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Computational Geometric Approach to Submodular Function

Minimization for Multiclass Queueing Systems

Toshinari Itoko ∗ Satoru Iwata †

Abstract
This paper presents an efficient algorithm for minimizing a certain class of
submodular functions that arise in analysis of multiclass queueing systems.
In particular, the algorithm can be used for testing whether a given multiclass
M/M/1 system achieves a required average performance by an appropriate
control policy. With the aid of the topological sweeping method for line
arrangement, our algorithm runs in O(n2) time, where n is the cardinality
of the ground set. This is much faster than direct applications of general
submodular function minimization algorithms.

1 Introduction

Let V be a finite set of cardinality n. For a vector x := [xi]i∈V indexed by V and a
subset X ⊆ V , we denote

∑
i∈X xi by x(X). Let h be a nonnegative nondecreasing convex

function. This paper deals with the problem of finding a subset X ⊆ V that minimizes

f(X) := z(X)− y(X) h(x(X)) (X ⊆ V ) (1)

for given nonnegative vectors x, y, z indexed by V . Such a minimization problem arises
in performance analysis of the most fundamental multiclass queueing system — multiclass
M/M/1 (see Section 2).

This problem is a special case of submodular function minimization. A set function f
is called submodular if it satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ), ∀X,Y ⊆ V.

It can be shown that the function f in (1) is submodular (see Appendix). Recent results
on submodular functions are expounded in Fujishige [9] and in McCormick [16].

A number of strongly polynomial algorithms have been devised for general submodular
function minimization. The first one due to Grötschel, Lovász, and Schrijver [11, 12] is
based on the ellipsoid method, which is not efficient in practice. Combinatorial strongly
polynomial algorithms are devised independently by Schrijver [17] and by Iwata, Fleischer,
and Fujishige [14]. However, these combinatorial algorithms are not yet very fast. Even
an improved algorithm of Iwata [13], which is currently the fastest combinatorial strongly
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polynomial algorithm, runs in O((n6γ + n7) log n) time, where γ is the time required for
computing the function value of f . Thus, it is still desirable to have a fast algorithm for
minimizing a specific class of submodular functions that naturally arise in applications.

Instead of applying an algorithm for general submodular function minimization, we
take a completely different approach based on computational geometry. The first step is
to interpret our problem in the three dimensional space as follows. Each subset X ⊆ V
corresponds to the point (x(X), y(X), z(X)) ∈ R3

+. The original problem is then equivalent
to finding the minimum value of f̂(x, y, z) := z − y h(x) among all such points (x, y, z)
corresponding to the subsets of V .

The convex hull of these 2n points forms a special polytope called a zonotope. It will
be shown that the minimizer of f̂ is among the lower extreme points of Z, i.e., extreme
points that are visible from below. The number of such lower extreme points are bounded
by O(n2). Furthermore, exploiting the duality relation between the zonotope in the three
dimensional space and the line arrangement in the plane, we are able to enumerate all the
lower extreme points in O(n2) time with the aid of the topological sweeping method of
Edelsbrunner and Guibas [5, 6]. Thus our algorithm finds a minimizer of f in O(n2) time
and O(n) space. This is substantially more efficient than direct applications of general
submodular function minimization algorithms.

The outline of this paper is as follows. In Section 2, we provide a brief exposition
on the multiclass M/M/1. Section 3 presents our minimization algorithm. In particular,
Section 3.1 is devoted to the structure of the zonotope. In Section 3.2, we show that it
suffices to compute the minimum among the lower extreme points. Then we discuss how
to enumerate all the lower extreme points in Section 3.3.

2 Multiclass Queueing Systems

This section is devoted to a brief exposition on a connection between our minimization
problem and the performance analysis of the fundamental multiclass queueing system
called multiclass M/M/1. For comparison, we also give a brief description of the same
type of problems for nonpreemptive case.

