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Abstract

Trees are important datatypes that are often used in representing structured
data such as XML. Though trees are widely used in sequential programming, it is
hard to write efficient parallel programs manipulating trees of arbitrary shapes,
because of their irregular and ill-balanced structures. In this paper, we propose a
solution for them based on the skeletal approach, in particular for general trees
of arbitrary shapes, often called rose trees.

We formalize a set of skeletons (abstracted computational patterns) for rose
trees based on the theory of Constructive Algorithmics. The formalization of the
skeletons is an extension of those proposed for other data structures such as lists
and binary trees. We then prove that the skeletons can be computed efficiently in
parallel, by implementing each rose-tree skeleton in terms of parallel binary-tree
skeletons for which an efficient parallel implementation is already known.

To encourage users to write efficient parallel programs in terms of parallel
rose-tree skeletons, we propose a systematic method for deriving efficient skeletal
programs from recursively defined sequential programs. We show the expressive-
ness of our parallel skeletons by three non-trivial examples. We also show a
practical implementation of the rose-tree skeletons by adopting function objects
and the template mechanism in C++.

As far as we are aware, we are the first who formalized and implemented a
set of simple but expressive skeletons for rose trees.

1 Introduction

Trees are important datatypes that are often used in representing structured data such as
XML. In recent years, the growth of computational power enables us to store huge data in
the form of trees. This calls for systems and methods of manipulating huge trees efficiently,
where parallel computing may potentially be a solution. Though hardware environments
for parallel computing are getting widely available (e.g. PC clusters), parallel programming
is still considered to be a hard task, especially for trees because of their ill-balanced and
irregular structures.

We often develop sequential algorithms manipulating trees as recursive functions on
trees. For example, the following recursive is a function for counting the number of the
nodes:

size (RNode a ts) = 1 +
∑

+[size ti | i ∈ [1..#ts]]

which applies function size recursively to each of the children (ti is the i-th value of ts),
computes the summation of the results of children, and adds one to obtain the result. This
recursive functions is easy to develop, and can be mapped to a parallel program of well-known
divide-and-conquer style. Though being easy to develop, the divide-and-conquer approach
may fail to be inefficient in parallel when the input tree is ill-balanced; for instance when
the input tree is a monadic one (each child has only one child) divide-and-conquer parallel
program is as inefficient as the sequential program.

For efficient parallel programs in regardless to the shapes of the input binary trees, there
are important parallel algorithms called tree contraction algorithms. Miller and Reif [48]
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first proposed the idea of the algorithms and many researchers [1, 3, 19, 28, 46, 49, 50] have
studied them.

Unfortunately, many recursive algorithms cannot be straightforwardly mapped to paral-
lel tree contraction programs. An example is to compute the pre-order numbering of trees.
A recursive program using an accumulative parameter c may be defined as follows.

pre t = pre ′ 0 t
pre ′ c (RNode a ts) = RNode c [pre ′ ci ti | i ∈ [1..#ts]]

where ci = c + 1 + l′i
l′i =

∑
+[size tj | j ∈ [1..i− 1]]

This program can neither simply be mapped to a divide-and-conquer parallel program nor
to a tree contraction algorithms, due to the dependency among children represented by the
accumulative parameter.

To resolve these problems, we adopt a novel paradigm of parallel programming called
skeletal parallelism1, which was first proposed by Cole [16] and well discussed in [53], to
the parallel programming on general trees. In skeletal parallelism, users build parallel pro-
grams by composing ready-made components called skeletons, which provide parallelizable
computational patterns in a concise way and conceal the complicated parallel implementa-
tions from users. Skeletal parallelism has several advantages: the two most important ones
are that users can build parallel programs as if they wrote sequential programs, and that
the skeletal parallel programs are not only efficient but also architecture independent since
the detailed implementation is hidden in parallel skeletons. There have been many studies
on skeletal parallel programming for lists or arrays [10, 11, 13, 18, 27, 33, 56] and for binary
trees [22, 25, 26, 44, 59], but for general trees of arbitrary shapes few have been studied in
the area of skeletal parallel programming.

This paper addresses parallel programming on trees of arbitrary shapes, called rose
trees. We start by formalizing seven basic computational patterns (skeletons) over rose trees
based on the theory of Constructive Algorithmics [6, 9, 34, 47]. Constructive Algorithmics
was originally proposed for systematic development of sequential algorithms, and has been
applied to specification of parallel skeletons on data structures lists [57, 18, 27, 29], matri-
ces [24], and binary trees [44, 58, 59]. Our rose-tree skeletons are straightforward extensions
of binary-tree skeletons where two new skeletons are added to describe computational pat-
terns among siblings. We then show that rose-tree skeletons can be implemented efficiently
in parallel. We represent rose trees in the form of binary trees, and provide a mapping
from rose-tree skeletons to computations on binary trees with parallel binary-tree skeletons.
Since the binary-tree skeletons can be implemented efficiently in parallel [26, 59], our rose-
tree skeletons can also be implemented in parallel, and thus we may call the skeletons as
parallel rose-tree skeletons.

We can describe several algorithms using a single rose-tree skeleton, and more involved
algorithms by composing them. To bridge the gap between recursive algorithms and skeletal
parallel programs, we propose several theorems that specify general forms of recursive tree
algorithms and show how they can be computed in parallel in terms of the parallel rose-tree
skeletons. We give a strategy for deriving efficient parallel programs with these theorems,
and demonstrate derivation of several parallel program for three non-trivial problems on
general trees.

We have implemented the rose-tree skeletons in C++ and MPI as wrapper functions of
the binary-tree skeletons based on the mapping from rose trees to binary trees. The derived
skeletal parallel programs can be executed efficiently using our parallel skeleton library. We
implemented so far a parallel skeletons library for several parallel data structures, including
1 See http://homepages.inf.ed.ac.uk/mic/Skeletons/.
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the binary-trees, and we adopt two distinguished mechanisms in C++, function objects and
the template mechanism, to implement rose-tree skeletons. We show how these skeletons are
implemented and report experimental results.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
notations and review the parallel binary-tree skeletons. In Section 3, we formalize seven rose-
tree skeletons with discussions about their expressiveness, and show they can be implemented
in parallel with a mapping from rose trees to binary trees in Section 4. In Section 5, we
specify recursive forms that can be implemented with rose-tree skeletons, and propose a
strategy for systematic derivation of skeletal parallel programs from recursive functions. We
apply our method to several examples in Section 6, and we explain how rose-tree skeletons
are implemented in our skeleton library in Section 7. Finally we discuss related work in
Section 8, and make conclusion remarks in Section 9.

2 Preliminaries

In this section, after introducing important notational conventions used in this paper, we
review the binary-tree skeletons given in [44, 59].

2.1 Notations

In this paper, we use the notation of Haskell [5, 52]. In the following, we briefly review
important notations and define lists, binary trees, and rose trees, and some functions on
them.

Functions and Operators Function application is denoted by a space and the argument
may be written without brackets. Thus f a means f(a). Functions are curried, and the
function application associates to the left. Thus f a b means (f a) b. The function application
binds stronger than any other operator, so f a⊕b means (f a)⊕b, but not f (a⊕b). Function
composition is denoted by an infix operator ◦. By definition, we have (f ◦ g) a = f (g a).
Function composition is associative and its unit is the identity function denoted by id .

Infix binary operators will be denoted by ⊕, ⊗, etc, and their units are written as ι⊕,
ι⊗, respectively. These operators can be sectioned and be treated as functions, i.e. a⊕ b =
(a⊕) b = (⊕b) a = (⊕) a b holds.

In addition to familiar arithmetic operators, we use operator ↑ to return the larger of
two values; i.e., a ↑ b = if a ≥ b then a else b.

In deriving parallel programs, algebraic rules on operators such as associativity or dis-
tributivity play important roles. We introduce the following generalized rule of distributivity
in terms of a closure property.

Definition 1 (Extended Distributivity [42]). Let ⊗ be an associative operator. The
operator ⊗ is said to be extended-distributive over operator ⊕, if for any a, b, c, a′, b′, and
c′, there exist functions p1, p2, and p3 such that the following equation holds.

(λx.a⊕ (b⊗ x⊗ c)) ◦ (λx.a′ ⊕ (b′ ⊗ x⊗ c′)) = λx.A⊕ (B ⊗ x⊗ C)
where A = p1 (a, b, c, a′, b′, c′)

B = p2 (a, b, c, a′, b′, c′)
C = p3 (a, b, c, a′, b′, c′)

We call functions p1, p2, and p3 as characteristic functions. 2
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Many pair of operators satisfy the extended distributivity. For example, let ⊕ be an
associative operator, then ⊕ is also extended-distributive over ⊕ itself. If operator ⊗ dis-
tributes over operator ⊕, then of course the operator ⊗ is extended-distributive over ⊕.
There are many pairs of operators where the distributivity does not hold but the extended
distributivity does.

When the operator ⊗ is also commutative, we can simplify the definition as follows.

Lemma 1. Let ⊗ be an associative and commutative operator with unit. If the following
equation holds for any a, b, a′, and b′, then the operator ⊗ is extended-distributive over
operator ⊕.

(λx.a⊕ (b⊗ x)) ◦ (λx.a′ ⊕ (b′ ⊗ x)) = λx.A⊕ (B ⊗ x)
where A = p1 (a, b, a′, b′)

B = p2 (a, b, a′, b′)

Proof: We can give a definition of the characteristic functions p′1, p
′
2, p

′
3 of the extended-

distributivity as follows.

p′1 (a, b, c, a′, b′, c′) = p1 (a, b⊗ c, a′, b′ ⊗ c′)
p′2 (a, b, c, a′, b′, c′) = p2 (a, b⊗ c, a′, b′ ⊗ c′)
p′3 (a, b, c, a′, b′, c′) = ι⊗ 2

Lists and List Comprehension Cons lists (or simply lists) are finite sequences of values
of the same type. A list is constructed either by an empty list (Nil) or by adding a value to
a list (Cons). The datatype of a list whose values are of type α is defined as follows.

data List α = Nil | Cons α (List α)

We may use the following abbreviations: [α] for List α, [ ] for Nil , and (a : as) for (Cons a as).
We introduce two functions manipulating lists. Function head returns the first value of

the input list, and function tail removes the first value from the list.

head (a : as) = a
tail (a : as) = as

List comprehension is a syntax sugar for generating lists. The following is an example of
list comprehension.

[f ti | i ∈ [1..#ts]]

List comprehension [1..#ts] generates a list of increasing integers starting from 1 and ending
at the number of values in ts. In this paper, we denote ti for the i-th value of a list ts, and we
use similar notation for other lists too. Thus, the example above generates a list by applying
function f to each value in ts.

We introduce another notation for consumption of lists. Let ⊕ be an associative operator
with the unit ι⊕, then

∑
⊕ denotes the reduction of a list with the operator ⊕.
∑
⊕[ ] = ι⊕∑
⊕[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

Binary Trees Binary trees are trees whose internal nodes have exactly two children. In
this paper we assume the nodes in a binary tree have values of the same type. The datatype
of binary trees whose nodes have values of type α is defined as follows.

data BTree α β = Leaf α | Node β (BTree α β) (BTree α β)
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We introduce two functions manipulating binary trees. Function rootb returns the value
of the root node.

rootb (Leaf n) = n
rootb (Node n l r) = n

Function setrootb takes a binary tree and a value, and replace the value of root node with
the input value.

setrootb (Leaf n) a = Leaf a
setrootb (Node n l r) a = Node a l r

Rose Trees Rose trees are trees whose internal nodes have an arbitrary number of children.
In this paper we assume the nodes in a rose tree have values of the same type. The datatype
of rose trees whose nodes have the values of type α is defined as follows using lists.

data RTree α = RNode α [RTree α]

Similar to the binary trees, we introduce two functions manipulating rose trees. Function
rootr returns the value of the root node.

rootr (RNode a ts) = a

Function setrootr takes a rose tree and a value, and replaces the value of the root node with
the input value.

setrootr (RNode a ts) b = RNode b ts

2.2 Basic Binary-Tree Skeletons

In the following, we review the parallel skeletons for binary trees [44, 59]. There are five
basic parallel binary-tree skeletons, which are categorized as follows.

– Independent computations: map and zipwith
– Bottom-up computations: reduce and upwards accumulate
– Top-down computation: downwards accumulate

These parallel skeletons can be efficiently implemented [26] based on the tree contraction
algorithms [1, 48] which are important parallel algorithms manipulating a binary tree of an
arbitrary shape efficiently. In this paper, parallel skeletons for binary trees are denoted in
sans-serif font with a suffix b.

In the discussion of parallel computation cost of the parallel skeletons, we use N to
indicates the number of nodes in the tree, and P the number of processors.

Map The parallel skeletons map and zipwith are computational patterns in which each
node is computed independently.

The parallel skeleton mapb takes two functions kL and kN and a binary tree, and applies
kL to each leaf and kN to each internal node.

mapb :: (α → γ) → (β → δ) → BTree α β → BTree γ δ
mapb kL kN (Leaf n) = Leaf (kL n)
mapb kL kN (Node n l r) = Node (kN n) (mapb kL kN l) (mapb kL kN r)

The parallel computation cost of mapb kL kN is O(N/P ) if the functions kL and kN are
computed in constant time.

5



Zipwith The parallel skeleton zipwithb takes two functions kL and kN and two binary trees
of the same shape, and zips the trees up by applying kL to each pair of leaves and kN to
each pair of internal nodes.

zipwithb :: (α → α′ → γ) → (β → β′ → δ) → BTree α β → BTree α′ β′ → BTree γ δ
zipwithb kL kN (Leaf n) (Leaf n′) = Leaf (kL n n′)
zipwithb kL kN (Node n l r) (Node n′ l′ r′) = Node (kN n n′) (zipwithb kL kN l l′)

(zipwithb kL kN r r′)

The parallel computation cost of zipwithb kL kN is O(N/P ), if the functions kL and kN

are computed in constant time.

Reduce The parallel skeleton reduce and upwards accumulate are bottom-up computational
patterns; the former returns a value and the latter returns a tree.

The parallel skeleton reduceb takes a function k and a binary tree, and collapses the tree
into a value by applying the function k in a bottom-up manner.

reduceb :: (β → α → α → α) → BTree α β → α
reduceb k (Leaf n) = n
reduceb k (Node n l r) = k n (reduceb k l) (reduceb k r)

To guarantee existence of an efficient parallel implementation, we require existence of
functions φ, ψL, ψR, and G, satisfying the following equations.

k n x y = G (φ n) x y
G n l (G n′ x y) = G (ψL n l n′) x y
G n (G n′ x y) r= G (ψR n r n′) x y

We denote the function k satisfying the condition above as k = 〈φ, ψL, ψR, G〉.
When these functions exist we can implement the reduceb skeleton based on the tree

contraction algorithms and then the parallel computation cost of reduceb 〈φ, ψL, ψR, G〉 is
O(N/P + log P ) if the functions φ, ψL, ψR, and G are computed in constant time.

