen-
dent Randomized Rounding’ procedure described in
Section 3.2.

Given an HA-assignment A = (a;,) and a slot-
subset S’ C S, an HA-assignment A’ = (a; ;) ob-
tained from A by flipping slots in S’ is defined as
follows:

at,s (ifs gsl),
a;s = H (lf s € Sl and At s = A)7
A (iff s€ S and a s = H).

Our third algorithm uses an HA-assignment A* ob-
tained by the following procedure.

Flipping
Step 0: Execute one of Steps 1 and 2 at random.

Step 1: Generate an HA-assignment A" = (a; ) that
is consistent with a given timetable and satisfying
that [Vt € T, Vs € {1,2,...,n — 1}, a; 5,1 = ;5]
Set A* = (a; ;) be an HA-assignment obtained from
A’ by flipping slots {2s — 1, 2s} with probability (1/2)
for each s € {1,2,...,n — 1} independently.

Step 2: Generate an HA-assignment A" = (a; ) that
is consistent with a given timetable and satisfying
Vte T, Vs € {1,2,...,n — 1}, aj 5, = @} 2,41])- Set
A* = (af ;) be an HA-assignment obtained from A’
by flipping slots {2s,2s + 1} with probability 1/2 for
each s € {1,2,...,n — 1} independently.

We need to generate a specified HA-assignment A’ at
the beginning of Steps 1 and 2, which is obtained by
the method proposed in [12]. We briefly describe the
algorithm in Appendix.

3.4 Derandomization

Here we derandomize the procedure ‘Dependent Ran-
domized Rounding,” which extremely shortens prac-
tical computational time. Here we assume that the
variables y*, which is obtained by solving LP, sat-
isfy half-integrality. Then, it is easy to see that if
the uniform random number U obtained at Step 0

in the procedure ‘Dependent Randomized Rounding’
satisfies that 0 < U < 1/2, then the variables y"
and the HA-assignment A" obtained in Steps 1 and 2
are independent of the magnitude of U. In case that
1/2 < U < 1, we can also show that y" and A" ob-
tained in Steps 1 and 2 are independent of the magni-
tude of U. Thus, we only need to execute Steps 1 and
2 only for two cases that U € {3,1} and output one
of the best solutions. Clearly, a solution obtained by
the above derandomized procedure satisfies that the
corresponding objective function value (total travel-
ing distance) is less than or equal to the expectation
of that of solutions obtained by ‘Dependent Random-
ized Rounding’ procedure. A practical procedure to
obtain a better solution in our second algorithm is
to generate a number of initial HA-assignments A*
and output a solution with the best objective value.
For our third algorithm, we can generate a number
of initial HA-assignments A* from a specified HA-
assignment A’ by randomly flipping slots {2s — 1, 2s}
in Step 1 and slots {2s,2s + 1} in Step 2 for each
s €{1,2,...,n — 1} several times.

In our computational experiences, we use the above
derandomized procedure. We will use the original
‘Dependent Randomized Rounding’ procedure in the
next section to discuss the approximation ratio.

4 Approximation Ratios

In this section, we discuss the approximation ratios
of our algorithms in the constant case. We denote
the optimal value of IP and LP by Z™ and Z'F,
respectively. We also denote the objective values ob-
tained by our first, second and third algorithms by
ZAL ZA% and Z73, respectively. Then the following
theorem holds.

Theorem 2 In the constant case, the following in-
equalities hold:

A 3 7LP 3 7IP
1. B[z < 37LP < 3717,
A 37LP 3 7IP
2. E[ZA%) < 3ZLP < 371F,
A 57LP 5 r7IP
3. E[Z4%) < 3ZLP <5 71P,

Proof. In the constant case, it is easy to see that if
we fix variables y in LP, the objective value obtained
by choosing w that minimizes the objective function
8

Z%U) =)

teT sE{l,§}

Z yt,s"_ Z max{yt,syyt,erl}
seS\{5}

We denote an optimal solution of LP by (y*, w*). In
this proof, we assume that y* satisfies half-integrality.

Let y# be a solution obtained by one of our algo-
rithms. Here we note that y* is a vector of random



variables. Then it is clear that E[yt“}s] = Pr[yt“}s =
1] = y/ ;. For the second term of the above objective
value, we have

Elmax{y\,y{s+1 }] < min{1L, By, +y/1]}
= min{l, E[Z/f}s] + E[y;}ﬁ-l]}

min{1, Pr[yt‘i‘S =1]+ Pv"[yt“"s+1 =1]}

min{1,y; ; + Y o1}

Case a: When at least one of {y; s, yf s11} is 0-1 val-
ued, the property

IN

min{]') yz(,s + yz(,s—‘,-l}
= max{y; ., ¥f 1}

A A
E[max{yt,s7 yt,s+1}]

holds.