2.1 Preemptive M/M/1

Multiclass M/M/1 is a system which deals with various types of jobs whose arrival interval
and service time follow exponential distributions. Each job of different classes wait in
different queues and the server chooses the job to serve the next by a control policy. A
queueing system allowing preemptive control policies is called preemptive. In the following,
the set of classes is denoted by V = {1, 2, . . . , n}.

In a multiclass M/M/1, when the average arrival rates and the average service rates
of the job classes are given, the performance of the system depends only on the control
policy. A region of performance-measuring vectors achieved by all control policies is called
achievable region (see e.g. [3]). The performance of a multiclass M/M/1 is often measured
by the average staying time vector s := [ si ]i∈V , where si is the average time in the system
for class i jobs. For preemptive multiclass M/M/1, achievable region of s is known as
follows.
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Theorem 2.1 ([2]) Consider a preemptive multiclass M/M/1 whose average arrival
rates are λ:= [ λi ]i∈V and average service rates are µ:= [µi ]i∈V . Let ρi be the utilization
λi/µi of the server for class i jobs and assume

∑
i∈V ρi < 1 to ensure the existence of

equilibrium. The achievable region of the average staying time vector s := [ si ]i∈V is a
polyhedron represented by 2n inequalities:

∑

i∈X

ρisi ≥

∑

i∈X

ρi

µi

1−
∑

i∈X

ρi

, ∀X ⊆ V. (2)

Given a target average staying time vector š, it is important for system designers to
check performance achievability : whether š is in the achievable region (š is achieved by
some control policy) or not. This problem was posed by Federgruen and Groenevelt [7].
They provided an efficient algorithm for the special case of identical service time distri-
bution. This assumption is too restrictive in practice, as we usually classify the jobs by
their properties including expected service time.

If we define xi := ρi, yi :=
ρi

µi
and h(x) :=

1
1− x

, then y(X) h
(
x(X)

)
coincides with

the right-hand side function of (2). Furthermore, if we define zi := ρiši, then the problem
of checking performance achievability of preemptive multiclass M/M/1 is reduced to our
minimization problem. The target average staying time vector š is achievable if and only
if the minimum value of f is equal to zero.

For preemptive multiclass M/M/1, there is an another representation of achievable
region. Bertsimas, Paschalidis, and Tsitsiklis [1] and Kumar and Kumar [15] independently
observed that the achievable region is the projection of a polyhedron in higher dimensional
space. This makes it possible to check the achievability by solving linear programming
problem, which however involves O(n2) variables and O(n2) inequalities.

2.2 Nonpreemptive M/G/1

For nonpreemptive M/M/1, which does not allow preemption, the performance achiev-
ability can be tested by a simpler method. The achievable region of the average waiting
time in queue q := [ qi ]i∈V is a polyhedron represented by 2n inequalities:

∑

i∈X

ρi qi ≥
(∑

i∈V

ρi

µi

)
∑

i∈X

ρi

1−
∑

i∈X

ρi

, ∀X ⊆ V.

This is obtained as a special case of the fact shown in Gelenbe and Mitrani [10] that
the achievable region of the nonpreemptive M/G/1, which admits general service time
distributions, is characterized by

∑

i∈X

ρi qi ≥
(

1
2

∑

i∈V

λiM
2
i

)
∑

i∈X

ρi

1−
∑

i∈X

ρi

, ∀X ⊆ V,
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where M2
i denotes the second order moment of the service time distribution for class i.

The problem of checking performance achievability is reduced to minimizing a sub-
modular function b in the form of

b(X) := z(X)− h(x(X)) (X ⊆ V ),

where xi := ρi, zi := ρiqi, and h(x) :=
c x

1− x
with c =

1
2

∑

i∈V

λiM
2
i . This is much simpler

than our problem. In fact, it can be solved by sorting job classes in the order of zi/xi.
For k = 0, 1, . . . , n, let Yk denote the set of k jobs with smallest values of zi/xi. Then
the minimizer of b is among the candidates Yk for k = 0, 1, . . . , n. See Federgruen and
Groenevelt [8] for validity.