Upwards Accumulate The parallel skeleton uAccb takes a function k and a binary tree,
and computes reduceb k for each subtree. In other words, this skeleton applies the function
k in a bottom-up manner, and returns a tree whose values are the results of bottom-up
reduction.

uAccb :: (β → α → α → α) → BTree α β → BTree α α
uAccb k (Leaf n) = Leaf n
uAccb k (Node n l r) = let l′ = uAccb k l

r′= uAccb k r
in Node (k n (rootb l′) (rootb r′)) l′ r′

To guarantee existence of an efficient parallel implementation, we require the same
condition on the function k as the reduceb skeleton. The parallel computation cost of
uAccb 〈φ, ψL, ψR, G〉 is also O(N/P + log P ) if all the functions are computed in constant
time.

Downwards Accumulate The parallel skeleton downwards accumulate is a top-down
computational pattern.

The parallel skeleton dAccb takes an associative operator ⊕, two functions gl and gr, and
a binary tree. This skeleton computes in a top-down manner by updating an accumulative
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parameter c, whose initial value is the unit of the operator, ι⊕. The accumulative parameter
is updated with ⊕ and gl for the left child, and with ⊕ and gr for the right child.

dAccb :: (γ → γ → γ) → (β → γ) → (β → γ) → BTree α β → BTree γ
dAccb (⊕) gl gr t = dAcc′b (⊕) gl gr ι⊕ t
dAcc′b (⊕) gl gr c (Leaf n) = Leaf c
dAcc′b (⊕) gl gr c (Node n l r) = Node c (dAcc′b (⊕) gl gr (c⊕ gl n) l)

(dAcc′b (⊕) gl gr (c⊕ gr n) r)

The condition for efficient parallel computation is the associativity of the operator ⊕,
and the parallel computation cost of dAccb (⊕) gl gr is O(N/P + log P ), if the operator ⊕
and the functions gl and gr are computed in constant time.

2.3 Specialized Binary-Tree Skeletons

We define two communication skeletons. Though we can implement these skeletons in terms
of the basic parallel skeletons, they are important for reasons of readability and efficiency.

Get Left Child The parallel skeleton getchlb takes a value and a binary tree, and puts the
left child’s value for each internal node and the input value for each leaf. In other words,
this skeleton shifts each left child’s value to its parent.

getchlb :: α → BTree β β → BTree α β
getchlb c (Leaf n) = Leaf c
getchlb c (Node n l r) = Node (rootb l) (getchlb c l) (getchlb c r)

The parallel computation cost of getchlb is O(N/P ), since the dependency is local.

Get Right Child The parallel skeleton getchrb is a symmetry of the getchlb skeleton. This
skeleton takes a value and a binary tree, and put the right child’s value for each internal
node and the input value for each leaf.

getchrb :: α → BTree β β → BTree α β
getchrb c (Leaf n) = Leaf c
getchrb c (Node n l r) = Node (rootb r) (getchrb c l) (getchrb c r)

The parallel computation cost of getchrb is also O(N/P ).

3 Rose Tree Skeletons

In this section, we formalize computational patterns on rose trees based on the theory of
Constructive Algorithmics [6, 9, 34, 47]. The key idea of Constructive Algorithmics is that
the computation structure of algorithms should be derivable from the data structures the
algorithms manipulate. Since the data structure of rose trees is an extension of binary
trees with the list structure, the computational patterns on rose trees can be specified as
extensions of computational patterns on binary trees and lists. We formalize seven skeletons
on rose trees, which are categorized into the following four groups.

– Independent computations: map and zipwith
– Bottom-up computations: reduce and upwards accumulate
– Top-down computation: downwards accumulate
– Computation among siblings: rightwards accumulate and leftwards accumulate

The skeletons of the former three groups are extensions of the parallel binary-tree skeletons,
and skeletons of the last group are extensions of list skeletons.
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We shall denote the rose-tree skeletons in sans-serif font with a suffix r. In the following
of this section, we give an intuitive specification of them using list comprehension. Their
formal definition in terms of mutual recursive functions is summarized in Fig. 8.

Map The rose-tree skeleton mapr takes a function k and a rose tree, and applies the function
to each node. Informally the mapr skeleton is defined as follows.

mapr :: (α → β) → RTree α → RTree β
mapr k (RNode a ts) = RNode (k a) [mapr k ti | i ∈ [1..#ts]]

An example of the mapr skeleton is shown in Fig. 1.

Zipwith The rose-tree skeleton zipwithr takes a function k and two rose trees of the same
shape, and zips them up by applying the function to each pair of corresponding nodes.
Informally the zipwithr skeleton is defined as follows.

zipwithr :: (α → α′ → β) → RTree α → RTree α′ → RTree β
zipwithr k (RNode a ts) (RNode a′ ts ′) = RNode (k a a′) [zipwithr k ti t ′i | i ∈ [1..#ts]]

An example of the zipwithr skeleton is shown in Fig. 2.

Reduce The parallel skeleton reducer takes two operators ⊕ and ⊗ and a rose tree, and
collapses the tree into a value in a bottom-up manner by folding the siblings with operator
⊗ and merging the result up to the parent with operator ⊕. Informally, the reducer skeleton
is defined as follows, where the operator ⊗ should be associative by definition.

reducer :: (α → β → β) → (β → β → β) → RTree α → β
reducer (⊕) (⊗) (RNode a ts) = a⊕∑

⊗[reducer (⊕) (⊗) ti | i ∈ [1..#ts]]

An example of the reducer skeleton is shown in Fig. 3.

Upwards Accumulate The rose-tree skeleton uAccr takes two operators ⊕ and ⊗ and
a rose tree, and proceed the computation in the same way as the reducer skeleton. The
difference is that the uAccr skeleton stores the intermediate results on the nodes and returns
a tree of the same shape as the input tree. Informally, the uAccr skeleton is defined as follows
using the reducer skeleton.

uAccr :: (α → β → β) → (β → β → β) → RTree α → RTree β
uAccr (⊕) (⊗) (RNode a ts)

= RNode (reducer (⊕) (⊗) (RNode a ts)) [uAccr (⊕) (⊗) ti | i ∈ [1..#ts]]

An example of the uAccr skeleton is shown in Fig. 4.

Downwards Accumulate The rose-tree skeleton dAccr takes an associative operator ⊕
and proceeds the computation in a top-down manner with an accumulative parameter c.
The initial value of the accumulative parameter is the unit of the operator, ι⊕, and it is
updated by the operator ⊕ at each node. Informally, the dAccr skeleton is defined as follows.

dAccr :: (α → α → α) → RTree α → RTree α
dAccr (⊕) t = dAcc′r (⊕) ι⊕ t
dAcc′r (⊕) c (RNode a ts) = RNode c [dAcc′r (⊕) (c⊕ a) ti | i ∈ [1..#ts]]

An example of the dAccr skeleton is shown in Fig. 5.
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Rightwards Accumulate The rose-tree skeleton rAccr takes an associative operator ⊕
and a rose tree, and applies the scan operation to each list of siblings from left to right. The
scan operation on lists takes an associative operator and a list, and accumulates values with
the operator as follows.

scan (⊕) [a1, a2, . . . , an] = [ι⊕, a1, . . . , a1 ⊕ · · · ⊕ an−1]

Informally, the rAccr skeleton is defined as follows with this scan function.

rAccr :: (α → α → α) → RTree α → RTree α
rAccr (⊕) (RNode a ts) = let rs = scan (⊕) [rootr ti | i ∈ [1..#ts]]

in RNode ι⊕ [setrootr (rAccr (⊕) ti) ri | i ∈ [1..#ts]]

An example of the rAccr skeleton is shown in Fig. 6.

Leftwards Accumulate The rose-tree skeleton lAccr takes an associative operator ⊕ and
a rose tree, and applies the scan operation to each list of siblings from right to left. The
reversed scan operation scan ′ is defined as follows.

scan ′ (⊕) [a1, a2, . . . , an] = [a2 ⊕ · · · ⊕ an, a3 ⊕ · · · ⊕ an, . . . , ι⊕]

Informally, the lAccr skeleton is defined as follows with this scan ′ function.

lAccr :: (α → α → α) → RTree α → RTree α
lAccr (⊕) (RNode a ts) = let rs = scan ′ (⊕) [rootr ti | i ∈ [1..#ts]]

in RNode ι⊕ [setrootr (lAccr (⊕) ti) ri | i ∈ [1..#ts]]

An example of the lAccr skeleton is shown in Fig. 7.

4 Parallelization of Rose-Tree Skeletons with Binary-Tree Skeletons

In this section, we show a parallel implementation for the rose-tree skeletons proposed in
the previous section. The main idea is to represent rose trees by binary trees and to im-
plement the rose-tree skeletons by the binary-tree skeletons. Since the binary-tree skeletons
can be implemented efficiently in parallel [26, 59], the rose-tree skeletons can be efficiently
implemented in parallel too.

4.1 Binary-Tree Representation of Rose Trees

There have been many studies for manipulating binary trees in parallel. In particular, several
efficient implementations of the parallel tree contraction algorithms have been studied [1, 3,
21, 45, 48]. The parallel binary-tree skeletons can be implemented in parallel based on these
tree contraction algorithms [25, 26].

To utilize these parallel implementations, we represent the rose trees by binary trees as
shown in Fig. 9. This binary-tree representation is one of the widely used representations
and is also discussed in [20]. In this representation, every internal node comes from a node in
the original rose tree, and all leaves are dummy nodes. The left child of a node in the binary
tree is its left-most child in the original rose tree, and the right child of a node in the binary
tree is its next sibling in the rose tree. Let n be the number of nodes of the original rose
tree, then the number of nodes of the binary tree turns out to be 2n + 1, which guarantees
the asymptotic cost when we utilize the parallel binary-tree skeletons on this binary-tree
representation.
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1

2 3 4

5 6 7 8

9 10 11

mapr (2×)

=⇒

2

4 6 8

10 12 14 16

18 20 22

Fig. 1. An example of the mapr skeleton.

1

2 3 4

5 6 7 8

9 10 11

0

1 1 1

2 2 2 2

3 3 3

zipwithr (+)

=⇒

1

3 4 5

7 8 9 10

12 13 14

Fig. 2. An example of the zipwithr skeleton.

1

1 1 1

1 1 1 1

1 1 1

reducer (+) (↑)

=⇒ 4

Fig. 3. An example of the reducer skeleton.

1

1 1 1

1 1 1 1

1 1 1

uAccr (+) (↑)

=⇒

4

2 3 1

1 1 2 1

1 1 1

Fig. 4. An example of the uAccr skeleton.
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1

1 1 1

1 1 1 1

1 1 1

dAccr (+)

=⇒

0

1 1 1

2 2 2 2

3 3 3

Fig. 5. An example of the dAccr skeleton.

1

1 1 1

1 1 1 1

1 1 1

rAccr (+)

=⇒

0

0 1 2

0 1 0 1

0 1 2

Fig. 6. An example of the rAccr skeleton.

1

1 1 1

1 1 1 1

1 1 1

lAccr (+)

=⇒

0

2 1 0

1 0 1 0

2 1 0

Fig. 7. An example of the lAccr skeleton.
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mapr k (RNode a ts) = RNode (k a) (map′r k ts)
map′r k [ ] = [ ]
map′r k (t : ts) = mapr k t : map′r k ts

zipwithr k (RNode a ts) (RNode a′ ts ′) = RNode (k a a′) (zipwith′r k ts ts ′)
zipwith′r k [ ] [ ] = [ ]
zipwith′r k (t : ts) (t′ : ts ′) = zipwithr k t t′ : zipwith′r k ts ts ′

reducer (⊕) (⊗) (RNode a ts) = a⊕ reduce′r (⊕) (⊗) ts
reduce′r (⊕) (⊗) [ ] = ι⊗
reduce′r (⊕) (⊗) (t : ts) = (reducer (⊕) (⊗) t)⊗ (reduce′r (⊕) (⊗) ts)

uAccr (⊕) (⊗) (RNode a ts) = let ts ′ = uAcc′r (⊕) (⊗) ts
in RNode (a⊕ uAcc′′r (⊗) ts ′) ts ′

uAcc′r (⊕) (⊗) [ ] = [ ]
uAcc′r (⊕) (⊗) (t : ts) = uAccr (⊕) (⊗) t : uAcc′r (⊕) (⊗) ts
uAcc′′r (⊗) [ ] = ι⊗
uAcc′′r (⊗) (t : ts) = rootr t⊗ uAcc′′r (⊗) ts

dAccr (⊕) t = dAcc′r (⊕) ι⊕ t
dAcc′r (⊕) c (RNode a ts) = RNode c (dAcc′′r (⊕) (c⊕ a) ts)
dAcc′′r (⊕) c [ ] = [ ]
dAcc′′r (⊕) c (t : ts) = dAcc′r (⊕) c t : dAcc′′r (⊕) c ts

rAccr (⊕) t = snd (rAcc′r (⊕) ι⊕ t)
rAcc′r (⊕) c (RNode a ts) = (c⊕ a,RNode c (rAcc′′r (⊕) ι⊕ ts))
rAcc′′r (⊕) c [ ] = [ ]
rAcc′′r (⊕) c (t : ts) = let (c′, t′) = rAcc′r (⊕) c t

in t′ : rAcc′′r (⊕) c′ ts

lAccr (⊕) t = snd (lAcc′r (⊕) ι⊕ t)
lAcc′r (⊕) c (RNode a ts) = (a⊕ c,RNode c (snd (lAcc′′r (⊕) ts)))
lAcc′′r (⊕) [ ] = (ι⊕, [ ])
lAcc′′r (⊕) (t : ts) = let (c, ts ′) = lAcc′′r (⊕) ts

(c′, t′) = lAcc′r (⊕) c t
in (c′, t′ : ts ′)

Fig. 8. The formal definition of seven rose-tree skeletons.
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1

2 3 4

5 6

r2b
=⇒
b2r⇐=

1

2

3

5 4

6

Fig. 9. The binary-tree representation of rose trees.

To formalize the binary-tree representation, we define function r2b to transform a rose
tree into its binary-tree representation.

r2b :: RTree α → BTree α
r2b t = r2b′ t [ ]
r2b′ (RNode a ts) ss = Node a (r2b′′ ts) (r2b′′ ss)
r2b′′ [ ] = Leaf
r2b′′ (t : ts) = r2b′ t ts

The inverse function b2r , which restores a rose tree from its binary-tree representation,
is defined as follows.

b2r :: BTree α → RTree α
b2r t = head (b2r ′ t)
b2r ′ (Node n l r) = (RNode n (b2r ′ l)) : b2r ′ r
b2r ′ (Leaf n) = [ ]

4.2 Parallelization of Rose-Tree Skeletons with Binary-Tree Skeletons

We implement the rose-tree skeletons in terms of the parallel binary-tree skeletons based
on the binary-tree representation. Generally speaking, the implementation of a rose-tree
skeleton is decomposed into three steps: (1) applying the function r2b to transform a rose
tree to a binary tree; (2) applying binary-tree skeletons to perform the computation of the
skeleton; and (3) applying the function b2r to restore the rose-tree structure if necessary.

