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Abstract

We study a three-state stochastic particle system on the square
lattice, which extends the contact process. The phase diagram is an-
alyzed by the mean-field approximation, the pair approximation, and
numerics. The pair approximation turns out to be better than the
meanfield ansatz. We also show that the Harris-FKG type correlation
inequalities approximately hold in the present model.
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1 Introduction

Modeling spreads of infectious diseases or multispecies ecological processes
potentially serve to prevent epidemic outbreaks. Both nonspatial/spatial
deterministic models [1, 2] and spatial stochastic models, which are mainly
spatial [6, 3, 5, 4, 7], are main tools to address these issues. Among stochas-
tic models, the contact process [5, 4], which is a two-state model and cor-
responds to the stochastic spatial version of the SIS model [3], is known to
show various phenomena relevant to real epidemics, such as phase transi-
tions and clustering of infectious patients. Adding the number of states or
species is a natural extension of the model. For instance, the paper-scissors-
stone (PSS) model and the susceptible-infected-recovered-susceptible (SIRS)
model[8] have been investigated as non-hierarchical competitive community
systems.

We investigate a stochastic epidemic model on the square lattice called
the spatial stochastic epidemic (SSE) model. This model has three states.
The model is also of physical interest because of its yet undermined phase
diagram [9]. Whether coexistence of the three states really occur is not
known [10, 11]. We analyze this model by the meanfield approximation
(MFA), the pair approximation (PA), and Monte Carlo (MC) simulations,
along a similar line with [2, 8, 9, 12, 13, 14]. Our particular focus is on the
phase diagram and correlation inequalities by the pair approximation and
numerical simulations.

In Sec. II, we define the SSE model and derive the dynamical equations
for order parameters. In Sec. III, phase diagrams are derived from the
MFA, the PA, and MC simulations. Section IV is devoted to analysis of the
correlation inequalities.

2 Model

The SSE model is a continuous-time Markov process with a state space
{0, 1, 2}Z2

, where Z2 indicates the square lattice. States 0, 1, and 2 corre-
spond to empty, healthy, and infected, respectively. As schematically shown
in Figs. 1(a) and 1(b), birth (0 → 1) occurs at a rate proportional to the
number of healthy sites (state 1) in the neighborhood of an empty site (state
0). We denote this rate by λn1, where ni (i = 1, 2) is the number of neigh-
bors in state i. Similarly, infection (1 → 2) occurs at a rate μn2. Death from
1 to 0 and from 2 to 0 occurs at rates δ and 1, respectively. In contrast to
birth or infection events, the death events occur independently of the states
of the neighborhood sites. We define

ρ(i) ≡ P
[
η(x, y) = i

]
, (1)

ρ(ij) ≡ P
[
η(x, y) = i, η(x + x′, y + y′) = j

]
, (2)
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ρ(ijk) ≡ P
[
η(x + x′, y + y′) = i, η(x, y) = j, η(x + 1, y) = k

]
, (3)

where η(x, y) is the state of (x, y)∈ Z2, |x′| + |y′| = 1, and P denotes the
probability. In Eq. (3), we assume that the three sites do not overlap and
ignore the difference between two events {ηi(x− 1, y), ηj(x, y), ηk(x + 1, y)}
and {ηi(x, y + 1), ηj(x, y), ηk(x + 1, y)}. The dynamics of ρ(i) and ρ(ij) are
given as follows:

dρ(0)
dt

= −4λρ(01) + δρ(1) + ρ(2), (4)

dρ(1)
dt

= 4λρ(01) − 4μρ(12) − δρ(1), (5)

dρ(2)
dt

= 4μρ(12) − ρ(2), (6)

dρ(00)
dt

= −6λρ(001) + 2δρ(01) + 2ρ(02), (7)

dρ(11)
dt

= 6λρ(101) + 2λρ(01) − 6μρ(112) − 2δρ(11), (8)

dρ(22)
dt

= 6μρ(212) + 2μρ(12) − 2ρ(22), (9)

dρ(01)
dt

= 3λ
{
ρ(001) − ρ(101)

}
− 3μρ(012) − (λ + δ)ρ(01) + δρ(11) + ρ(12),(10)

dρ(02)
dt

= −3λρ(102) + 3μρ(012) − ρ(02) + δρ(12) + ρ(22), (11)

dρ(12)
dt

= 3λρ(102) + 3μ
{
ρ(112) − ρ(212)

}
− (μ + δ + 1)ρ(12). (12)

The relations between the singlet, doublet, and triplet densities evaluated
at the steady state define the correlation identities.