3 Geometric Approach

In this section, we present an algorithm for finding a minimum value of f defined in (1).
The problem can be seen in the three-dimensional space as follows. A subset X ⊆ V
corresponds to a point (x(X), y(X), z(X)) in three-dimensional space. Let R+ denote the
set of nonnegative reals. We also write w(X) := (x(X), y(X), z(X)) ∈ R3

+ and W :=
{w(X) | X ⊆ V }. Then our problem is equivalent to finding a point (x, y, z) ∈ W that
attains the minimum value of f̂(x, y, z) = z − y h(x). An example of an contour surface
of f̂ is shown in Figure 1.
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Figure 1: A contour surface of f̂
in the case of h(x) = 2/(10− x).
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Figure 2: A zonotope generated by
(4, 1, 1), (2, 1, 3), (1, 2, 3), (1, 4, 1).

The convex hull of W forms a special polytope called zonotope, which is defined by the
bounded linear combination of vectors (for example, see Figure 2), namely

conv(W ) =

{∑

i∈V

ηi wi

∣∣∣∣∣ 0 ≤ ηi ≤ 1 (∀i ∈ V )

}
,

where wi := w({i}) (∀i ∈ V ). We denote the convex hull of W by Z.
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A point (x, y, z) in Z is called a lower point if (x, y, z′) /∈ Z for any z′ < z. If in
addition (x, y, z) is a critical point of Z, it is called a lower extreme point. The number
of lower extreme points of Z is known to be O(n2), which is clarified in Section 3.3.

Our algorithm enumerates all the lower extreme points of Z, and then it identifies a
lower extreme point that attains the minimum value of f̂ . It will be shown in Section 3.2
that the minimum value among these lower extreme points is in fact the minimum value of
f̂ among all the points in W . How to enumerate the lower extreme points will be described
in Section 3.3. The total running time of this algorithm is O(n2).

3.1 Lower Extreme Points

Every lower point of Z is described as a maximizer of a certain linear objective function
whose coefficient of z is negative. For any α, β ∈ R, we denote by F (α, β) the set of
maximizers for (α, β,−1) direction, namely

F (α, β) := Argmax{α x + β y − z | (x, y, z) ∈ Z}.

For a fixed (α, β), elements in V are classified by the sign of α xi + β yi − zi, namely

S+(α, β) := { i ∈ V | α xi + β yi − zi > 0 },
S◦(α, β) := { i ∈ V | α xi + β yi − zi = 0 },
S−(α, β) := { i ∈ V | α xi + β yi − zi < 0 }.

(3)

Then F (α, β) is characterized by

F (α, β) =
{

w(S+(α, β)) +
∑

i∈S◦(α,β)

ηi wi

∣∣∣∣ ∀i ∈ S◦(α, β), 0 ≤ ηi ≤ 1
}

. (4)

This implies the following lemma that characterizes the lower extreme points of Z.

Lemma 3.1 A vector v is a lower extreme point of Z if and only if v = w(S+(α, β)) for
some (α, β).

Proof. Since wi ≥ 0, it follows from (4) that w(S+(α, β)) is an extreme point of F (α, β).
Hence w(S+(α, β)) is an lower extreme point of Z. Conversely, suppose v is an lower
extreme point of Z. There exists a pair (α, β) such that v is the unique maximizer of
αx+βy− z in Z. Note that v = w(X) for some X ⊆ V . Then we have X = S+(α, β)∪Y
for some Y ⊆ S◦(α, β). Furthermore, since v is the unique maximizer, wi = 0 holds for
any i ∈ Y , which implies w(X) = w(S+(α, β)).

We henceforth denote {S+(α, β) | α, β ∈ R} by L. Then Lemma 3.1 asserts that the
set of lower extreme points are given by {w(X) | X ∈ L}. The following two lemmas
concerning lower points of Z will be used in the proof of the validity of our algorithm in
Section 3.2.