Map Since every node in a rose tree is an internal node in the binary-tree representation,
and there are no dependencies in the computation of the mapr skeleton, we can implement
the mapr skeleton by simply using the mapb skeleton to apply the function to each internal
node.

mapr k = b2r ◦ (mapb k) ◦ r2b

Zipwith Similar to the mapr skeleton, since there are no dependencies in the computation
of the zipwithr skeleton, we can implement the skeleton with the zipwithb skeleton on the
binary-tree representation.

zipwithr k t t′ = b2r (zipwithb k (r2b t) (r2b t′))

13



Reduce Since the reducer skeleton returns a value rather than a rose tree, the computation
of the reducer skeleton can be formalized as follows:

reducer (⊕) (⊗) = f ◦ r2b

where the function f is defined as follows.

f (Leaf n) = ι⊗
f (Node n l r) = (n⊕ f l)⊗ f r

This recursive function f can be decomposed into the mapb and reduceb skeletons as follows.

f = (reduceb k) ◦ (mapb (λx.ι⊗) id)
where k n l r = (n⊕ l)⊗ r

For the parallel implementation of the reducer skeleton, the function k above should
satisfy the condition of the reduceb skeleton. Since it is difficult to verify the condition
in general, we assume some algebraic properties on the operators. In fact, we can derive
functions for the reduceb skeleton if the operators satisfy either of the following conditions.

– The operators ⊕ and ⊗ construct an algebraic semi-ring : the operators are defined on
a type (domain), and the operator ⊕ is associative and distributive over the operator ⊗
in addition to the associativity and commutativity of the operator ⊗.

– The operator ⊗ is extended-distributive over ⊕: this condition includes the cases where
the two operators are the same associative operator, and the operator ⊗ is distributive
over ⊕.

Following the derivation method in [44], we derive the functions φ, ψL, ψR, and G for
the reduceb skeleton. The idea is to introduce a parametrized function which is closed under
nested calls. The parametrized function is actually a binary function, and thus we need to
consider two cases for the nested calls (for the left and right recursive calls). Let F [a] be a
set of parametrized binary functions where a is the parameter. The parametrized function
is said to be closed if the following equations hold for some parameters Al, Ar computed
from a, a′, l, and r.

F [a] l (F [a′] x y) = F [Al] x y
F [a] (F [a′] x y) r= F [Ar] x y

When we can find a parametrized function satisfying the above equations, we can derive
the four functions systematically from the definition of Al and Ar. The calculations of the
nested calls are rather straightforward but become too long. In the following we only show
the parametrized functions to be introduced and the results of the four functions.

Firstly, let ⊕ and ⊗ construct an algebraic semi-ring. For this case, we choose the
parametrized function with three parameters a, b, and c as

λl r.(a⊕ l)⊗ (b⊕ r)⊗ c

which is closed under nested calls. From the parametrized function above we can derive the
function φ, ψL, ψR, and G for the reduceb skeleton, and thus under this condition we can
obtain an equivalent definition of the reducer skeleton on the binary-tree representation as
follows.

reducer (⊕) (⊗) = (reduceb 〈φ, ψL, ψR, G〉) ◦ (mapb (λ x.ι) id) ◦ r2b
where φ n = (n, ι⊕, ι⊗)

ψL (a, b, c) l′ (a′, b′, c′) = (b⊕ a′, b⊕ b′, (a⊕ l′)⊗ (b⊕ c′)⊗ c)
ψR (a, b, c) r′ (a′, b′, c′) = (a⊕ a′, a⊕ b′, (a⊕ c′)⊗ (b⊕ r′)⊗ c)
G (a, b, c) l r = (a⊕ l)⊗ (b⊕ r)⊗ c
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1+(2*(3+(5*6))*4)

2*(3+(5*6))*4 (3+(5*6))*4 4

5*6 6

1+(2*(3+(5*6))*4)

2 3+(5*6) 4

5 6

Fig. 10. The result of b2r ◦ (uAccb k) ◦ (mapb (λx.ι⊗) id) ◦ r2b (left) and the desired result for uAccr

(right). Note that we denote + for ⊕, and ∗ for ⊗.

Secondly, let the operator ⊗ be extended-distributive over ⊕ with the characteristic func-
tions p1, p2, and p3. For this case, we choose the parametrized function with four parameters
a, b, c, and d as

λl r.a⊕ (b⊗ (c⊕ l)⊗ r ⊗ d)

which is closed under nested calls. From the parametrized function above we can derive the
function φ, ψL, ψR, and G for the reduceb skeleton as follows.

φ n = (ι⊕, ι⊗, n, ι⊗)
ψL (a, b, c, d) l′ (a′, b′, c′, d′) = (p1 tup, p2 tup, c′, p3 tup)

where tup = (a, b⊗ (c⊕ l′), d, a′, b′, d′)
ψR (a, b, c, d) r′ (a′, b′, c′, d′) = (p1 tup, p2 tup, c′, p3 tup)

where tup = (a, b, r′ ⊗ d, p1 tup′, p2 tup′, p3 tup′)
tup′ = (c, ι⊗, ι⊗, a′, b′, d′)

G (a, b, c, d) l r = a⊕ (b⊗ (c⊕ l)⊗ r ⊗ d)

Having proved that the function k satisfies the condition for the reduceb skeleton, we
obtain an equivalent definition of the reducer skeleton on the binary-tree representation as
follows:

reducer (⊕) (⊗) = (reduceb 〈φ, ψL, ψR, G〉) ◦ (mapb (λ x.ι⊗) id) ◦ r2b

where the functions φ, ψL, ψR and G are defined above.

Upwards Accumulate Since the uAccr skeleton is very similar to the reducer skeleton,
first let us consider applying the mapb and uAccb skeletons with the same functions used in
parallelizing the reducer skeleton as follows.

b2r ◦ (uAccb k) ◦ (mapb (λ x.ι) id) ◦ r2b
where k n l r = (n⊕ l)⊗ r

Unfortunately, as seen in the example in Fig. 10, the results are not what we want for the
uAccr skeleton. This is because the result of a node includes its siblings’ results.

Recall that the left child in the binary-tree representation is the left-most child in the
original rose tree, and notice that the children’s results are folded on the left child in the
binary-tree representation. To obtain the desired result, we only need to compute again
(n ⊕ l) for each internal node where n is the original node’s value and l is the left child’s
value in the result of the uAccb skeleton. This can be realized by the getchlb and zipwithb

skeletons.
Therefore, the equivalent definition of uAccr skeleton under the binary-tree representa-

tion is given as follows:
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uAccr (⊕) (⊗) t = let bt = r2b t
bt ′ = uAccb 〈φ, ψL, ψR, G〉 (mapb (λx.ι⊗) id bt)

in b2r (zipwithb (λn l.n⊕ l) bt (getchlb bt ′))

where the functions φ, ψL, ψR and G are specified in the same way as those of the reducer

skeleton under the same conditions.

Downwards Accumulate The dAccr skeleton is a top-down computational pattern. By
introducing a recursive function with an accumulative parameter, we can specify the dAccr

skeleton on the binary-tree representation.

dAccr (⊕) = b2r ◦ (f ι⊕) ◦ r2b
where f c (Leaf ) =

f c (Node n l r) = Node c (f (c⊕ n) l) (f c r)

Noting that c = c ⊕ ι⊕, we can write the function f in terms of the uAccb skeleton.
Therefore, an equivalent definition of the dAccr skeleton in terms of the binary-tree skeletons
is as follows.

dAccr (⊕) = b2r ◦ (dAccb (⊕) id (λx.ι⊕)) ◦ r2b

Rightwards Accumulate The skeleton rAccr traverses the siblings from left to right on
rose trees, which corresponds to a top-down traversal on binary trees. With a recursive
function with an accumulative parameter, the rAccr skeleton is defined as follows.

rAccr (⊕) = b2r ◦ (f ι⊕) ◦ r2b
where f c (Leaf ) = Leaf

f c (Node n l r) = Node c (f ι⊕ l) (f (c⊕ n) r)

The function f above is a top-down computation on binary-tree representation, but in
fact it cannot be simply described with the dAccb skeleton with its operator being ⊕, since
we cannot update the accumulative parameter for left child as ι⊕ = c⊕ g a with a suitable
function g. Therefore, it is required to derive an associative operator to make a use of dAccb.

To derive an associative operator, we utilize the context preservation technique [13],
which derives an associative operator from a parametrized function which is closed under
function composition. In this case, we choose a parametrized function defined with three
parameter p, a, and b, as follows:

λx.if p then x⊕ a else b

which is closed under function composition. Based on this parametrized function, we can
derive an associative operator ⊗ defined as follows:

(p, a, b)⊗ (p′, a′, b′) = (p′ ∧ p, a⊕ a′, if p′ then b⊕ a′ else b′)

An right unit of this operator is ι⊗ = (True, ι⊕, ), but unfortunately there is no left unit.
Thus we introduce another flag as follows:

(True, p, a, b)⊗′ (False, , , ) = (True, p, a, b)
(False, , , ) ⊗′ (flag , p, a, b) = (flag , p, a, b)
(True, p, a, b)⊗′ (True, p′, a′, b′) = (True, p′ ∧ p, a⊕ a′, if p′ then b⊕ a′ else b′)

where the unit is given as (False,True, ι⊕, ). Using this operator, we succeed in deriving an
equivalent definition of the rAccr skeleton in terms of the binary-tree skeletons.

rAccr (⊕) =b2r ◦ (mapb k) ◦ (dAccr (⊗) gl gr) ◦ r2b
where gl x = (True,False, , ι⊕)

gr x = (True,True, x, )
k (flag , p, a, b) = if p then a else b
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1

2+3+4 3+4 4

5+6 6

0

3+4 4 0
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Fig. 11. The result of b2r ◦ (uAccb k) ◦ (mapb (λx.ι⊕) id) ◦ r2b (left) and the desired result of lAccr

(right). Note that we denote + for ⊕ and 0 for ι⊕.

Leftwards Accumulate The skeleton lAccr traverses the siblings from right to left, which
corresponds to a bottom-up traversal on the binary-tree representation. Therefore, an equiv-
alent definition of the lAccr skeleton on the binary-tree representation may have a call of
the uAccb skeleton. We first consider the following composition of the skeletons uAccb and
mapb.

b2r ◦ (uAccb k) ◦ (mapb (λx.ι⊕) id) ◦ r2b
where k n l r = n⊕ r

The results of this computation are slightly different from what we want for the lAccr

skeleton in the sense that the results should be shifted to the left by one on the rose tree as
shown in Fig. 11. We resolve this problem by applying the getchrb skeleton before restoring
the rose-tree structure with the b2r function.

Having derived an equivalent definition of the lAccr skeleton in terms of the binary-tree
skeletons, we turn to prove that the function k satisfies the condition of the uAccb skeleton.
For the function k above, we introduce a parametrized function with three parameters p, a,
and b as

λl r.if p then a⊕ r else b

which is closed under the nested calls.
Therefore, we obtain an equivalent implementation of the lAccr skeleton in terms of the

binary-tree skeletons as follows.

lAccr (⊕) = b2r ◦ (getchrb ) ◦ (uAccb 〈φ, ψL, ψR, G〉) ◦ (mapb (λx.ι⊕) id) ◦ r2b
where φ n = (True, n, )

ψL (p, a, b) l′ (p′, a′, b′) = (p ∧ p′, a⊕ a′, if p then a⊕ b′ else b)
ψR (p, a, b) r′ (p′, a′, b′) = (False, , if p then a⊕ r′ else b)
G (p, a, b) l r = if p then a⊕ r else b

Now we summarize this section with the following theorem.

Theorem 1. The seven parallel skeletons for rose trees defined in Section 3 can be im-
plemented in parallel based on the binary-tree representation with the parallel binary-tree
skeletons.
Proof: The correctness of the implementation of the rose-tree skeletons are almost self-
evident from the derivations so far. We can prove this theorem by induction on the structure
of rose trees using the definitions in terms of the mutual recursive functions, too. 2

5 Diffusion Theorems

Despite the simplicity of the parallel skeletons for rose trees defined in Sections 3 and 4,
we can write many algorithms by composing some of them. In this section, we show the
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expressiveness of the parallel rose-tree skeletons by providing skeletal programs for several
general forms of recursive algorithms. First, we discuss the generalization of the zipwithr

skeleton, bottom-up computations, and top-down computations. Then, we give more power-
ful theorems, diffusion theorems, for parallelizing recursive algorithms on rose trees. Finally,
we highlight a strategy for deriving efficient parallel algorithms from the recursive functions
on rose trees based on the diffusion theorems.

5.1 Generalization of zipwithr skeleton

The zipwithr skeleton takes two rose trees of the same shape and merges them into a single
one. We can generalize this skeleton to take more than two rose trees.

Let us consider a new skeleton zipwith3r which takes a ternary function and three rose
trees of the same shape, and returns a tree by merging the corresponding three nodes.
Informally, this skeleton is defined just like the zipwithr skeleton as follows.

zipwith3r k (RNode a ts) (RNode b ss) (RNode c rs)
= RNode (k a b c) [zipwith3r k ti si ri | i ∈ [1..#ts]]

We can implement this zipwith3r skeleton by using the zipwithr skeleton twice as follows.

zipwith3r k t s r = zipwithr k′ (zipwithr (, ) t s) r
where k′ (a, b) c = k a b c

Here, the sectioned operator (, ) takes two values and returns a pair of them defined as
(, ) a b = (a, b).

We can further generalize the zipwithr skeleton to take more trees in the same way.

5.2 Parallelizing General Bottom-up Computations

Though the parallel skeleton reducer represents a bottom-up computational pattern, there
are many bottom-up algorithms that cannot be written only with it. In the following we
formalize a more general bottom-up computational pattern called homomorphism and show
its implementation with the rose-tree skeletons.

The homomorphism on rose trees is a bottom-up computation pattern defined recursively
as follows.

h (RNode a ts) = f a [h ti | i ∈ [1..#ts]]

This computational pattern can express a wide class of bottom-up computations, but in
general it is hard or impossible to derive efficient parallel programs from any of them.
Therefore, we define a subclass of homomorphisms that can be implemented in parallel with
the parallel skeletons.

Definition 2 (Parallelizable Homomorphism). Let ⊗ be an associative operator, ⊕ be
an operator, and k be a function. A function h is said to be a parallelizable homomorphism
if it is defined as

h (RNode a ts) = k a⊕∑
⊗[h ti | i ∈ [1..#ts]]

and the operators ⊕ and ⊗ satisfy either of the following conditions.

– The operators ⊕ and ⊗ construct an algebraic semi-ring, i.e. the operator ⊕ is associa-
tive and distributive over the operator ⊗, and the operator ⊗ is both associative and
commutative.

– The operator ⊗ is extended-distributive over the operator ⊕.