Case b: We need to consider the case that

(Ui ¥ ss1) = (1/2,1/2) for proposed three al-
gorithms, respectively.

Case b-1: Let yA! be a solution obtained by our first
algorithm. The definition of independent randomized
rounding method implies that

Emax{y/),y L} = Priyfl =1vyll, =1]
= 3/4=(3/2)(1/2) = (3/2) max{y; ;, Yz ¢11}-

From the above, we have

E[ZAI
= yt s Z E] max{yt 517 Yi s+1 ]
te s€{1 5} seS\{s}
< Z Yis t+ Z 5 max{yt o Ytsi1)
e se{l s} seS\{s }
< 3/2) 3/2)ZLP

Case b-2: Next, we consider our second algorithm.
Let y4% be a solution obtained by our second algo-
rithm With probability 1/2, af ;, = af .4, and yt > =
yt s+1 holds. In this case, we have max{yt B ,yt s+1

yt s. With probability 1/2, a; ; # at or1 ond yii; ;é
yiZ. 1 holds. In this case, max{y{:Z,y*2, |} is always
equal to 1. Thus, we have

Elmax{y;\l,y{\% 1} = (1/2)(1/2) + (1/2) = 3/4
= (3/2)(1/2) = (3/2) max{y; s, Yz 541}

From the above we can also show that

W] < B/2)2°(y") =

in the same way as Case b-1.

E[Z*%| = E[Z°¢ (3/2)ZLF

Case b-3: Lastly, we discuss our third algorithm. Let
y27 be a solution obtained by our third algorithm.

The ‘flipping’ procedure implies the following. With
probability 3/4, a; ; = af ;, and ytAf = yt s+1 holds

With probability 1/4, a; , # aj .11 and y{3 # y{3,,
holds. Thus, we have

Elmax{y/ 7,y 1} = (3/4)(1/2) + (1/4) = 5/8
= (5/4)(1/2) = (5/4) max{y; s, Yz 541 }-

From the above we can also show that

E[Z*) = E[Z%(y*?)]
* 5 * *
< Z Z Yi,s T Z Zma‘x{yt,s)yt,s+l}
teT | se{1,5} seS\{s}
< (5/4)Z°(y") = (5/4) 2.

O

In [2], Bertsimas et al. proposed (2 — (1/2)%)-
approximation algorithm for MIN kSAT. Thus the
second inequalities in the above theorem is a special
case of their result. We simplified their proof by re-
stricting k = 2.

5 Computational Experiments

In this section, we report our computational results.
Computational experiments were performed as fol-
lows. Table 1 shows the approximation ratios, Table 2
and Table 3 are the results of CPU time in seconds of
the weighted case and constant case, respectively.

Each of Tables 1, 2 and 3 shows the results when
we generated 10 timetables for each size of 2n =
16,18, 20, 22,24,26,30,40. We constructed timeta-
bles of a round-robin tournament by the method de-
scribed in [6]. We used the distance matrix of TSP
instance att48 from TSPLIB [18]. We chose cities
of att48 with indices from 1 to 2n. For each in-
stance, we applied the algorithms described in Sec-
tion 3 and generated HA-assignments upp_itr times,
where upp_itr = min{max{2"*! 1000}, 10000}. Fi-
nally, we output a solution with the best of generated
upp_itr solutions. In order to evaluate the quality of
the best solutions, we solved the same instances with
integer programs in a similar manner as Trick [17]. All
computations were performed on Dell Dimension 8250
(CPU: Pentium 4, 3.06 GHz, RAM: 512 MB, OS: Vine
Linux 2.6) with CPLEX 8.0 [10] for integer programs,
XPRESS-MP Workstation (Model Builder 10.04, In-
teger Optimiser 10.27) [3] for LP.

We did not solved integer programs for 2n = 20 to
40 in the constant case because it would not terminate
within reasonable computational time. In Table 1 we
summarize the average of ratios of ‘the LP optimal
value’ and ‘the objective function value of the best
solutions’ for each algorithm, where the ratios are de-
scribed with parentheses.