3 Phase diagrams

3.1 Mean field approximation

By solving the steady state of Eqs. (4)–(6) with ρ(ij) = ρ(i)ρ(j), we obtain
ρMF(0) = (4μ − 1 + δ)/4(μ + λ), ρMF(1) = 1/4μ, and ρMF(2) = (4μλ −
λ − δμ)/4μ(μ + λ). In the case when ρ(2) is extinct, we set ρ(2) = 0 and
derive ρMF(0) = δ/(4λ) and ρMF(1) = (4λ − δ)/(4λ). These solutions agree
with the MFA solution of the CP. Then, the phases S01 (coexistence of 0
and 1) and S012 (coexistence of 0, 1, and 2) are divided by μ = λ/(4λ − δ).
When δ = 0, S1 (state 1 only) naturally appears instead of S01 and S0.
When δ > 0, λ = δ/4 divides S0 (state 0 only) and S01; this relation is
independent of μ. The phase diagrams for δ = 0 and δ = 1 are respectively
shown in Figs. 1(a) and (b), with the critical lines indicated by solid lines.
Two critical lines in Fig. 1(b) approach each other as μ tends large.
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3.2 Pair approximation

We next apply the PA, which takes into account two-site correlations. With
the ansatz ρ(ijk) = ρ(ij)ρ(jk)/ρ(j), Eqs. (7)–(12) at the steady state be-
come:

0 = −6λ
ρ(00)ρ(01)

1 − ρ(1) − ρ(2)
+ 2δρ(01) + 2ρ(02), (13)

0 = 6λ
ρ(10)2

1 − ρ(1) − ρ(2)
+ 2λρ(01) − 6μ

ρ(11)ρ(12)
ρ(1)

− 2δρ(11), (14)

0 = 6μ
ρ(12)2

ρ(1)
+ 2μρ(12) − 2ρ(22), (15)

0 = 3λ
ρ(00)ρ(01) − ρ(01)2

1 − ρ(1) − ρ(2)
− 3μ

ρ(01)ρ(12)
ρ(1)

+ δρ(11) − (λ + δ)ρ(01) + ρ(12),

(16)

0 = −3λ
ρ(01)ρ(02)

1 − ρ(1) − ρ(2)
+ 3μ

ρ(01)ρ(12)
ρ(1)

+ δρ(12) + ρ(22) − ρ(02), (17)

0 = 3λ
ρ(01)ρ(02)

1 − ρ(1) − ρ(2)
+ 3μ

ρ(11)ρ(12) − ρ(12)2

ρ(1)
− (μ + δ + 1)ρ(12). (18)

From Eqs. (4) and (6), we obtain

ρ(01) =
δρ(1) + ρ(2)

4λ
, (19)

ρ(12) =
ρ(2)
4μ

, (20)

respectively. Note that

ρ(i) = ρ(i0) + ρ(i1) + ρ(i2), (i = 0, 1, 2). (21)

Substituting Eqs. (19)-(21) into Eqs. (16)-(18) results in

ρ(02)
1 − ρ(1) − ρ(2)

= − δρ(1) + ρ(2)

2λ
(
1 − ρ(1) − ρ(2)

)

+
8δ(3λ − δ)ρ(1) +

{
8λ − 11δ + 4λ(1−δ)

μ

}
ρ(2) − 3ρ(2)2

ρ(1)

12λ
(
δρ(1) + ρ(2)

) ,

(22)

ρ(02)
1 − ρ(1) − ρ(2)

=

(
3δ+16λ

4λ + δ−1
μ

)
ρ(1) + 3

4λρ(2)

8 + (3δ − 8)ρ(1) − 5ρ(2)
ρ(2)
ρ(1)