We denote the parallelizable homomorphism h defined with a function k and operators ⊕
and ⊗, as h = ([k,⊕,⊗]). 2
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This parallelizable homomorphism is a generalization of reducer at the point of applying
function k to all the nodes. Therefore, we can compute the parallelizable homomorphism by
applying the mapr skeleton followed by the reducer skeleton.

Theorem 2. A parallelizable homomorphism h = ([k,⊕,⊗]) can be implemented in parallel
with the rose-tree skeletons as follows.

h = (reducer (⊕) (⊗)) ◦ (mapr k)

Proof: We can prove this theorem by the induction on the structure of rose trees. The proof
is given by showing equations for the top case (t = RNode a ts), base case (ts = [ ]), and
inductive case (ts = (RNode a ts ′) : ss). The detailed proof is given in Appendix A. 2

It is worth noting that the theorem is an extension of the first homomorphism lemma
on list [6]; for example, based on this idea we may introduce the idea of the so-called almost
homomorphism [17].

The following are two examples of the parallelizable homomorphisms. Function size
counts up the number of nodes in a rose tree, and function height computes the height of a
rose tree.

size = ([λx.1, +, +])
= (reducer (+) (+)) ◦ (mapr (λx.1))

height = ([λx.1, +, ↑])
= (reducer (+) (↑)) ◦ (mapr (λx.1))

5.3 Parallelizing General Top-down Computations

The parallel skeleton dAccr is one of the simplest top-down computational patterns. We
may consider a generalization in the sense of the following three points.

1. The initial value of the accumulative parameter is not the unit of the operator but a
certain value c.

2. The accumulative parameter is updated not only with the associative operator ⊕ but
also with a function g as c′ = c⊕ g a.

3. The result value on a node is computed with the original value a and the accumulative
parameter c using a function k as (k a c), not the accumulative parameter itself.

Such generalization can be captured by the following recursive function f defined with an
associative operator ⊕ and two functions g and k.

f c (RNode a ts) = RNode (k a c) [f (c⊕ g a) ti | i ∈ [1..#ts]]

We can implement this function f by calling rose-tree skeletons in the following way.

f c t = let gt = mapr g t
dt = dAccr (⊕) gt
ct = mapr (λx.c⊕ x) dt

in zipwithr k t ct

1. Since the operator ⊕ is associative, equation c ⊕ a = c ⊕ (ι⊕ ⊕ a) holds for any a and
c. Therefore, we put the initial value of the accumulative parameter together using the
mapr skeleton, after the computation of the dAccr skeleton (line 3).

2. We achieve this generalization by applying function g to every node with the mapr

skeleton before applying the dAccr skeleton (line 1).
3. We achieve this generalization by zipping up the original tree and the result of the dAccr

skeleton using the zipwithr skeleton (line 4).
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We may simplify the parallel implementation by fusing the successive calls of the mapr

and the zipwithr skeletons, and obtain the following theorem.

Theorem 3. Let g and k be functions, ⊕ be an associative operator. The recursive function
f defined by

f c (RNode a ts) = RNode (k a c) [f (c⊕ g a) ti | i ∈ [1..#ts]]

can be implemented in parallel with the rose-tree skeletons as follows.

f c t = zipwithr (λa d.k a (c⊕ d)) t (dAccr (⊕) (mapr g t))

Proof: We can prove this theorem by the induction on the structure of rose trees. Since it
is rather straightforward, we omit the detain, which is given in Appendix A. 2

We now consider another top-down computation where the accumulative parameter
passed to each child is updated based on the child’s value, where the values passed to the
children may be different. We formalize such a generalized computational pattern as the
following recursive function using two functions g and k and an associative operator ⊕.

f c (RNode a ts) = RNode (k a c) [f (c⊕ g (rootr ti) a) ti | i ∈ [1..#ts]]

In this definition there is actually some redundancy caused by the fact that the result value
is computed with the original value whereas the accumulative parameter is already updated
with the value. In many cases one of them is used and so we can simplify the skeletal
programs derived.

What makes the function f above complicated is the existence of the function rootr. We
first remove the rootr function by shifting the accumulative parameter c by one to the child,
and putting it together with the original value. With this in mind, we obtain the following
recursive definition.

f c (RNode a ts) = RNode (k a c) [f ′ (c, a) ti | i ∈ [1..#ts]]
f ′ (c, p) (RNode a ts) = RNode (k a (c⊕ g p a)) [f ′ ((c⊕ g p a), a) ti | i ∈ [1..#ts]]

It is still hard to write the newly defined function with the single dAccr skeleton, since
we need to derive an associative operator for the pair of values. We thus shift the parent
value to the children for each node and zip it up with the original value before computing
with the dAccr skeleton. We may define such a shift operation using operator À defined as
a À b = b, but we need its right unit. To achieve this, we introduce a flag and define the
shift operation getparentr as follows where the unit of (À′) is (False, ).

getparentr = (mapr snd) ◦ (dAccr (À′)) ◦ (mapr (λx.(True, x)))
where ( , ) À′ (True, b) = (True, b)

(f, a) À′ (False, )= (f, a)

We can attach for each node the parent value by the zipwithr skeleton after getparentr.

pt = zipwithr (, ) (getparentr t) t

On this tree of pairs we can derive the definition as follows.

f ′′ c (RNode ( , a) ts) = RNode (k a c) [f ′′′ c ti | i ∈ [1..#ts]]
f ′′′ c (RNode (p, a) ts)= RNode (k a (c⊕ g p a)) [f ′′′ (c⊕ g p a) ti | i ∈ [1..#ts]]

The function f ′′ has almost the same form as the first generalized top-down computation
except that the different computation is performed on the root node. By assigning the
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expected value on the root node (line 3 below), we can define the function f in terms of the
rose-tree skeleton.

f c t = let pt = zipwithr (, ) (getparentr t) t
gt = mapr (λ(d, a).g d a) pt
dt = setrootr ι⊕ gt
dt ′ = dAccr (⊕) dt

in zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) t dt ′ dt

We may fuse the successive calls of the zipwithr and the mapr skeletons into one zipwithr

skeleton to obtain the equivalent skeletal program for the generalized top-down computation,
as summarized in the following theorem.

Theorem 4. Let g and k be functions, ⊕ be an associative operator. The function f defined
as

f c (RNode a ts) = RNode (k a c) [f (c⊕ g a (rootr ti)) ti | i ∈ [1..#ts]]

can be implemented in parallel in terms of the rose-tree skeletons as follows.

f c t = let gt = setrootr ι⊕ (zipwithr g (getparentr t) t)
dt = dAccr (⊕) gt

in zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) t dt gt

Proof: We can prove this theorem by the induction on the structure of rose trees. We omit
the proof here, and the detailed proof is given in Appendix A.

2

5.4 Diffusion Theorems

To further study the expressiveness of the rose-tree skeletons, now we consider recursive
computational patterns where the value of a node depends on not only the values of the
ancestors but also those of the descendants.

Firstly, we study a bottom-up computational pattern in which there is a top-down depen-
dency. We formalize such a computational pattern by describing the top-down dependency
with an accumulative parameter c updated by a function g and an associative operator ¯,
and the bottom-up computation with a parallelizable homomorphism ([k,⊕,⊗]).

f c (RNode a ts) = k a c⊕∑
⊗[f (c¯ g a) ti | i ∈ [1..#ts]]

To compute this function we first generate a pair of the original value and the accumu-
lative parameter for each node using a generalized top-down computation (Theorem 3), and
then perform the over-all bottom-up computation which is exactly a parallelizable homo-
morphism (Theorem 2). According to the theorems we obtain the following skeletal program
in terms of the rose-tree skeletons.

f c t = let t′ = zipwithr (λa d.(a, c¯ d)) t (dAccr (¯) (mapr g t))
in reducer (⊕) (⊗) (mapr (λ(a, c).k a c) t′)

We may simplify the program above by restructuring the mapr and zipwithr skeletons, and
in summary we obtain the following theorem.

Theorem 5. Let ([k,⊕,⊗]) be a parallelizable homomorphism,¯ be an associative operator,
and g be a function, and function f be defined as follows.

f c (RNode a ts) = k a c⊕∑
⊗[f (c¯ g a) ti | i ∈ [1..#ts]]
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The function f can be implemented in parallel with the rose-tree skeletons as follows.

f c t = let dt = dAccr (¯) (mapr g t)
in reducer (⊕) (⊗) (zipwithr k t (mapr (c¯) dt))

Proof: We can prove this theorem by induction on the structure of rose trees. We omit the
detailed proof, which is shown in Appendix A. 2

Secondly, we study a top-down computational pattern in which there is a bottom-up
dependency on the nodes. Let the bottom-up dependency be represented by a parallelizable
homomorphism h = ([k′,⊕′,⊗′]), and the top-down computation be represented by an accu-
mulative parameter c updated by an associative operator ¯ and functions g and k. We then
formalize such a computational pattern as the following recursive function.

f c (RNode a ts) = RNode (k a c) [f c′ ti | i ∈ [1..#ts]]
where c′ = c¯ g a (h (RNode a ts))

This function is an instance of paramorphism [47] defined on rose trees.
Naively implementing the function above needs multiple traversals over rose trees, but

such multiple traversals can be removed by the tupling technique discussed in [30]. Fol-
lowing this idea, we firstly carry out the bottom-up computation using the uAccr skeleton
instead of the reducer skeleton, and then perform the generalized top-down computation as
in Theorem 3.

With these parallelization steps, we can derive a skeletal parallel program as the following
theorem says.

Theorem 6. Let h be a parallelizable catamorphism h = ([k′,⊕′,⊗′]), ¯ be an associative
operator, and g and k be functions, and the function f be defined as follows.

f c (RNode a ts) = RNode (k a c) [f c′ ti | i ∈ [1..#ts]]
where c′ = c¯ g a (h (RNode a ts))

The function f can be implemented in parallel with the rose-tree skeletons as follows.

f c t = let t′ = uAccr (⊕′) (⊗′) (mapr k′ t)
dt= dAccr (¯) (zipwithr g t t′)

in zipwithr (λa d.k a (c¯ d)) t dt

Proof: To prove this theorem, we need to first prove the following equation:

rootr (uAccr (⊕) (⊗) t) = reducer (⊕) (⊗) t

by the induction on the structure of rose trees. With this equation, we can prove this
theorem by the induction. The detailed proofs of the equation and this theorem are given
in Appendix A. 2

Finally, we study a more general and complicated computational pattern defined as a
top-down computational pattern with dependencies not only on the values of subtrees, but
also among siblings. We formalize such a computational pattern as the following recursive
function: the overall top-down computation is specified by a function k and an accumulative
parameter c updated with an associative operator ¯, and function g; the bottom-up depen-
dencies are specified with parallelizable homomorphisms f ′l = ([k′l,⊕′l,⊗′l]), f ′ = ([k′,⊕′,⊗′]),
and f ′r = ([k′r,⊕′r,⊗′r]); and the inter-siblings dependencies are specified for each child as
summation of the values of its left siblings or its right siblings in terms of associative opera-
tors ~l and ~r. The accumulative parameter is updated based on the value of the node (a),
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the i-th child’s subtree (t′i), summation of left subtrees (li), and summation right subtrees
(ri). It is worth noting that the value of accumulative parameter passed to children may
differ in this specification.

f c (RNode a ts) = RNode (k a c) [f ci ti | i ∈ [1..#ts]]
where ci = c¯ g a li t′i ri

li =
∑
~l

[f ′l tj | j ∈ [1..i− 1]]
t′i = f ′ ti
ri =

∑
~r

[f ′r tj | j ∈ [i + 1..#ts]]

Since it is not efficient to compute li, t′i, and ri for each node independently, we should
compute them for all node at a time, and put them together by the tupling technique [30].
We implement the bottom-up computations specified as parallelizable homomorphisms in
a similar way as Theorem 2 except that we use the uAccr skeleton instead of the reducer

skeleton. For inter-siblings dependencies, we use the rAccr and lAccr skeletons. Therefore,
such a pre-process can be performed by the following four steps.

1. Compute li for all the children using the mapr, uAccr, and rAccr skeletons (line 1).
2. Compute t′i for all the children using the mapr, and uAccr skeletons (line 2).
3. Compute ri for all the children using the mapr, uAccr, and lAccr skeletons (line 3).
4. Zipping up the results by using the zipwith3r skeleton (line 4).

t′′ = let lt = rAccr (~l) (uAccr (⊕′l) (⊗′l) (mapr k′l t))
t′ = uAccr (⊕′) (⊗′) (mapr k′ t)
rt = lAccr (~r) (uAccr (⊕′r) (⊗′r) (mapr k′r t))

in zipwith3r lt t′ rt

After this processing we can compute over the original rose tree t (= RNode a ts) and
the rose tree of tuples t′′ (= RNode a′′ ts ′′) by the following function f ′.

f ′ c (RNode a ts) (RNode a ′′ ts ′′) = RNode (k a c) [f ′ ci ti t′′i | i ∈ [1..#ts]]
where ci = c¯ g′ a (root t′′i )

g′ a (r′′, s′′, l′′) = g′ a r′′ s′′ l′′

Since this function f ′ is a top-down computation where the accumulative parameter is
updated using the child’s value, we can derive a skeletal program by applying the technique
of Theorem 4 as follows.

f ′ c t t′′ = let gt = setrootr ι¯ (zipwithr g (getparentr t) t′′)
dt = dAccr (¯) gt

in zipwith3r (λa d d′.k a (c¯ d¯ d′)) t dt gt

In summary, we can compute the function f by the skeletal parallel programs in terms
of the rose-tree skeletons given as seen in the following theorem.

Theorem 7. Let ¯, ~l and ~r be associative operators, f ′l , f , and f ′r be parallelizable
homomorphisms defined as f ′l = ([k′l,⊕′l,⊗′l]), f ′ = ([k′,⊕′,⊗′]), and f ′r = ([k′r,⊕′r,⊗′r]), and g
and k be functions, and with these functions the function f be defined as follows.

f c (RNode a ts) = RNode (k a c) [f ci ti | i ∈ [1..#ts]]
where ci = c¯ g a li t′i ri

li =
∑
~l

[f ′l tj | j ∈ [1..i− 1]]
t′i = f ′ ti
ri =

∑
~r

[f ′r tj | j ∈ [i + 1..#ts]]
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The function f can be implemented by the combinations of the rose tree skeletons as
follows.

f c t = let lt = rAccr (~l) (uAccr (⊕′l) (⊗′l) (mapr k′ l t))
t′ = uAccr (⊕′) (⊗′) (mapr k′ t)
rt = lAccr (~r) (uAccr (⊕′r) (⊗′r) (mapr k′ r t))
gt= setrootr ι¯ (zipwith4r g (getparentr t) lt t′ rt)
dt= dAccr (¯) gt

in zipwith3r (λa d d′.k a (c¯ d¯ d′)) t dt gt

The zipwith4r skeleton is a generalization of the zipwithr skeleton to accept four rose trees
of the same shape.
Proof: Though we can prove this theorem by induction on the structure of rose trees, it
becomes pessimistically long. Thus in this paper, we prove the theorem by proving the
derivation steps.