Lemma 3.2 Any lower point v that is on an edge of Z is a convex combination of two
lower extreme points w(X1) and w(X2) with X1 ⊆ X2.
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Proof. There exists a pair (α, β) such that F (α, β) is the edge that contains v. Then
it follows from (4) that F (α, β) is a line segment between w(X1) and w(X2), where
X1 = S+(α, β) and X2 = S+(α, β) ∪ S◦(α, β).

Lemma 3.3 Any lower point v of Z is a convex combination of some at most three lower
extreme points w(X0), w(X1), and w(X2) with X0 ⊆ X1 ⊆ X2.

Proof. There exists a pair (α, β) such that F (α, β) is the minimal face that contains v.
Then w(X0) with X0 = S+(α, β) is an extreme point of F (α, β). Let u be the intersection
between the half line from w(X0) through v and the boundary of F (α, β). Note that
v is a convex combination of w(X0) and u. Since u is on an edge of Z, Lemma 3.2
implies that u is a convex combination of lower extreme points w(X1) and w(X2) with
X1 ⊆ X2. Furthermore, since w(X1) and w(X2) are extreme points of F (α, β), we have
X0 ⊆ X1, X2. Therefore, v is a convex combination of w(X0), w(X1), and w(X2) with
X0 ⊆ X1 ⊆ X2.

3.2 Finding the Minimum Value

The following theorem shows that it suffices to examine the lower extreme points of Z
on behalf of the points in W . This leads us to an efficient algorithm for finding the
minimum value of f , provided that an enumeration algorithm for the lower extreme points
is available.

Theorem 3.4 The minimum value of f is attained by a member of L, i.e.,

min{f(X) | X ⊆ V } = min{f(X) | X ∈ L}.
Proof. Let v̄ = (x̄, ȳ, z̄) be a lower point of Z such that x̄ = x(Y ) and ȳ = y(Y ) for Y ⊆ V .
By Lemma 3.3, there exist three lower extreme points w(X0), w(X1), and w(X2) of Z
with X0 ⊆ X1 ⊆ X2 such that

v̄ = σ0w(X0) + σ1w(X1) + σ2w(X2)

for some σ0, σ1, σ2 ≥ 0 with σ0+σ1+σ2 = 1. We denote w(Xj) by (xj , yj , zj) for j = 0, 1, 2.
Then we have

ȳ h(x̄) = (σ0y0 + σ1y1 + σ2y2) h(σ0x0 + σ1x1 + σ2x2)
≤ (σ0y0 + σ1y1 + σ2y2)(σ0h(x0) + σ1h(x1) + σ2h(x2))
= σ0y0h(x0) + σ1y1h(x1) + σ2y2h(x2)− σ0σ1(y1 − y0)(h(x1)− h(x0))

−σ1σ2(y2 − y1)(h(x2)− h(x1))− σ0σ2(y2 − y0)(h(x2)− h(x0))
≤ σ0y0h(x0) + σ1y1h(x1) + σ2y2h(x2),

where the first inequality follows from the convexity of h and the second one from the
monotonicity. Since z(Y ) ≥ z̄ = σ0z0 + σ1z1 + σ2z2, we obtain

f(Y ) = z(Y )− y(Y ) h(x(Y ))
≥ z̄ − ȳ h(x̄)
≥ σ0(z0 − y0h(x0)) + σ1(z1 − y1h(x1)) + σ2(z2 − y2h(x2))
= σ0f(X0) + σ1f(X1) + σ2f(X2).

6



Therefore, if f(Y ) attains the minimum value, then X0, X1, and X2 must attain the
minimum value as well. Thus the minimum value of f is attained by a member of L.

3.3 Duality between Zonotope and Hyperplane Arrangement

In this section, we discuss how to enumerate all the lower extreme points of Z. A one-
to-one correspondence has been established between zonotopes in the d dimensional space
and hyperplane arrangements in the d− 1 dimensional space (see e.g. [4, 18]). We exploit
the three dimensional case of this duality principle.