Table 1: Results of computational experiments (Approximation Ratio)

weighted case constant case

LP [ Al A2 ‘ A3 ‘ SDP LP [ Al ‘ A2 ‘ A3 ‘ SDP
2n ratio [ half int. | ratio ratio ratio ratio ratio [ half int. | ratio ratio ratio ratio
16 1.00000 0.00000 1.00000 1.00000 1.00000 1.00158 0.88831 1.00000 1.19226 1.15681 1.07847 1.00138
18 0.99998 0.01307 1.00075 1.00246 1.00121 1.00295 0.88831 1.00000 1.21044 1.15005 1.06241 1.00205
20 0.99992 0.02158 1.00092 1.00282 1.00184 1.00236 (1) 1.00000 (1.36700) (1.28850) (1.22000) (1.13200)
22 1.00000 0.01688 1.00001 1.00329 1.00072 1.00385 (1) 1.00000 (1.37355) (1.30248) (1.21240) (1.13388)
24 1.00000 0.00471 1.00001 1.00000 1.00015 1.00423 (1) 1.00000 (1.38330) (1.29931) (1.21667) (1.13924)
26 || 1.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00357 (1) | 1.00000 | (1.38817) | (1.31124) | (1.21746) | (1.14941)
30 0.99969 0.03172 1.00359 1.00875 1.00496 1.00635 (1) 1.00000 (1.40467) (1.30378) (1.22533) (1.15067)
40 0.99994 0.00654 1.00017 1.00187 1.00047 1.01007 (1) 1.00000 (1.42725) (1.30700) (1.22800) (1.15688)

Table 2: Results of computational experiments (CPU time [s]: weighted case)

[ Al [ A2 [ A3 [ SDP [ P
2n || ave. | s. d. | ave. | s.d. | ave. | s. d. | ave. | s. d. | ave. | s. d.
16 0.042 0.0042 0.103 0.0082 0.115 0.0085 24.829 0.6830 0.779 0.1370
18 0.055 0.0097 0.136 0.0165 0.162 0.0079 39.254 0.6962 1.379 0.0348
20 0.112 0.0063 0.315 0.0127 0.409 0.0110 65.079 1.7357 2.194 0.0448
22 0.274 0.0070 0.760 0.0156 0.945 0.0172 99.201 1.9557 3.433 0.0150
24 0.628 0.0063 1.747 0.0241 2.109 0.0050 145.823 3.7068 5.599 0.2223
26 0.897 0.0106 2.517 0.0231 3.192 0.0469 224.273 10.2988 7.308 0.2204
30 1.205 0.0097 3.453 0.1302 3.854 0.2070 411.561 7.7994 13.855 0.3937
40 2.193 0.0206 6.240 0.0501 7.766 0.1773 1955.173 26.2481 52.991 0.3504

Table 3: Results of computational experiments (CPU time [s]: constant case)

Al I A2 I A3 SDP I P
2n || ave. | s, d. | ave. | s. d. | ave. | s. d. | ave. | s. d. | ave. | s. d.
16 0.042 0.0042 0.162 0.0042 0.179 0.0088 21.701 0.4570 65.900 66.1060
18 0.053 0.0048 0.212 0.0042 0.245 0.0053 32.844 0.7563 2737.900 4999.0000
20 0.119 0.0032 0.520 0.0047 0.613 0.0067 53.550 1.1190 — —
22 0.278 0.0042 1.267 0.0048 1.438 0.0169 82.185 1.4721 - —
24 0.648 0.0042 2.997 0.0048 3.347 0.0330 120.208 3.1711 - —
26 0.926 0.0053 4.330 0.0047 5.004 0.0375 189.170 6.6839 - -
30 1.242 0.0042 5.840 0.0082 5.964 0.0201 399.349 7.1816 — —
40 2.227 0.0082 10.739 0.0120 12.471 0.0574 2157.351 69.2466 — —

2n: the number of teams;

ratio: average of ratios of ‘the optimal value of IP’ and ‘the objective function value of the best solutions’;
digits in a parenthesis denote the average of ratios with ‘the optimal value of LP’
instead of ‘the optimal value of IP’;

half int.: ratio of the number of variables whose value is 1/2;

A1l: our first algorithm;  A2: our second algorithm; A3: our third algorithm;

SDP: SDP based approach proposed in [16];

IP : the integer program in a similar manner as Trick [17];

avg.: average; s. d.: standard deviation.

For the weighted case, Table 1 shows that all of
the average of approximation ratios of our three al-
gorithms are less than 1.01. When 2n = 16,26, LP
relaxation problems give 0-1 valued solution. The no-
table points are:

ever, SDP based approach gives solutions with higher
qualities.