First, we prove the correctness of the pre-processing of lt, t′, and rt. The correctness of
the pre-processing of t′ is proved from the following equation, which is proved by definition.

reducer (⊕′) (⊗′) t = rootr (uAccr (⊕′) (⊗′) t)

The correctness of the pre-processing of lt is proved from the equation above and the fol-
lowing equation on list

∑
~l

[ai | j ∈ [1..i− 1]] = last (scan (~l) [aj | j ∈ [1..i]])

where last is a function to extract the last value from the list. The pre-processing of rt is
the symmetry. This equation can be proved immediately by induction.

Then we prove the correctness of the derivation of the skeletal program. This derivation
is almost the same as the Theorem 4, and we can prove it by induction on the structure of
rose trees just in the same way. 2

5.5 Diffusion Strategy

In general, programmers specify the algorithms using recursive functions rather than skele-
tons. We shall highlight a strategy of how to derive skeletal parallel programs based on the
diffusion theorems. The derivation of skeletal parallel programs can be carried out by the
following four steps.

1. Write a specification as a recursive function.
2. Derive associative operators and parallelizable homomorphisms.
3. Apply the diffusion theorems.
4. Optimize the derived skeletal parallel programs.

In the following, we show more in detail for each step. Examples of deriving parallel programs
will be given in Section 6.

Write a Specification as a Recursive Function Many algorithms on rose trees are
naturally specified by means of recursive functions. Therefore in our strategy, we first write
the specification as a recursive function on rose trees. The recursive function should be in
the form of either of the diffusion theorems.

The initial specification may not be exactly forms of the diffusion theorems. In such cases,
we try to derive a desired one by applying program transformation techniques. We have
techniques such as the tupling technique [30], the fusion technique [15], and the condition
normalization techniques [14]. For example, if there are multiple traversals on a tree then
we can merge them by the tupling transformation [30]. We will apply the fusion techniques
to derive a recursive function in the example of the party planning problem in Section 6.3.
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Derive Associative Operators and Parallelizable Homomorphisms We then check
the conditions for applying the diffusion theorems. The operators used in the recursive
function should be associative or satisfy the condition of parallelizable homomorphisms.
When the operators satisfy these conditions, we do nothing more in this step.

When the operators do not satisfy the conditions we derive suitable operators by us-
ing the techniques such as the generalization technique and the context preservation tech-
nique [13]. We show these derivations of associative operators and parallelizable homomor-
phisms in Sections 6.2 and 6.3. In many cases, after deriving suitable operators we need to
accordingly rewrite the specification given in the last step.

Apply the Diffusion Theorems After checking the conditions, we can easily apply the
diffusion theorem to obtain a program in terms of parallel skeletons.

Optimize the Derived Skeletal Parallel Programs Since the diffusion theorems in this
section are developed on general recursive functions, the derived skeletal parallel programs
may have redundancy.

For example, consider a recursive function that computes the result based on the ac-
cumulative parameter only, and let us apply a diffusion theorem (e.g. Theorem 3). The
theorem is redundant in the sense the result is computed from not only the accumulation
parameter but also the original value. The derived skeletal program has a zipwithr skeleton,
but in fact the computation can be performed simply with the mapr skeleton.

Therefore, for the last step, we optimize the derived skeletal parallel programs by the
replacement of the skeletons and/or the fusion of successive skeletons’ calls.

6 Examples

In this section, we demonstrate the derivation of parallel programs in terms of the rose-tree
skeletons based on the diffusion theorems. We derive skeletal programs for three interesting
examples, the pre-order numbering problem, the breadth first numbering problem, and the
party planning problem.

6.1 Pre-order Numbering Problem

The pre-order numbering problem on a rose tree takes a rose tree and assigns a number for
each node in the order of the pro-order traversal. In the pre-order numbering, the value of
a left-most child is larger that that of its parent by one, and the value of another child is
larger than its left sibling by the number of nodes in the left-sibling’s subtree. Thus, the
value of a node is larger than its parent by the sum of one and the number of nodes in the
left-siblings’ subtrees. A recursive algorithm that solves the pre-order numbering problem
is as follows.

pre ′ c (RNode a ts) = RNode c [pre ′ ci ti | i ∈ [1..#ts]]
where ci = c + 1 + li

li =
∑

+[size tj | j ∈ [1..i− 1]]

The function size counts the number of nodes in a rose tree, and is defined as a parallelizable
homomorphism, size = ([λx.1, +, +]).

Since the operator + is associative, the operator satisfies the conditions of the diffusion
theorems. Since in the update of the accumulative parameter c depends on the left-siblings,
we apply Theorem 7 to this function. By simply collating the function pre ′ and the recursive
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specification of the theorem, we have k = λa c.c, ¯ = +, g = λa l.1 + l, ~l = +, and
([k′l,⊕′l,⊗′l]) = ([λx.1, +, +]). The intermediate values t′i and ri are not used.

By substituting the functions and operators above to the skeletal program in the theorem,
we obtain the following parallel programs. Since the intermediate values of t′i and ri are not
used, we omit the computation of t′ and rt and use the zipwithr skeleton instead of the
zipwith4r skeleton.

pre ′ t c = let lt = rAccr (+) (uAccr (+) (+) (mapr (λx.1) t))
gt= setrootr 0 (zipwithr (λa l.1 + l) (getparentr t) lt)
dt= dAccr (+) gt

in zipwith3r (λa d d′.c + d + d′) t dt gt

We can simplify the obtained parallel program. Firstly since the initial value of c is 0,
we can substitute it. Secondly, since the function of the zipwithr skeleton does not depend
on its first argument, we can remove the first tree and modify the skeleton into the mapr

skeleton. Similarly, since the function of the zipwith3r skeleton does not depend on its first
argument, we can remove the first tree and modify the skeleton into the zipwithr skeleton.
With these optimizations, we obtain the following simpler parallel program for the pre-order
numbering.

pre t = let lt = rAccr (+) (uAccr (+) (+) (mapr (λx.1) t))
gt= setrootr 0 (mapr (λl.1 + l) lt)
dt= dAccr (+) gt

in zipwithr (+) dt gt

6.2 Breadth First Numbering Problem

The breadth first numbering problem takes a rose tree and assigns a number for each node
in the order of breadth first traversal. In this section, we provide an O(d log n) parallel
algorithm for the breadth first numbering problem where n denotes the number of nodes
and d denotes the maximum depth of the input rose tree.

Before defining a recursive algorithm, we introduce two functions and one operator for
manipulating lists. Function take n returns the first n values of the input list. When there
are less values in the input list, this function simply returns all of the values in the list.

take 0 as = [ ]
take n [ ] = [ ]
take n (a : as) = a : take (n− 1) as

Function drop n removes the first n values from the input list. When there are less values
in the input list, this function returns the empty list [ ].

drop 0 as = as
drop n [ ] = [ ]
drop n (a : as)= drop (n− 1) as

Operator Υ⊕ takes two lists and computes with⊕ for each pair of corresponding values. If the
lengths of the lists are different, the values running off from the other list are not discarded
but simply follow the results. Note that this definition is different from the familiar definition
of the zipwith function for lists.

(a : as) Υ⊕ (b : bs) = (a⊕ b) : (as Υ⊕ bs)
(a : as) Υ⊕ [ ] = a : as
[ ] Υ⊕ bs = bs
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If the operator ⊕ is associative, then the operator Υ⊕ is also associative with its unit [ ].
Firstly we provide a recursive algorithm for the breadth first numbering problem. In the

breadth first numbering, we need to know the number of nodes in each depth for each node.
The number of nodes is one in the depth 0, and the numbers of nodes in the deeper depths
are computed by the summation among the children for each depth. Thus we can write a
recursive bottom-up function that computes the number of nodes in each depth as follows.

nodes (RNode a ts) = [1]++
∑

Υ+
[nodes ti | i ∈ [1..#ts]]

In the breadth first numbering, the value of a node at depth d is larger than that of its
parent node by the sum of one and the following two numbers:

– the number of nodes which are at the right of the parent node in the depth d − 1 (the
parent’s depth), and

– the number of nodes which are at the left of the node in the depth d (the node’s depth).

We need the number of nodes distant from a node in computing the value of the node, and
we pass the information about the number of nodes out of the subtree for each depth as
an accumulative parameter cs. We also need another accumulative parameter c for repre-
senting the value that should be assigned to nodes, and therefore we pass the accumulative
parameters as a pair. With the function nodes and these accumulative parameters, we can
specify a recursive algorithm that solves the breadth first numbering problem as follows. In
the specification, li is the accumulation of the numbers of nodes in the left-siblings’ subtrees,
and ri is the accumulation of the numbers of nodes in the right-siblings’ subtrees.

bfn t = bfn ′ (0, [ ]) t
bfn ′ (c, cs) (RNode a ts) = RNode c [bfn ′ (ci, cs i) ti | i ∈ [1..#ts]]

where ci = c + head cs + 1 + head li
cs i = tail cs Υ+ tail li Υ+ ri

li =
∑

Υ+
[nodes tj | j ∈ [1..i− 1]]

ri =
∑

Υ+
[nodes tj | j ∈ [i + 1..#ts]]

In this definition, for empty list [ ] the function head and tail return 0 and [ ], respectively.
In order to apply one of the diffusion theorems, we should rewrite the top-down compu-

tation so that it updates the accumulative parameters (c, cs) with an associative operator.
We may derive such an associative operator by using the context preservation technique [13].
The idea of the context preservation theorem is that we can derive an associative operator
if we find a parametrized function which is closed under function composition. To derive
such a parametrized function, we first abstract sub-terms which do not depend on both c
and cs. By this abstraction we have the following parametrized function in which α and β
are parameters.

λ(c, cs).(c + head cs + α, tail cs Υ+ β)

Here, functions head and tail become obstacles in finding closed parametrized function. We
replace the functions with take and drop respectively, and obtain the following parametrized
function.

λ(c, cs).(c +
∑

+(take 1 cs) + α, drop 1 cs Υ+ β)

After abstracting 1 into another parameter γ, we have the following parametrized function.

λ(c, cs).(c +
∑

+(take γ cs) + α, drop γ cs Υ+ β)

We now validate the closure property of this parametrized function by calculating the func-
tion composition of it. Here we only show the result of the calculation since the calculations
are rather straightforward.
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λ(c, cs).(c +
∑

+(take γ′ cs) + α′, drop γ′ cs Υ+ β′)
◦ λ(c, cs).(c +

∑
+(take γ cs) + α, drop γ cs Υ+ β)

= λ(c, cs).(c +
∑

+(take γ′′ cs) + α′′, drop γ′′ Υ+ β′′)
where α′′ =

∑
+(take γ′ β) + α′ + α

β′′ = drop γ′ β Υ+ β′

γ′′ = γ + γ′

Based on the closed parametrized function above, we derive an associative operator ⊗ for
the top-down computation and the unit of ⊗ as follows.

(α, β, γ)⊗ (α′, β′, γ′) = (
∑

+(take γ′ β) + α′ + α, drop γ′ β Υ+ β′, γ + γ′)
ι⊗ = (0, [ ], 0)

Using this associative operator, we rewrite the algorithm. We first lift the accumulative
parameter to a tuple of (α, β, γ), and then perform computation using the associative op-
erator ⊗, and finally put the results down to the desired ones. The initial value of the new
accumulative parameter is the unit (0, [ ], 0), and the final computation is given by the first
value of the definition of the parametrized function, i.e. λ (α, β, γ).c +

∑
+(take γ cs) + α.

Since the initial values of c and cs are 0 and [ ] respectively, we substitute them and obtain
simpler definition λ (α, β, γ).α. The obtained recursive algorithm is as follows.

bfn t = bfn ′′ (0, [ ], 0) t
bfn ′′ (α, β, γ) (RNode a ts) = RNode α [bfn ′′ (αi, βi, γi) ti | i ∈ [1..#ts]]

where (αi, βi, γi) = (α, β, γ)⊗ (α′i, β
′
i, 1)

α′i = 1 + head li
β′i = tail li Υ+ ri

li =
∑

Υ+
[nodes tj | j ∈ [1..i− 1]]

ri =
∑

Υ+
[nodes tj | j ∈ [i + 1..#ts]]

We then verify the function nodes to be a parallelizable homomorphism. The recursive
definition of nodes has the form of parallelizable homomorphism ([k′,⊕′,⊗′]) with k′ = λa.[1],
⊕′ = ++, and ⊗′ = Υ+. Though the operators ++ and Υ+ are respectively associative,
the operator ++ does not distribute over the operator Υ+, and the operator Υ+ does not
distribute over the operator ++ either.

a++(b Υ+ c) 6= (a++b) Υ+ (a++c)
a Υ+ (b++c) 6= (a Υ+ b)++(a Υ+ c)

We now validate the operator Υ+ to be extended-distributive over ++. Since Υ+ is not only
associative but also commutative, we calculate a simpler definition (Lemma 1). We again
show the result of the calculations only.

(λx.a++(b Υ+ x)) ◦ (λx.a′++(b′ Υ+ x)) = λx.A++(B Υ+ x)
where A = a++(take (#a′) b Υ+ a′)

B = drop (#a′) b Υ+ b′

From the calculation result, the operator Υ+ is surely extended-distributive over ++, and
the function nodes is a parallelizable homomorphism.

Since the accumulative parameter is updated with the values of the left-siblings and
the right-siblings, we apply Theorem 7. By a simple matching the algorithm bfn ′′ with the
recursive specification of the theorem, we have k = λa (α, β, γ).α, ¯ = ⊗, g = λa l r.(1 +
head l, tail l Υ+ r, 1), ~l = ~r = Υ+, and f ′l = f ′r = ([λx.[1],++,Υ+]). The intermediate
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value t′ is not used. By substituting the function and the operators above to the skeletal
program of the theorem, we obtain the following skeletal program. Note that the two uAccrs
and maprs are merged into ones, that the computation of t′ is omitted, and that the zipwith4r

skeleton is simplified into the zipwith3r skeleton. (We omit the definitions of g and ⊗ in the
following program. )

bfn′′ c t = let ut = uAccr (++) (Υ+) (mapr (λx.[1]) t)
lt = rAccr (Υ+) ut
rt = lAccr (Υ+) ut
gt = setrootr (0, [ ], 0) (zipwith3r g (getparentr t) lt rt)
dt = dAccr (⊗) gt

in zipwith3r (λa d d′.fst (c⊗ d⊗ d′)) t dt gt

The function fst is a function that returns the first value of the tuple.
We can simplify the obtained parallel program: since the functions for both of the

zipwith3r skeletons do not depend on the first argument, we replace the skeletons by the
zipwithr skeleton. We can also substitute the initial value of the accumulative parameter.
Finally, we obtain the following parallel program for the breadth first numbering problem.

bfn t = let ut = uAccr (++) (Υ+) (mapr (λx.[1]) t)
lt = rAccr (Υ+) ut
rt = lAccr (Υ+) ut
gt = setrootr (0, [ ], 0) (zipwithr g′ lt rt)
dt = dAccr (⊗) gt

in zipwithr (λ d d′.fst (d⊗ d′)) dt gt
where g′ l r = (1 + head l, tail l Υ+ r, 1)

(α, β, γ)⊗ (α′, β′, γ′) = (
∑

+(take γ′ β) + α′ + α, drop γ′ β Υ+ β′, γ + γ′)

6.3 Party Planning Problem

As the third example, we derive a parallel program for a dynamic programming problem on
rose trees called the party planning problem [20]. The party planning problem is a gener-
alization of the maximum independent-set sum problem whose parallelization is discussed
in [28], and is an instance of maximum marking problems studied by several researchers in
the context of derivation of sequential programs [8, 55].