To visualize the transition of S+(α, β) in L with respect to α and β, we consider the
arrangement of n lines li : α xi + β yi − zi = 0, for i ∈ V in the (α, β)-plane. Then it
follows from Lemma 3.1 that the lower extreme points of Z corresponds to the cells in this
line arrangement. Note that the number of cells in the line arrangement is O(n2), and so
is the number of lower extreme points of Z. Further correspondence between the lower
faces of Z and the components of the line arrangement are summarized in Table 1 (see
also Figure 3).

Table 1: Correspondence between lower faces of Z and components of line arrangement.

Lower faces of Z Components of line arrangement
extreme point cell

edge line segment
facet intersection point

x

z

y

w(S+)
α

β

Figure 3: Correspondence between a lower face of Z and an intersection point of line
arrangement in a degenerate case.

Based on this duality, it suffices to enumerate all the cells of the line arrangement.
Sweeping algorithms for line arrangement keep a chain on V that corresponds to n cells
and enumerate all the cells one by one with updating the chain. Our algorithm maintain
not only the chain but also the vectors w(S+) for all S+ in the chain to compute the
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value of f(S+) in a constant time on average. This is achieved by minor modifications of
existing algorithms at no additional expense of running time bound and space complexity.

In theory, the topological sweeping method [5, 6] is the most efficient algorithm, which
runs in O(n2) time and O(n) space. Thus we obtain an algorithm to solve the minimization
problem in O(n2) time and O(n) space.

4 Conclusion

We have presented an efficient algorithm for minimizing a class of submodular function that
arises in queueing analysis: checking performance achievability of preemptive multiclass
M/M/1. Employing the topological sweeping method for line arrangement, our algorithm
runs in O(n2) time, which is much faster than previously known methods. Even if our
algorithm discerns that the target performance is achievable, it does not yield a concrete
control policy that achieves such a performance. Developing a fast algorithm for finding
a control policy in the achievable case is left for future research.
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Appendix

This Appendix is devoted to show that the function f is a submodular function. For
this purpose, it suffices to show that the function g defined by g(X) := y(X) h(x(X) is
supermodular, i.e.,

g(X) + g(Y ) ≤ g(X ∩ Y ) + g(X ∪ Y ), ∀X,Y ⊆ V.

Since h is convex, for any X ⊆ V and i, j ∈ V , we have

h
(
x(X ∪ {i})) ≤ xj

xi + xj
h
(
x(X)

)
+

xi

xi + xj
h
(
x(X ∪ {i, j})),

h
(
x(X ∪ {j})) ≤ xi

xi + xj
h
(
x(X)

)
+

xj

xi + xj
h
(
x(X ∪ {i, j})).

By adding these two inequalities, we obtain

h
(
x(X ∪ {i})) + h

(
x(X ∪ {j})) ≤ h

(
x(X)

)
+ h

(
x(X ∪ {i, j})),

which implies that h(x(·)) is a supermodular function. Because of this supermodularity,
the nonnegativity of x and y, and the monotonicity of h, we have

g(X ∪ Y ) + g(X ∩ Y )− g(X)− g(Y )
= h(x(X ∪ Y )) y(X ∪ Y ) + h(x(X ∩ Y )) y(X ∩ Y )− h(X) y(X)− h(Y ) y(Y )
=

(
h(x(X ∪ Y )) + h(x(X ∩ Y ))− h(x(X))− h(x(Y ))

)
y(X ∩ Y )

+
(
h(x(X ∪ Y ))− h(X)

)
y(X \ Y ) +

(
h(x(X ∪ Y ))− h(Y )

)
y(Y \X)

≥ 0

for any X,Y ⊆ V . Thus g is shown to be supermodular. In addition, it is easy to see that
g(X) ≥ 0 for any X ⊆ V and g(∅) = 0 hold.
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