As we showed in Theorem 1, LP has an optimal
solution satisfying half integrality. In Table 1, half
int. shows the ratios of the number of variables whose

(1) our first algorithm can generate solution whose ra- value is 1/2. In the weighted case, almost all variables

tio is better than that of others (including SDP based
approach in [16]) for any number of teams;

(2) all of our procedures based on LP relaxation give
more acceptable ratios even by the little difference
compared with SDP based approach in [16].

For the constant case, when 2n = 16, 18, almost
all of the averages of approximation ratios are less
than 1.20. Contrary to the weighted case, the effec-
tiveness of our third algorithm is emphasized. How-

are either 0 or 1, while all variables are 1/2 in the
constant case.

For the CPU time in Table 2 and 3, our algorithms
are much faster than the SDP based approach pro-
posed in [16] and integer programs. For instance, in
the weighted case of 2n = 16, SDP based approach
and integer programs took more than 21 seconds and
65 seconds in average, respectively, while our algo-
rithms take less than 1 second. Moreover, our algo-



rithms terminated less than 8 seconds for any number
of teams in the weighted case, and also terminated less
than 13 seconds in the constant case. From the above
results, it can be said that our algorithms are highly
efficient.

6 Conclusions

We proposed a formulation of the home-away assign-
ment, problem as an integer program, and performed
computational experiments with dependent random-
ized rounding algorithm that is based on the Bert-
simas, Teo and Vohra’s algorithm. Computational
experiments showed that our approach is highly ef-
fective in terms of quality of solutions and computa-
tional speed, in particular, for larger instances.

A Proof of Half Integrality
Here we describe a proof of Theorem 1.
Let LP be a linear relaxation of the problem IP,

described as follows:
(LP)

min. E

teT | se{1,s}

Z d(th(tvs))yt,s+ Z Wt,s

seS\{s}

s. b wys > d(t 1)y + (At ") —d(t', 1) ye,s41

Y(t,s) € T x S\ {5}, where
( t'=71(t,s) and t" = 7(t,s + 1)) ) ’

we,s > (d(t', ") — d(t,8")) yr,s +d(t,1") Yr,s41

Y(t,s) € T x S\ {5}, where
( t'=71(t,s) and t" = 7(t,s + 1)) ) ’

Yt,s + y'r(t,s),s =1 (\V/(t, 5) eT x S),

Yt,s > 0 (V(t,s) €e T x S),

where wy s ((t,s) € T x S\ {§}) variables are free
continuous variables.

It is enough to show that any optimal solution in
which y is not half-integral can be expressed as a
convex combination of mutually distinct feasible so-
lutions of LP. Assume that (y*,w*) is an optimal
solution in which y* is not half-integral. By the as-
sumption, there exists at least one element of y* that
is less than 1/2 and exists at least one element more
than 1/2. We introduce two functions g; (y,y') and
97..(y,y") defined as follows:

9ty = At t)y + (d(t',t") —d(t', 1)y,
9t (v, y") (d(t',¢") —d(t,t") y +d(t,t") y,

where t' = 7(t,s) and t"" = 7(¢t,s + 1). Here we note
that g¢ ,(y,9') and g7 ,(y,y') correspond to the right

hand sides of the first and second constraints of LP,
respectively.

Given a sufficiently small positive number £ we con-
struct two vectors (y*,w™), (y~,w™) as follows:

for each (t,5) € T x S, we set
yrste (if 0<y;, <1/2),
y::s = y;,s —€ (lf 1/2 < yz(,s < 1)7
Yi s (if y;, €{0,1/2,1}),
y:s_s (1f0<y:s<1/2)5
e =9 vi.te (f 1/2<y;, <1),
Yis (if y;, €{0,1/2,1}),

and for each (t,s) € T x S\ {8}, we set
wj,—s = max{gtl,s(y::s7 yz_s+1)7 gf,s(y::s7 y:’,_s+1)};

w;s = max{gtl,s(y;s7 yt_75+1)7 th,s(yt_,s7 yt_75+1)}'

Clearly, yj,_s + yj_(t,s),s = y;S + y;(t,s),s =1 (V(t’s) €
T x S) and y* # y~ holds. Choosing ¢ small enough,
we can ensure 0 < y* and 0 < y~. Hence, (yT,w™)
and (y~,w™) are a pair of mutually distinct feasible
solutions of LP.