The president of a company wants to have a company party. To make the party
fun for all attendees, the president does not want both an employee and his or her
direct supervisor to attend. The company has a hierarchical structure, that is, the
supervisory relations form a tree rooted at the president, and the personnel office
has ranked each employee with a conviviality rating of a real number. Given the
structure of the company and the ratings of employees, the problem is to mark the
guests so that the sum of the conviviality ratings of marked guests is its maximum.

To simplify our problem, we assume the conviviality rating associated to each node to be
positive.

It is helpful to derive an algorithm for computing the maximum sum before deriving one
for the marking problem. The condition of this marking problem is that no two adjacent
nodes should be marked. In the following, we call a set of node, whose every two marked
nodes are not adjacent, as an independent-set, and then the subproblem becomes to find
the maximum of all independent-set sum. Based on the dynamic programming technique,
we can specify the subproblem as the following recursive algorithm that returns a pair of
values. The values returned by the following mis ′ function are
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– i: the maximum sum of all the independent-sets in which the root node is included, and
– e: the maximum sum of all the independent-sets in which the root node is excluded.

mis t = let (i, e) = mis ′ t in r ↑ s
mis ′ (RNode a ts) = let ies = [mis ′ tj | j ∈ [1..#ts]]

e′ =
∑

+[ej | j ∈ [1..#ts]]
m′ =

∑
+[ij ↑ ej | j ∈ [1..#ts]]

in (a + e′,m′)

By introducing a function g defined as g (i, e) = (e, i ↑ e), and an operator ⊗ defined as
(e,m) ⊗ (e′, m′) = (e + e′,m + m′), we can specify the function mis ′ in a simpler form as
follows. Here, function snd returns the second value.

mis ′ (RNode a ts) = let em =
∑
⊗[g (mis ′ tj) | j in [1..#ts]]

in (a + fst em, snd em)

This function is not in the form of parallelizable homomorphisms since the function g
is applied after the recursive calls and before folding. To make it a parallelizable homomor-
phism, we fuse the function g and mis ′ and derive the following function mis ′′ = g ◦mis ′.
We need to modify the top case of mis accordingly.

mis t = snd (mis ′′ t)
mis ′′ (RNode a ts) = let em =

∑
⊗[mis ′′ tj | j in [1..#ts]]

in (snd em, (a + fst em) ↑ snd em)

We now validate that the function mis ′′ is a parallelizable homomorphism, by showing the
function and the operators satisfy the condition of parallelizable homomorphisms. Firstly,
the operator ⊗ is associative because of the associativity of the operator +. Secondly, we
may give a specification of the function k and the operator ⊕ as follows from the definition
of mis ′′ above.

k a = a
a⊕ (e, m) = (m, (a + e) ↑ m)

It is easy to prove that the operator ⊕ above is not distributive over ⊗ as shown in the
following calculations.

a⊕ ((e,m)⊗ (e′,m′)) = (m + m′, (a + e + e′) ↑ (m + m′))
(a⊕ (e,m))⊗ (a⊕ (e′, m′)) = (m + m′, ((a + e) ↑ m) + ((a + e′) ↑ m′))

It is also easy prove that the operator ⊗ is not distributive over the operator ⊕ because of
mismatch of the types. We thus turn to validate the associative and commutative operator
⊗ is extended-distributive over the operator ⊕. We show the results of the calculations here
since the computation is rather straightforward.

(λ(xe, xm). a⊕ ((e,m)⊗ (xe, xm))) ◦ (λ(xe, xm). a′ ⊕ ((e′,m′)⊗ (xe, xm)))
= λ(xe, xm). ((m + a + e′ + xe) ↑ (m + m′ + xm),

((m + a + e′ + xe) ↑ (((a + e + m′) ↑ (m + m′)) + xm)))

λ(xe, xm). A⊕ ((E, M)⊗ (xe, xm))
= λ(xe, xm). (M + xm, (A + E + xe) ↑ (M + xm))

As seen from the calculation, the operator ⊗ is not extended-distributive over the operator
⊕. To derive an operator satisfying the condition, we generalize the definitions of the function
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k and the operator ⊕ satisfying k′ a ⊕′ (e,m) = k a ⊕ (e,m). A generalization is given as
follows.

k′ a = (−∞, 0, a, 0)
(α, β, γ, δ) ⊕′ (e,m) = ((α + e) ↑ (β + m), (γ + e) ↑ (δ + m))

With this generalized definition of ⊕′, we can prove that the operator ⊗ is extended-
distributive over the operator ⊕′ with the following characteristic functions.

p1 ((a, b, c, d), (e1,m1), (e2,m2), (a′, b′, c′, d′), (e′1,m
′
1), (e

′
2,m

′
2))

= ((a + e1 + e2 + a′ + e′1 + e′2) ↑ (b + m1 + m2 + c′ + e′1 + e′2),
(a + e1 + e2 + b′ + m′

1 + m′
2) ↑ (b + m1 + m2 + d′ + m′

1 + m′
2),

(c + e1 + e2 + a′ + e′1 + e′2) ↑ (d + m1 + m2 + c′ + e′1 + e′2),
(c + e1 + e2 + b′ + m′

1 + m′
2) ↑ (d + m1 + m2 + d′ + m′

1 + m′
2))

p2 ((a, b, c, d), (e1,m1), (e2,m2), (a′, b′, c′, d′), (e′1,m
′
1), (e

′
2,m

′
2)) = (0, 0)

p3 ((a, b, c, d), (e1,m1), (e2,m2), (a′, b′, c′, d′), (e′1,m
′
1), (e

′
2,m

′
2)) = (0, 0)

Therefore the function mis ′′ is in fact a parallelizable homomorphism defined as mis ′′ =
([k′,⊕′,⊗]).

By using this mis ′′ function, we can write a recursive function that solves the party
planning problem as follows. Here, the accumulative parameter denotes whether the parent
is selected or not, and thus its initial value should be False.

ppp t = ppp′ False t
ppp′ c (RNode a ts) = let em = mis ′′ (RNode a ts)

c′ = ¬c ∧ (fst em < snd em)
in RNode c′ [ppp′ c′ tj | j ∈ [1..#ts]]

In this definition the accumulative parameter is updated as c′ = ¬c ∧ (fst em < snd em),
but we require the update should be in the form of c′ = c¯ g a em with some operator ¯.
It is worth noting that the domain of the accumulative parameter is finite, i.e. True and
False. It is widely known that the finiteness of the domain is helpful in deriving associative
operators [19, 28, 36, 60], where the main idea is to compute the results for all the possible
values in the domain. Based on this idea, we can derive the following recursive function.
Here, the operator ¯ is associative.

ppp t = ppp′′ (True,False) t
ppp′′ (ct, cf ) (RNode a ts) = let em = mis ′′ (RNode a ts)

(c′t, c′f ) = (ct, cf )¯ (False, fst em < snd em)
in RNode c′f [ppp′′ (c′t, c′f ) tj | j ∈ [1..#ts]]
where (ct, cf )¯ (c′t, c′f ) = (if ct then c′t else c′f ,

if cf then c′t else c′f )

We have developed a recursive algorithm, we now apply the diffusion theorem to derive a
skeletal parallel program. This recursive function is very similar to the recursive specification
in Theorem 6, whereas the difference is that the overall results are also computed with
the result of the bottom-up computation. Therefore, we slightly modify Theorem 6 to use
the result of uAccr skeleton instead of the original tree, and apply it to obtain a skeletal
parallel program. By matching the definitions of the functions with the specification, we
have k a′ (ct, cf ) = ¬cf ∧ (fst a′ < snd a′), and g a (e,m) = (False, e < m), and the
others are already derived. By substituting these functions, we successfully obtain a skeletal
parallel program as follows. (We omit the definitions of ⊕′, ⊗, k′ and ¯ here. )

ppp′ (ct, cf ) t = let t′ = uAccr (⊕′) (⊗) (mapr k′ t)
dt = dAccr (¯) (zipwithr (λa (e, m).(False, e < m)) t t′)

in zipwithr (λ(e,m) d.¬(if cf then fst d else snd d) ∧ (e < m)) t′ dt
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We can simplify the derived skeletal parallel programs. One may have noticed that the
initial value of the accumulative parameter is fixed as (ct, cf ) = (True,False), and one of
arguments in the zipwithr skeleton is not used. Based on these facts, we can derive more
efficient parallel program as follows.

ppp t = let t′ = uAccr (⊕′) (⊗) (mapr k′ t)
dt= dAccr (¯) (mapr (λ(e,m).(False, e < m)) t′)

in zipwithr (λ(e,m) d.¬(snd d) ∧ (e < m)) t′ dt
where k′ a = (−∞, 0, a, 0)

(α, β, γ, δ)⊕′ (e, m) = ((α + e) ↑ (β + m), (γ + e) ↑ (δ + m))
(e,m)⊗ (e′,m′) = (e + e′,m + m′)
(ct, cf )¯ (c′t, c′f ) = (if ct then c′t else c′f , if cf then c′t else c′f )

7 Implementation of Rose-Tree Skeletons with SkeTo

We have implemented the rose-tree skeletons based on the binary-tree skeletons in our
skeleton library. In this section, we show the implementation of rose-tree skeletons with
source-code and then report experimental results.

7.1 Overview of Our Tree Skeleton Library

We are implementing a parallel skeleton library in the SkeTo Project. The SkeTo library [41]
is a library based on the theory of Constructive Algorithmics [7] and currently provides
parallel skeletons for lists, matrices, and binary trees. The SkeTo library is implemented in
standard C++ and MPI.

The binary-tree skeletons in the SkeTo library are implemented based on the tree contrac-
tion algorithms with some modifications to perform good scalability even on the distributed-
memory environments. We utilize m-bridge technique [54] to partition trees into segments
and perform computations on the distributed trees. Such partition and distribution of the
trees are done implicitly by the dist_tree class.

Our SkeTo library provides not only basic five binary-tree skeletons but also several
communication skeletons. The skeletons are implemented to take function objects for their
functional arguments and instances of the dist_tree class for the input tree. We adopt the
function objects since we can deal functions in a smart way with the function objects in the
C++ programs.

We show the interfaces of binary-tree skeletons mapb, uAccb, and getchlb (shiftl) in
Fig. 12, which are used later in implementing rose-tree skeletons. One can download the
source-code of the skeletons from our project’s website2.

7.2 Implementation of Rose-Tree Skeletons

We first show the implementation of the data structure for rose trees, and then the parallel
skeletons using the mapr and lAccr skeletons for our examples.

Data Structure for Rose Trees In our implementation of the rose-tree skeletons, we
deal with rose trees in the form of their binary-tree representation in Section 4. We can
implement the class for the binary-tree representation by just using the class for distributed
binary trees, dist_tree. The following is a segment of code to achieve this where A is a
template type representing the type of node in a rose tree.
2 SkeTo Project Homepage. http://www.ipl.t.u-tokyo.ac.jp/sketo/
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class tree_skeletons
{
public:

template< typename K1, typename K2 >
static dist_tree< typename K1::result_type > *
map( const K1 &k1, const K2 &k2,

dist_tree< typename K1::argument_type > *t );

template< typename K1, typename K2, typename PSI, typename PHIL,
typename PHIR, typename GG >

static dist_tree< typename K1::result_type > *
uAcc( const K1 &k1, const K2 &k2, const PSI &psi,

const PHIL &phiL, const PHIR &phiR, const GG &G,
const dist_tree< typename K1::argument_type > *t );

template< typename A >
static dist_tree< A >*
shiftl( const A& leafval, const dist_tree< A >* tree );

Fig. 12. Interfaces of binary-tree skeletons in the SkeTo library.

template< typename A >
class dist_rose_tree
{

dist_tree< A >* btree;
...

In our implementation, we also provide several wrapper functions for input/output.

Implementation of the mapr skeleton We show the implementation of the mapr skele-
ton, which is the simplest skeleton of our seven skeletons.

We implement the rose-tree skeletons in another class rose_tree_skeletons. One rea-
son is to separate the parallel data structures and their operations. The other reason is to
enable the access to the private members of the dist_rose_tree class; template classes do
not permit to access to their private members if they are instantiated with different template
parameters.

Interface of the mapr skeleton is given in the following code. The functional argument is
a function object of type K, whose argument and return value are of types K::result_type
and K::argument_type, respectively.

class rose_tree_skeletons
{
public:

template< typename K >
static dist_rose_tree< typename K::result_type > *
map( const K &k,

const dist_rose_tree< typename K::argument_type > *t );

The implementation of rose-tree skeletons consists of the following two parts; the defi-
nitions of function objects passed to the binary-tree skeletons, and the wrapper functions
which implement the rose-tree skeletons by calling the binary-tree skeletons.