, (23)

ρ(02)
1 − ρ(1) − ρ(2)

=

(
1
4λ + 1

2μ

)
ρ(2) +

(
δ
4λ − 2μ−δ−1

3μ

)
ρ(1)

δρ(1) + ρ(2)
ρ(2)
ρ(1)

. (24)
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Substituting ρ(2) = 0 into Eq. (22), we have for the S01 phase

ρ(1) =
12λ − 4δ

12λ − δ
. (25)

Then assuming ρ(2) = 0 in Eqs. (23) and (24), and substituting Eq. (25)
into these equations, we have

μ =
12λ2 + 4λ

36λ2 + (8 − 12δ)λ − 3δ
. (26)

This line divides the S01 and S012 phases, which extends the result for δ = 1
[12].

To solve for steady densities quantitatively, let Qi = ρ(i)/ρ(2) (i =
0, 1, 2). By using Eqs. (19)-(21), Eqs. (13)-(15) are transformed into

ρ(02)
ρ(2)

=

(
1 − δ

3λ

)
Q0 − 1

4λ

(
1 + δQ1

)

3
(
1 + δQ1

)
+ 4Q0

{
3
(
1 + δQ1

)}
, (27)

0 =
(1 + δQ1)2

λQ0
−

(
8
3
− δ

λ

)
+

(
1

Q1
+

4δ

3

) (
1
λ

+
1
μ

)
− 4δ

(
1 − δ

3λ

)
Q1,

(28)
ρ(02)
ρ(2)

= − 3
16μQ1

+
1
4

(
3 − 1

μ

)
. (29)

Substituting Eq. (29) into Eq. (27),

Q0 =

(
3μδ2

)
Q2

1 +
(
9λμδ + 6μδ − 3λδ

)
Q1 +

(
9λμ + 3μ − 3λ − 9λδ

4

)
− 9λ

4
1

Q1[(
12λμδ − 4μδ2

)
Q1 +

(
4λ − 4μδ

)
+ 3λ 1

Q1

] .

(30)

By using Eqs. (28) and (30), we have

0 = 4δ2
{

9λμ − 3λ + 2μ − 1 − 3μδ

(
1 +

1
4λ

)}
Q4

1

+δ

{
60λμ − 20λ + 16μ − 8 − δ

(
21λ + 33μ − 3δ − 4λ

μ
+

9μ

λ
+ 3

)}
Q3

1

+
{

24λμ − 8λ + 8μ − 4 − δ

(
36λ + 30μ + 6 − 7λ

μ
+

9μ

λ
− 33δ

4
− 3λδ

μ

)}
Q2

1

−3
{

5λ + 3μ − λ

μ
+

μ

λ
+ 1 − δ

4

(
10 +

7λ

μ

)}
Q1 +

9
4

(
1 +

λ

μ

)
.

(31)

Steady densities ρ(i) = Qi/(1 + Q0 + Q1) are numerically given by solving
Eqs. (27)-(31). Since Eq. (31) is the forth order equation, we have four
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solutions from this equation, but obtain only one solution of Q1 satisfying
both positive real number ρ(i) and 0 < ρ(i) < 1. Dashed lines in Fig. 1
are the critical lines obtained by the PA. When δ = 0, we can solve them
analytically [14]. ***When δ > 0, the parameter region of S0 becomes
λ < δ/3, which is larger than the MFA counterpart. As shown in Fig. 1(b),
the two critical lines never intersect as μ → ∞, which contrasts to the MFA
prediction. In S01, the PA solution of Eqs. (13)-(20) with ρ(2) = 0 reads:

ρ(0) =
3δ

12λ − δ
, ρ(1) = 12λ−4δ

12λ−δ , ρ(00) =
δ2

λ(12λ − δ)
,

ρ(01) =
3λ − δ

12λ − δ
, ρ(11) = (4λ−δ)(3λ−δ)

λ(12λ−δ) .

3.3 Monte Carlo simulation

To perform simulations, we initially let each site randomly have either state
0, 1, or 2 with probability 1/3. The simulation time step is the smaller of
Δt = (1.0× 10−3)/λ or (1.0× 10−3)/μ, and each trial lasted until 2000 unit
time or when extinction is reached.