From the definition, (y™ + y~)/2 = y*. In the
following, to prove (w* +w™)/2 = w* we show that
(wi, + w;,)/2 = wi, holds for any (t,s) € T x S\
{5}. Note that the distance matrix satisfies triangle
inequalities, i.e., d;(¢,5),¢ T dt r(t,541) = Ar(t,s),7(t,541)-
Since we have
gtl,s(y> yl) - th,s(ya yl) =

(d'r(t,s),t + dt,T(t,s+1) - dr(t,s),r(t,s+1))(y - yl)a
the following relationship holds:

y<y = g,..Wv) <9y
y>y = g (y,y) > gfs(y,y’)-
Now we show that (w;, wy4)/2 = wf

holds for any (t,s5) € T x S \ {8} in each
of the following three cases. Note that
w:,s = max{gtl,s(yz‘,say;s—i-l)a gtz,s(yz‘,svyz(,s-l—l)}
because (y*,w*) is an optimal solution.

Case 1: y; ; <y/ 11 Choosing ¢ small enough we can
ensure y;' <y, and y;, < y; ., Then, all of
w;s,wzs and w;, are defined by g7 .. Since (y* +
Yy~ )/2 = y* and gis(y,y’) is a linear function of y
and y’, the following equalities hold:

(1/2)(w;f, +w; )
= (1/2)(97 s Wi Yro1) + 976 Wrsr Ys41))
= (1/2)07 Wi + viooUiesr + Uier)
= (1/2)97 (297 5,207 s11) = 97 s (U7 5> Ui o41)

*
Wy -

Case 2: y/ ; > y; 41 Choosing € small enough we can

ensure y;’:s > ya'sﬂ and y; o > vy, oy Then, all of




was,w::s and w;, are defined by g .. Since (y* +
y7)/2 = y* and g%’s(y,y’) is a linear function of y

and ¢, the equality (w;’, +w,,)/2 = w;}, holds.

Case 3: y/ s = y/s+1 In this case, we have y;fs =

y;fsﬂ and y, ¢ =y, ;41- Thus, the equalities

gtl,s(y:,say:,s+1) g?,s(y:,say:,s+l)7

gtl,s(ytfs)ytts+1) = gf,s(y;ts)ytts+l))
1 - - _ 2 - -

gt,s(yt,s7yt,s+1) - gt,s(yt,s7yt,s+l)

holds. Hence we can consider that all of wt*’s,w;f R
and w;, are defined by g/ , (and/or g7 ,). Since (y* +
y7)/2 = y* and gt{s(y,y’) is a linear function of y
and y', the equality (w;", +w;,)/2 = wy ; holds.

From the three cases above, we have (wt+ s —
wy, )/2 = wi, for any (t,5) € T x S\ {8}. Conse-
quently, (w* +w~)/2 = w* holds. Thus, (y*, w*)
can be expressed as a convex combination of a mutu-
ally distinct pair (yT,wT) and (y~,w™) of feasible
solutions of LP. Therefore we obtain Theorem 1.

B Generating an HA-assignment

Here we describe an algorithm for generating an HA-
assignment A’ = (a; ) ((t,s) € T x S) that is con-
sistent with a given timetable and satisfying [Vt €
T: Vs € {172) s, — 1}7 a;,Zsfl = a;,2s]‘

For each s € {1,2,...,n — 1}, assign (H,H)
to (ay o 1,0] ), for the first step. After that,
continue assigning home or away to each of other
teams so as to satisfy aj,,; = aj,,. Due
to the consistency, the opponent of team 1 in
slot 2s, 7(1,2s), has to be at away in slot s2.
So as to satisfy a’ ( we as-
sign (A,A) to (a’fr(l,Zs),Zsfl’a’;(l,2s),2s)‘
way, the opponent of team 7(1,2s) of slot 2s — 1,
7(7(1,2s),2s —1) has to be at home, and so as to sat-
= a’T(T(1725)725), we assign (H,H) to

— !
- a’T(l,Zs),Zs’
In the same

1,2s),2s—1

isty a,r(r(1,2s),2s—1)
a’T(T(1725)725_1),a’T(T(1725)725)). Repeat this assigning
procedure to the rest of teams. For s = §, assign
home or away to each team as keeping consistency.
Then it is easy to see that A’ is consistent with a
given timetable and satisfying that [Vt € T, Vs €
{]—7 2> sy — 1}) af‘,,2s—1 = a:ﬁ,Qs]‘

Similarly, we can generate an HA-assignment A’
that is consistent with a given timetable and satisfy-

ing [Vt € T) Vs € {1)27 s, — 1}) a;,2s = a;,2s+1]'
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