Function objects are one of the outstanding features of the C++, and they can be
manipulated in a smart way with the template mechanism. For example, we can implement
function compositions and partial bindings. Striegnitz [61] discussed features of C++ for
skeletal parallel programming.
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For the mapr skeleton, we need to define the function denoted by , which does nothing
but keeping consistency of the types. We generate such a function object UnaryUndef, which
accepts a value of type A and returns a dummy value of type B as follows.

template< typename A, typename B >
struct UnaryUndef : public skeleton::unary_function< A, B > {

B operator()( const A& ) const { return static_cast< B >( 0 ); }
};

By using this function object, we can implement the mapr skeleton as follows. To make
the program simple, we insert a function map_adapter which will be instantiated from the
map function. It is worth noting that with the interface of the map function above we need
not to specify template types, because they are identified by the compiler, while we need
to specify B for the following function map_adapter. The implementation of the skeleton is
directly given by calling the map skeleton for binary trees.

template< typename A, typename B, typename K >
dist_rose_tree< B > *
rose_tree_skeletons::map_adapter( const K &k, const dist_rose_tree< A > *t )
{

dist_tree< B > *bt
= tree_skeletons::map( UnaryUndef< A, B >( ), k, t->btree );

return new dist_rose_tree< B >( bt );
}

Implementation of lAccr skeleton We show the implementation of another more com-
plicated skeleton lAccr. In the implementation of the lAccr skeleton, we utilize triple (p, a, b)
in the upward computation on the binary-tree representation. We define the triple as the
following structure lAcc_in_t.

template < typename A >
struct lAcc_in_t {

bool p; A a; A b;
lAcc_in_t( bool p_, const A& a_, const A& b_ )

: p( p_ ), a( a_ ), b( b_ ) { }
};

As in the case of the mapr skeleton, we implement the function objects for the binary-
tree skeletons. In the case of the lAccr skeleton, we need a constant function for the mapb

skeleton, and k, φ, ψL, ψR and G for the uAccb skeleton. The function object for φL is
defined as the following func_lAcc_psiL.

template < typename A, typename OPLUS >
struct func_lAcc_psiL : public skeleton::ternary_function<

lAcc_in_t< A >, A, lAcc_in_t< A >, lAcc_in_t< A > > {
const OPLUS &oplus;
func_lAcc_psiL( OPLUS oplus_ ) : oplus( oplus_ ) {};
lAcc_in_t< A > operator()( const lAcc_in_t< A >& arg1, const A& /* l */,

const lAcc_in_t< A >& arg2 ) const {
return lAcc_in_t< A >( arg1.p && arg2.p, oplus( arg1.a, arg2.a ),

arg1.p ? oplus( arg1.a, arg2.b ) : arg1.b );
}

};

The other functions are defined in the same way.
After defining the function objects, we can straightforwardly implement the skeleton as

follows. Note that the uAccb skeleton in the SkeTo library includes the computation of the
mapb skeleton.
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template< typename A, typename OPLUS >
dist_rose_tree< A > *
rose_tree_skeletons::lAcc_adapter( const OPLUS& oplus, const A& unit_oplus,

const dist_rose_tree< A > *t )
{

dist_tree< A > *bt1 = tree_skeletons::uAcc( UnaryConst< A, A >( unit_oplus ),
func_lAcc_k< A, OPLUS >( oplus ), func_lAcc_phi< A >( ),
func_lAcc_psiL< A, OPLUS >( oplus ), func_lAcc_psiR< A, OPLUS >( oplus ),
func_lAcc_G< A, OPLUS >( oplus ), t->btree );

dist_tree< A > *bt2 = tree_skeletons::shiftr( unit_oplus, bt1 );
if ( bt1 ) delete bt1;
return new dist_rose_tree< A >( bt2 );

}

As seen so far, we can implement the lAccr skeleton without much effort using the
function objects and the template mechanism in C++. The implemented skeletons however
may be worse in efficiency due to the intermediate data structures passed between the
skeletons. The main aim of the implementation in this paper is to verify the scalability
of the parallel skeletons, and improvement of the efficiency of the parallel skeletons is our
future work.

7.3 An Experiment

We have made an experiment using the rose-tree skeletons implemented above, to see the
scalability of them. We used the derived skeletal program for the pre-order numbering prob-
lem in Section 6.1.

The environment is our PC cluster which consists of sixteen uniform PCs connected with
Gigabit Ethernet. Each PC has a CPU of Pentium4 3.0GHz (Hyper Threading ON) and
1GB memory. The OS, the C++ compiler, and the MPI library are Linux 2.6.8, gcc 2.95,
and mpich 1.2.6, respectively.

We carried out the derived program on two trees of 222 − 1 nodes (almost four million)
with varying the number of CPUs used. The first tree is a perfect binary tree whose height is
twenty-two, the second tree is a randomly generated tree whose height is seven (this height
comes from the average height of XMLs [39]).

The experimental results are shown in Fig. 13, where the execution times do not include
initial distribution and final gathering. For both data, the skeletal program shows good
scalability; the execution times for the binary tree are 13.0 (sec) with one processor and
0.87 (sec) with sixteen processors, the execution times for the random tree are 12.5 (sec)
with one processor and 1.41 (sec) with sixteen processors, and the speedup is 14.9 with
sixteen processors in the case of the binary tree. In some cases, the execution times become
a little worse, which is caused by the ill-balanced structure of trees and the difficulty in
dividing trees into segments of almost the same size.

8 Related Work

Parallel Tree Skeletons Though trees are important data structures, it is known to be
hard to write general and efficient parallel programs manipulating trees. This calls for helpful
methods for parallel programming on trees and the skeletal approach is one of promising
paradigms.

As domain specific skeletons, Deldari et al. [22] designed and implemented parallel skele-
tons for Constructive Solid Geometry (CSG), based on the parallel algorithms developed
by Banerjee et al. [4]. For general-purpose tree skeletons, Skillicorn [59] formalized a set of
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Fig. 13. Experimental Results

binary-tree skeletons and a set of rose-tree skeletons based on Constructive Algorithmics [6,
9, 34, 47]. The implementations of these binary-tree skeletons have been developed [25, 26,
43] based on the tree contraction algorithms [1, 48]. Parallel skeletons for general recursive
data structures are also mentioned in [2].

Though several studies have worked on the skeletons for rose trees or general recursive
types, formalization and implementation of the skeletons have been insufficient. This paper
have tackled these problems and proposed a new set of rose-tree skeletons with their im-
plementation. We believe our rose-tree skeletons are not only theoretically simple but also
practically expressive.

Parallel Computation on Rose Trees and Nested Data Structures Parallel tree
contraction algorithms are now the bases for efficient parallel computations on trees. Though
the original idea proposed by Miller and Reif [48] did not limit the shape of trees to be binary
trees, many researchers have developed more efficient tree contraction algorithms based on
the assumption of binary trees [1, 19, 46].

According to the efficient tree contraction algorithms on binary trees, several studies
developed parallel algorithms on rose trees based on the transformation of rose trees into
binary trees. Cole and Vishkin [19], Diks and Hagerup [23], Skillicorn [59] and our previous
paper [42] adopted binary-tree representations, in which some dummy nodes are inserted
to expand internal nodes. Though these binary-tree representations suit for representing
bottom-up computations and top-down computations, they are poor at representing compu-
tations among siblings. In this paper, we adopt another binary-tree representation discussed
in [20], and this representation enables us to formalize computations among siblings. There
are other representations of rose trees, for example, in the community of functional pro-
gramming, the leaf-labeled binary trees are often used for representing rose trees. Sasano et
al. [55] used this representation for deriving programs for the maximum marking problems,
but his representation, however, is irrelevant to the formalization of top-down computations
or computations among siblings.

Nested data structures may be regarded as instances of rose trees. The NESL [12] pro-
vides computational patterns for nested computations, and Palmer et al. discussed how
nested computations can be compiled based on this paradigm [51]. These nested computa-
tions, however, may fail in performance when the height of rose trees get large. Kakehi et
al. [37] has developed a parallel implementation of rose-tree reductions, which is efficient in
regardless to the height of rose trees.
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Diffusion Theorems The idea of the diffusion theorem was first proposed by Hu et al.
on lists [32], and was generalized to polytypic programming [31, 32]. These ideas are based
on the two computational patterns on data structures, namely, the bottom-up computation
and the top-down computation. These diffusion transformations were also studied by Ahn et
al. and they also developed an analytical method for deriving parallel programs by utilizing
the static slicing technique [2].

In [44], we proposed a more powerful diffusion theorem which is specific to binary trees.
This paper generalized these even for the rose-tree specific computations, providing formal-
izations with dependencies among siblings.

Implementation in C++ In this paper, we have implemented our rose-tree skeletons as
wrapper functions on existing binary-tree skeleton library. To achieve such implementation,
we have utilized two features of C++ language, namely, template mechanism and function
objects. These two mechanisms are important features of C++, and they are also used in the
standard template library (STL) [35] and the new library in C++ called Boost [38]. Kuchen
et al. have discussed the advantages of these features in the skeletal parallel programming
from the user’s point of view [40, 61]. This paper also discussed the advantages of these
features from the developer’s point of view.

9 Conclusion

In this paper, we introduced seven parallel rose-tree skeletons. We designed these skeletons as
simple as possible based on Constructive Algorithmics, and showed a parallel implementation
based on the binary-tree representation. Our rose-tree skeletons are natural extensions of
the binary-tree skeletons proposed so far, and we have added two computational patterns
to denote computations among siblings.

The expressiveness of our rose-tree skeletons is enhanced with the diffusion theorems. The
diffusion theorems bridge the gap between the users’ recursive algorithms and the skeletal
parallel programs. The diffusion theorems are so powerful that we can successfully derive
parallel programs for three nontrivial examples as in Section 6. We have made a prototype
implementation of our parallel rose-tree skeletons as wrapper functions of existing binary-
tree skeleton library. Regardless of the rapid development, the skeletons have shown good
scalability.

It is our hope that our rose-tree skeletons are good foundation for not only designing
but also implementing parallel tree programs. Our future work is to extend our system with
more involved computational patterns on rose trees. Diks and Hagerup [23] have developed a
parallel algorithm for computations in which sorting of the siblings is required. Our skeletons
currently cannot represent such patterns.
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A Proofs of the diffusion theorems

A.1 Proof of Theorem 2

First, we define the specification as mutual recursive functions.

h (RNode a ts) = k a⊕ h′ ts
h′ [ ] = ι⊕
h′ (t : ts) = h t⊗ h′ ts

Then we calculate the specification and skeletal program for the top case of the rose trees.

Spec = h (RNode a ts)
= k a⊕ h′ ts

Skel = ((reducer (⊕) (⊗)) ◦ (mapr k)) (RNode a ts)
= (reducer (⊕) (⊗)) (RNode (k a) (map′r k ts))
= k a⊕ (reduce′r (⊕) (⊗) (map′r k ts))

Thus we prove the following equation by induction on the structure of rose trees.

h′ ts = reduce′r (⊕) (⊗) (map′r k ts)

Base case: ts ⇒ [ ]

LHS = h′ [ ] = ι⊕
RHS = reduce′r (⊕) (⊗) (map′r k [ ])

= reduce′r (⊕) (⊗) [ ]
= ι⊗

Inductive case: ts ⇒ (RNode a ts) : ss

LHS = h′ ((RNode a ts) : ss)
= h (RNode a ts)⊗ (h′ ss)
= (k a⊕ h′ ts)⊗ (h′ ss)

RHS = reduce′r (⊕) (⊗) (map′r k ((RNode a ts) : ss))
= reduce′r (⊕) (⊗) ((RNode (k a) (map′r k ts)) : (map′r k ss))
= (k a⊕ (reduce′r (⊕) (⊗) (map′r k ts)))⊗ (reduce′r (⊕) (⊗) (map′r k ss))
= (k a⊕ h′ ts)⊗ (h′ ss)

It follows from the induction above that the theorem holds.

A.2 Proof of Theorem 3

First, we define the specification as mutual recursive functions.

f c (RNode a ts) = RNode (k a c) (f ′ (c⊕ g a) ts)
f ′ c [ ] = [ ]
f ′ c (t : ts) = f c t : f ′ c ts

Then we calculate the specification and skeletal program for the top case of the rose trees.

Spec = f c (RNode a ts)
= RNode (k a c) (f ′ (c⊕ g a) ts)

Skel = zipwithr (λa d.k a (c⊕ d)) (RNode a ts) (dAccr (⊕) (mapr g (RNode a ts)))
= zipwithr (λa d.k a (c⊕ d)) (RNode a ts) (dAccr (⊕) (RNode (g a) (map′r g ts)))
= zipwithr (λa d.k a (c⊕ d)) (RNode a ts) (RNode ι⊕ (dAcc′′r (⊕) (g a) (map′r g ts)))
= RNode (k a (c⊕ ι⊕)) (zipwith′r (λa d.k a (c⊕ d)) ts (dAcc′′r (⊕) (g a) (map′r g ts)))
= RNode (k a c) (zipwith′r (λa d.k a (c⊕ d)) ts (dAcc′′r (⊕) (g a) (map′r g ts)))

Thus we prove the following equation by induction on the structure of rose trees.

f ′ (c⊕ v) ts = zipwith′r (λa d.k a (c⊕ d)) ts (dAcc′′r (⊕) v (map′r g ts))
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Base case: ts ⇒ [ ]

LHS = f ′ (c⊕ v) [ ] = [ ]
RHS = zipwith′r (λa d.k a (c⊕ d)) [ ] (dAcc′′r (⊕) v (map′r g [ ]))

= zipwith′r (λa d.k a (c⊕ d)) [ ] (dAcc′′r (⊕) v [ ])
= zipwith′r (λa d.k a (c⊕ d)) [ ] [ ]
= [ ]

Inductive case: ts ⇒ (RNode a ts) : ss

LHS = f ′ (c⊕ v) ((RNode a ts) : ss)
= (RNode (k a (c⊕ v)) (f ′ (c⊕ v ⊕ g a) ts)) : f ′ (c⊕ v) ss

RHS = zipwith′r (λa d.k a (c⊕ d)) ((RNode a ts) : ss)
(dAcc′′r (⊕) v (map′r g ((RNode a ts) : ss)))

= zipwith′r (λa d.k a (c⊕ d)) ((RNode a ts) : ss)
(dAcc′′r (⊕) v ((RNode (g a) (map′r g ts)) : map′r g ss))

= zipwith′r (λa d.k a (c⊕ d)) ((RNode a ts) : ss)
(RNode v (dAcc′′r (⊕) (v ⊕ g a) (map′r g ts))) : dAcc′′r (⊕) v (map′r g ss)

= (RNode (k a (c⊕ v)) (zipwith′r (λa d.k a (c⊕ d)) ts (dAcc′′r (⊕) (v ⊕ g a) (map′r g ts))))
: (zipwith′r (λa d.k a (c⊕ d)) ss (dAcc′′r (⊕) v (map′r g ss)))

= (RNode (k a (c⊕ v)) (f ′ (c⊕ v ⊕ g a) ts)) : f ′ (c⊕ v) ss

It follows from the induction above that the theorem holds.

A.3 Proof of Theorem 4

First we define the specification as mutual recursive functions.

f c (RNode a ts) = RNode (k a c) (f ′ c a ts)
f ′ c a [ ] = [ ]
f ′ c a (t : ts) = f (c⊕ g a (root t)) t : f ′ c a ts

Then we calculate the specification and skeletal program for the top case of the rose trees. Here, we
use the sequential definition using (>>).