Solid circles in Fig. 1 represent numerically obtained critical lines on
the 100 × 100 lattice with periodic boundary conditions. When δ = 1, the
critical line between S0 and S01 naturally contains (λc, μ) = (0.41,0), where
λc is the critical infection rate of the contact process [5, 4].

Generally, the critical lines obtained by the PA is more accurate than
the those obtained by the MFA. When δ = 0, the critical line between S1

and S012 depends on μ, as for the PA (Fig. 1(a)). More importantly, the two
critical lines do not approach each other as μ → ∞. For δ = 0 and 1, values
of stationary ρ(i) obtained by the three methods are compared in Figs. 2
and 3. The PA better approximates numerically obtained ρ(i). We also find
paradoxical effects in Fig. 2(b), namely, increased λ lowers ρ(1), as is known
for δ = 0 [14, 15] (also see our Fig. 2(a)) and the paper-scissors-stone game
[13, 16]. Similarly, ρ(2) does not increase monotonically in μ (Fig. 3). These
results suggest that the PA is better than the MFA.

4 Correlation inequalities

In the case of the contact process, the Harris-FKG inequality (see Lemmas
3.3.4 (1) and 3.3.5 (1) of [17]) reads ρ(ii)/ρ(i)2 ≥ 1 (i = 0, 1). Remark
that the inequality is also called positive correlations that are satisfied in a
wide class of two-state monotone (or attractive) interacting particle systems
(for more details, see pp.77-83 in [4]). However it is not known rigorously
whether or not the same type of correlation inequalities, that is,

ρ(ii)
ρ(i)2

≥ 1, (i = 0, 1, 2) (32)
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hold for the present three-state model.
Figure 6 shows that the results by the PA and MC simulations roughly

satisfy Eq. (32). In addition, ρ(ii)/ρ(i)2 when δ = 0 is always larger than
when δ = 1 except for ρ(22)/ρ(2)2. This is because δ > 0 enhances mixing
of the three states. Only the case ρ(22)/ρ(2)2 is opposite to our intuition.
A similar property is observed for the PSS model with perturbation effects
[13].

5 Conclusion

We have investigated a three-state stochastic epidemic model on the square
lattice. The phase transitions are analyzed by the MFA, the PA and MC
simulations. The critical lines obtained by the PA and MC simulations
generalize the results in [9, 12] to arbitrary δ. Correlation inequalities also
hold approximately.
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FIGURE CAPTIONS

FIG. 1 (a)The rules of state transition of the SSE model. Dashed lines
show transition probabilities proportional to the number of neighbors. Solid
lines represent constant transition probabilities. (b)Rough sketch of the
combination of the rules.

FIG. 2 Phase diagrams for (a) δ = 0 and (b) δ = 1 obtained by the MFA
(solid lines), the PA (dashed lines), and MC simulations (solid circles).

FIG. 3 Dependence of ρ(1) (MFA: thin solid lines, PA: thick solid lines,
MC: triangles) and ρ(2) (MFA: thin dotted lines, PA: thick dotted lines,
MC: circles) on λ when (a) (μ, δ)=(1,0) and (b) (μ, δ)=(1,1).

FIG. 4 Dependence of ρ(1) and ρ(2) on μ when (a) (λ, δ)=(1,0) and (b)
(λ, δ)=(1,1). See the caption of Fig. 2 for legends.

FIG. 5 The values of ρ(ii)/ρ(i)2 for the PA with δ = 0 (dotted lines) and
δ = 1 (dot-dashed-lines), compared with MC simulations with δ = 0 (closed
circles) and with δ = 1 (open circles). We set μ = 1 in (a, b, c) and λ = 1
in (d, e, f). Vertical lines represent critical points obtained by Eq. (26).

FIG. 6 The values of ρ(ij)/[ρ(i)ρ(j)] for the PA with δ = 0 and δ = 1,
compared with MC results. We set μ = 1 in (a, b, c) and λ = 1 in (d, e, f).
See the caption of Fig. 4 for legends.
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FIG. 1 Ohtsuka et al.
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