Spec = RNode (k a c) (f ′ c a ts)
Skel = let gt = setroot ι⊕ (zipwithr g (dAccr (À) (RNode a ts)) (RNode a ts))

dt = dAccr (⊕) gt
in zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) (RNode a ts) dt gt

= let gt = setroot ι⊕ (zipwithr g (RNode (dAcc′′r (À) a ts)) (RNode a ts))
dt = dAccr (⊕) gt

in zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) (RNode a ts) dt gt
= let gt = RNode ι⊕ (zipwith′r g (dAcc′′r (À) a ts) ts)

dt = dAccr (⊕) gt
in zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) (RNode a ts) dt gt

= let dt = dAccr (⊕) (RNode ι⊕ (zipwith′r g (dAcc′′r (À) a ts) ts))
in zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) (RNode a ts) dt

(RNode ι⊕ (zipwith′r g (dAcc′′r (À) a ts) ts))
= zipwith3r (λa d d′.k a (c⊕ d⊕ d′)) (RNode a ts)

(RNode ι⊕ (dAcc′′r (⊕) ι⊕ (zipwith′r g (dAcc′′r (À) a ts) ts)))
(RNode ι⊕ (zipwith′r g (dAcc′′r (À) a ts) ts))

= RNode (k a c) (zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ts
(dAcc′′r (⊕) ι⊕ (zipwith′r g (dAcc′′r (À) a ts) ts))
(zipwith′r g (dAcc′′r (À) a ts) ts))

= let gt = zipwith′r g (dAcc′′r (À) a ts) ts
dt = dAcc′′r (⊕) ι⊕ gt

in RNode (k a c) (zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ts dt gt)

Thus we prove the following equation by induction on the structure of rose trees.
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f ′ (c⊕ c′) a ts = let gt = zipwith′r g (dAcc′′r (À) a ts) ts
dt = dAcc′′r (⊕) c′ gt

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ts dt gt

Base case: ts ⇒ [ ]

LHS = f ′ (c⊕ c′) a [ ]
= [ ]

RHS = let gt = zipwith′r g (dAcc′′r (À) a [ ]) [ ]
dt = dAcc′′r (⊕) c′ gt

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) [ ] dt gt
= let dt = dAcc′′r (⊕) c′ [ ]

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) [ ] dt [ ]
= zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) [ ] [ ] [ ]
= [ ]

Inductive case: ts ⇒ (RNode a′ ts) : ss

LHS = f ′ (c⊕ c′) a ((RNode a′ ts) : ss)
= f ((c⊕ c′)⊕ g a (root (RNode a′ ts))) (RNode a′ ts) : f ′ (c⊕ c′) a ss
= f (c⊕ c′ ⊕ g a a′) (RNode a′ ts) : f ′ (c⊕ c′) a ss
= RNode (k a′ (c⊕ c′ ⊕ g a a′)) (f ′ (c⊕ c′ ⊕ g a a′) a′ ts) : f ′ (c⊕ c′) a ss

RHS = let gt = zipwith′r g (dAcc′′r (À) a ((RNode a′ ts) : ss)) ((RNode a′ ts) : ss)
dt = dAcc′′r (⊕) c′ gt

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ((RNode a′ ts) : ss) dt gt
= let gt = (RNode (g a a′) (zipwith′r g (dAcc′′r (À) a′ ts) ts)) :

(zipwith′r g (dAcc′′r (À) a ss) ss)
dt = dAcc′′r (⊕) c′ gt

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ((RNode a′ ts) : ss) dt gt
= let gt ′ = zipwith′r g (dAcc′′r (À) a′ ts) ts

gt ′′ = zipwith′r g (dAcc′′r (À) a ss) ss
dt = dAcc′′r (⊕) c′ ((RNode (g a a′) gt ′) : gt ′′)

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ((RNode a′ ts) : ss) dt
((RNode (g a a′) gt ′) : gt ′′)

= let gt ′ = zipwith′r g (dAcc′′r (À) a′ ts) ts
gt ′′ = zipwith′r g (dAcc′′r (À) a ss) ss
dt = (RNode c′ (dAcc′′r (⊕) (c′ ⊕ g a a′) gt ′)) : (dAcc′′r (⊕) c′ gt ′′)

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ((RNode a′ ts) : ss) dt
((RNode (g a a′) gt ′) : gt ′′)

= let gt ′ = zipwith′r g (dAcc′′r (À) a′ ts) ts
gt ′′ = zipwith′r g (dAcc′′r (À) a ss) ss
dt ′ = dAcc′′r (⊕) (c′ ⊕ g a a′) gt ′

dt ′′ = dAcc′′r (⊕) c′ gt ′′

in zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ((RNode a′ ts) : ss) ((RNode c′ dt ′) : dt ′′)
((RNode (g a a′) gt ′) : gt ′′)

= let gt ′ = zipwith′r g (dAcc′′r (À) a′ ts) ts
gt ′′ = zipwith′r g (dAcc′′r (À) a ss) ss
dt ′ = dAcc′′r (⊕) (c′ ⊕ g a a′) gt ′

dt ′′ = dAcc′′r (⊕) c′ gt ′′

in RNode (k a′ (c⊕ c′ ⊕ g a a′)) (zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ts dt ′ gt ′) :
(zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ss dt ′′ gt ′′)

= let gt ′ = zipwith′r g (dAcc′′r (À) a′ ts) ts
gt ′′ = zipwith′r g (dAcc′′r (À) a ss) ss
dt ′ = dAcc′′r (⊕) (c′ ⊕ g a a′) gt ′

dt ′′ = dAcc′′r (⊕) c′ gt ′′

in RNode (k a′ (c⊕ c′ ⊕ g a a′)) (zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ts dt ′ gt ′) :
(zipwith3′r (λa d d′.k a (c⊕ d⊕ d′)) ss dt ′′ gt ′′)

= RNode (k a′ (c⊕ c′ ⊕ g a a′)) (f ′ (c⊕ c′ ⊕ g a a′) a′ ts) (f ′ (c⊕ c′) a ss)

It follows from the calculation above that the theorem holds.
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A.4 Proof of Theorem 5

First, we define the specification as mutual recursive functions.

f c (RNode a ts) = k a c⊕ f ′ (c¯ g a) ts
f ′ c [ ] = ι⊗
f ′ c (t : ts) = f c t⊗ f ′ c ts

Then we calculate the specification and skeletal program for the top case of the rose trees.

Spec = k a c⊕ f ′ (c¯ g a) ts
Skel = let dt = dAccr (¯) (mapr g (RNode a ts))

in reducer (⊕) (⊗) (zipwithr k (RNode a ts) (mapr (c¯) dt))
= let dt = RNode ι¯ (dAcc′′r (¯) (g a) (map′r g ts))

in reducer (⊕) (⊗) (zipwithr k (RNode a ts) (mapr (c¯) dt))
= let dt ′ = dAcc′′r (¯) (g a) (map′r g ts)

in reducer (⊕) (⊗) (zipwithr k (RNode a ts) (RNode c (map′r (c¯) dt ′)))
= let dt ′ = dAcc′′r (¯) (g a) (map′r g ts)

in reducer (⊕) (⊗) (RNode (k a c) (zipwith′r ts (map′r (c¯) dt ′)))
= let dt ′ = dAcc′′r (¯) (g a) (map′r g ts)

in (k a c)⊕ (reduce′r (⊕) (⊗) (zipwith′r ts (map′r (c¯) dt ′)))

Thus we prove the following equation by induction on the structure of rose trees.

f ′ (c¯ v) ts = let dt = dAcc′′r (¯) v (map′r g ts)
in reduce′r (⊕) (⊗) (zipwith′r k ts (map′r (c¯) dt))

Base case: ts ⇒ [ ]

LHS = f ′ (c¯ v) [ ]
= ι⊗

RHS = let dt = dAcc′′r (¯) v (map′r g [ ])
in reduce′r (⊕) (⊗) (zipwith′r k [ ] (map′r (c¯) dt))

= reduce′r (⊕) (⊗) (zipwith′r k [ ] (map′r (c¯) [ ]))
= reduce′r (⊕) (⊗) [ ]
= ι⊗

Inductive case: ts ⇒ (RNode a ts) : ss

LHS = f ′ (c¯ v) ((RNode a ts) : ss)
= (k a (c¯ v)⊕ (f ′ (c¯ v ¯ g a) ts))⊗ (f ′ (c¯ v) ss)

RHS = let dt = dAcc′′r (¯) v (map′r g ((RNode a ts) : ss))
in reduce′r (⊕) (⊗) (zipwith′r k ((RNode a ts) : ss) (map′r (c¯) dt))

= let dt = RNode v (dAcc′′r (¯) (v ¯ g a) (map′r g ts)) : dAcc′′r (¯) v (map′r g ss)
in reduce′r (⊕) (⊗) (zipwith′r k ((RNode a ts) : ss) (map′r (c¯) dt))

= let dt ′ = dAcc′′r (¯) (v ¯ g a) (map′r g ts)
dt ′′ = dAcc′′r (¯) v (map′r g ss)

in reduce′r (⊕) (⊗) (zipwith′r k ((RNode a ts) : ss)
((RNode (c¯ v) (map′r (c¯) dt ′)) : (map′r (c¯) dt ′′)))

= let dt ′ = dAcc′′r (¯) (v ¯ g a) (map′r g ts)
dt ′′ = dAcc′′r (¯) v (map′r g ss)

in reduce′r (⊕) (⊗) ((RNode (k a (c¯ v)) (zipwith′r k ts (map′r (c¯) dt ′))) :
(zipwith′r k ss (map′r (c¯) dt ′′)))

= let dt ′ = dAcc′′r (¯) (v ¯ g a) (map′r g ts)
dt ′′ = dAcc′′r (¯) v (map′r g ss)

in ((k a (c¯ v))⊕ (reduce′r (⊕) (⊗) (zipwith′r k ts (map′r (c¯) dt ′))))⊗
(reduce′r (⊕) (⊗) (zipwith′r k ss (map′r (c¯) dt ′′)))

= (k a (c¯ v)⊕ (f ′ (c¯ v ¯ g a) ts))⊗ (f ′ (c¯ v) ss)

It follows from the induction above that the theorem holds.
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A.5 Proof of Theorem 6

First, we define the specification as mutual recursive functions.

f c (RNode a ts) = RNode (k a c) (f ′ (c¯ g a (h (RNode a ts))) ts)
f ′ c [ ] = [ ]
f ′ c (t : ts) = f c t : f ′ c ts

Then we calculate the specification and skeletal program for the top case of the rose trees.

Spec = RNode (k a c) (f ′ (c¯ g a (h (RNode a ts))) ts)
Skel = let t′ = uAccr (⊕′) (⊗′) (mapr k′ (RNode a ts))

dt = dAccr (¯) (zipwithr g (RNode a ts) t′)
in zipwithr (λa d.k a (c¯ d)) (RNode a ts) dt

= let t′ = RNode (h (RNode a ts)) (uAcc′r (⊕′) (⊗′) (map′r k′ ts))
dt = dAccr (¯) (zipwithr g (RNode a ts) t′)

in zipwithr (λa d.k a (c¯ d)) (RNode a ts) dt
= let dt = dAccr (¯) (RNode (g a (h (RNode a ts)))

(zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts))))
in zipwithr (λa d.k a (c¯ d)) (RNode a ts) dt

= let dt = RNode ι¯ (dAcc′′r (¯) (g a (h (RNode a ts)))
(zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts))))

in zipwithr (λa d.k a (c¯ d)) (RNode a ts) dt
= let dt ′ = dAcc′′r (¯) (g a (h (RNode a ts))) (zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts)))

in RNode (k a c) (zipwith′r (λa d.k a (c¯ d)) ts dt ′)

In the calculation we used the following equation which can be proved immediately by definition.

h (RNode a ts) = reducer (⊕′) (⊗′) (mapr k′ (RNode a ts))
= root (uAccr (⊕′) (⊗′) (mapr k′ (RNode a ts)))

Thus we prove the following equation by induction on the structure of rose trees.

f ′ (c¯ v) ts = let dt = dAcc′′r (¯) v (zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts)))
in zipwith′r (λa d.k a (c¯ d)) ts dt

Base case: ts ⇒ [ ]

LHS = f ′ (c¯ v) [ ] = [ ]
RHS = let dt = dAcc′′r (¯) v (zipwith′r g [ ] (uAcc′r (⊕′) (⊗′) (map′r k′ [ ])))

in zipwith′r (λa d.k a (c¯ d)) [ ] dt
= let dt = dAcc′′r (¯) v (zipwith′r g [ ] [ ])

in zipwith′r (λa d.k a (c¯ d)) [ ] dt
= zipwith′r (λa d.k a (c¯ d)) [ ] [ ]
= [ ]

Inductive case: ts ⇒ (RNode a ts) : ss

LHS = f ′ (c¯ v) ((RNode a ts) : ss)
= (RNode (k a (c¯ v)) (f ′ (c¯ v ¯ g a (h (RNode a ts))) ts)) : f ′ (c¯ v) ss

RHS = let dt = dAcc′′r (¯) v (zipwith′r g ((RNode a ts) : ss)
(uAcc′r (⊕′) (⊗′) (map′r k′ ((RNode a ts) : ss))))

in zipwith′r (λa d.k a (c¯ d)) ((RNode a ts) : ss) dt
= let dt = dAcc′′r (¯) v (zipwith′r g ((RNode a ts) : ss)

(uAcc′r (⊕′) (⊗′) ((RNode (k′ a) (map′r k′ ts)) : (map′r k′ ss))))
in zipwith′r (λa d.k a (c¯ d)) ((RNode a ts) : ss) dt

= let dt = dAcc′′r (¯) v (zipwith′r g ((RNode a ts) : ss)
(uAccr (⊕′) (⊗′) (RNode (k′ a) (map′r k′ ts)) : uAcc′r (⊕′) (⊗′) (map′r k′ ss)))

in zipwith′r (λa d.k a (c¯ d)) ((RNode a ts) : ss) dt
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= let rv = h (RNode a ts)
dt = dAcc′′r (¯) v (zipwith′r g ((RNode a ts) : ss)

(RNode rv (uAcc′r (⊕′) (⊗′) (map′r k′ ts)) : uAcc′r (⊕′) (⊗′) (map′r k′ ss)))
in zipwith′r (λa d.k a (c¯ d)) ((RNode a ts) : ss) dt

= let rv = h (RNode a ts)
dt = dAcc′′r (¯) v (RNode (g a rv) (zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts))) :

(zipwith′r ss uAcc′r (⊕′) (⊗′) (map′r k′ ss)))
in zipwith′r (λa d.k a (c¯ d)) ((RNode a ts) : ss) dt

= let rv = h (RNode a ts)
dt ′ = dAcc′′r (¯) (v ¯ g a rv) (zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts)))
dt ′′ = dAcc′′r (¯) v (zipwith′r ss uAcc′r (⊕′) (⊗′) (map′r k′ ss))

in zipwith′r (λa d.k a (c¯ d)) ((RNode a ts) : ss) ((RNode v dt ′) : dt ′′)
= let rv = h (RNode a ts)

dt ′ = dAcc′′r (¯) (v ¯ g a rv) (zipwith′r g ts (uAcc′r (⊕′) (⊗′) (map′r k′ ts)))
dt ′′ = dAcc′′r (¯) v (zipwith′r ss uAcc′r (⊕′) (⊗′) (map′r k′ ss))

in RNode (k a (c¯ v)) (zipwith′r (λa d.k a (c¯ d)) ts dt ′) :
(zipwith′r (λa d.k a (c¯ d)) ss dt ′′)

= (RNode (k a (c¯ v)) (f ′ (c¯ v ¯ g a (h (RNode a ts))) ts)) : (f ′ (c¯ v) ss)

It follows from the induction above that the theorem holds.
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