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Abstract

New conservative finite difference schemes for certain classes of nonlinear wave equa-
tions are proposed. The key tool there is “discrete variational derivative,” by which
discrete conservation property is realized. A similar approach for the target equa-
tions was recently proposed by Furihata, but in this paper a different approach is
explored, where the target equations are first transformed to the equivalent system
representations which are more natural forms to see conservation properties. Appli-
cations for the nonlinear Klein-Gordon equation and the so-called “good” Boussi-
nesq equation are presented. Numerical examples reveal the good performance of
the new schemes.
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1 Introduction

The numerical integration of the 1-dimensional nonlinear wave equations of

the form ,
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is considered, where G(u,u,) is a real-valued function of u(z,t) and u, =
Ou/0x, and

5G  9G  d AG
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is the variational derivative of G(u, u;). The nonlinear Klein-Gordon equation,
for example, belongs to (P1), and some class of the Boussinesq equations
belongs to (P2). The equations of the form (P1) have in common the “energy”
conservation property:

%/OL (%(Ut)Q + G(u, ux)> dz =0, (1)

under some suitable boundary conditions, and thus called “conservative.” The
equations (P2) are also conservative, but their conservation properties are not
as simple as (1). This will be discussed in the next section.

For such conservative equations, it is preferable that numerical schemes have
discrete analogues of the conservation properties, since they often yield phys-
ically correct results and also numerical stability[2]. Such schemes are called
“conservative schemes.” In early phase of these researches, many attempts to
find conservative schemes were done independently for several specific prob-
lems; for example, conservative schemes for the nonlinear Klein-Gordon equa-
tion were studied in [1,4,11,20] (see also references in [7,17]). In the end of
the twentieth century, a more unified method was given in [7,8,17], by which
conservative schemes for wide range of problems can be constructed auto-
matically. Most of specific conservative schemes in the literature then turned
out to be examples of the unified approach. The method targets conservative
(or dissipative, where the “energy” is monotonically dissipated along the solu-
tion) partial differential equations which is defined with variational derivative;
Furihata[7] targeted real-valued equations of the form

(0 6G -
a—(—l) <a_x> E, 8—0,1,2,...,

which is conservative when s is odd, and dissipative otherwise; Matsuo and
Furihata[17] targeted complex-valued equations of the form

Ou oG q ou oG
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which is conservative and dissipative, respectively (6G/du is complex varia-
tional derivative); Furihata then targeted equations (P1) in [8]. In these studies
the key concept is “discrete variational derivative,” which is discrete analogue



of variational derivative. The numerical scheme is then defined with it anal-

ogously to the original equation so that the discrete conservation property
should be “inherited.”

There are three aims in this paper. The first aim is to introduce a new ap-
proach for the equations (P1), which is different from Furihata[8]. The key
there is the fact that the equations (P1) can be represented as systems of
first-order differential equations, by appropriately introducing intermediate
variables. Discretizing these systems using the idea of discrete variational
derivative not only gives rise to new families of conservative scheme, but brings
an additional advantage that in some new schemes the time mesh size can be
adaptively changed. The second aim is to cover the equations (P2), which was
not covered in Furihata[8]. In particular, conservative schemes for the Boussi-
nesq equations are obtained for the first time in the literature as far as the
author knows. The third, somewhat subsidiary aim is to clarify the relation
between Furihata’s approach[8] (we call it the “previous” approach through-
out this paper), and the new approach. Both approaches utilizes the idea of
discrete variational derivative, but start with different representations of the
target equations. Then arises a natural question: do the resulting schemes by
the different approaches coincide just as the continuous equations do? The
“staggered grid” technique is introduced to discuss this issue.

This paper is organized as follows; in Section 2 the target equations and their
properties are reviewed; Section 3 is devoted to the summary of the discrete
symbols and Furihata’s previous approach; then in Section 4 the new schemes
are presented and the relation between the previous and new approaches is
discussed; Section 5 is for application examples where, in particular, conserva-
tive schemes for the Boussinesq equations are given; Section 6 is for concluding
remarks.

2 Target equations

In this section the target equations and their properties are summarized.

2.1 Equations of the form (P1)

The equations of the form (P1) include, for example, the nonlinear Klein-
Gordon equation:

2 2 2
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where ¢'(u) = (0/0u)p(u), the Fermi-Pasta-Ulam equation:
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and the string vibration equation:
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The solutions to the equations (P1) satisfy the following conservation property
(see, for example, Furihatal[8]).

Proposition 1 Along the solution u(x,t) to the equation (P1), the conserva-
tion property (1) holds if the boundary conditions satisfy

[“ u] 0. (6)

oug |,

The assumption (6) is satisfied, for example, by the Dirichlet conditions (then
u; = 0 at boundaries), or if u, u,, and u,; are periodic.

An important fact about the equations (P1) is that they can be represented
as a system of equations

6G 2
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and v = u, is an intermediate function. We call G(v,u,u,) the “modified”
energy function. If we employ this system representation, the conservation
property (1) is rewritten as the modified energy conservation property:

d o -
E/0 Gdz =0, (7)

under the same assumption (6). Note that the nonlinear wave equation (P1) is
usually equipped with the initial conditions u(z,0) = ug(z), ui(x,0) = ui(z).
Then they can be directly used as the initial conditions for the system (P1ls);
u(z,0) = up(x), v(z,0) = up(x).



2.2 FEquations of the form (P2)

The equations of the form (2) include the “good” Boussinesq equation:

?u 02 ) w?  u: o ou?
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and also the “bad” Boussinesq equation:
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To see the conservation property of (P2), it is convenient to first move to the
system representation:

) 0G

= ’ o ou , (P2s)
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where the intermediate function v is defined by v, = u;. Then the correspond-
ing conservation property is presented as follows.

Proposition 2 Along the solution to the equation (P2), or equivalently (P2s),
the conservation property:

dt/ vuumdx—dt/ (U—i—G(uuw))dx:O (10)
holds under the boundary conditions which satisfy (6) and
oG
= 0. 11
g (1)

The conditions (6) and (11) are satisfied, for example, when u, u, Uy, Uy = v,
and v are periodic. Suppose that originally in (P2) the initial conditions
u(z,0) = up(x), and uy(x,0) = ui(x) are set. The missing initial condition
for v is then obtained by v(z,0) = [; ui(x)dz. Note that, in order to see the
conservation property, it is more convenient to work with the system repre-
sentation (P2s) than (P2), because it is not easy to replace v in (10) with w.

Remark 3 The linear wave equation: 8?u/0t* = 9*u/0x?, and the linear thin
film wave equation: 0?u/0t> = —9*u/dz*, can be considered as examples of
both (P1) and (P2).



3 Furihata’s approach

In this section, the discrete symbols used in this paper and the previous ap-
proach by Furihata[8] are summarized.

3.1 Discrete operators and formula

Numerical solution is denoted by
U,Em)zu(kAx,mAt), 0<k<N, m=0,1,2,...,

where N is the number of space mesh points (i.e. Az = L/N), and At is the
time-mesh size. It is also written as U™ = (U™, .. .,U](Vm))T. The super-
script (m) may be omitted where no confusion occurs. We use the standard
shift operators: s =1, s} fk = frr1, Spfk = fe—1, and sk )= (fra1 +
fk 1)/2 the mean operators: 1 fr := (fer1+fx)/2, pj fk = (frx+fr_1)/2, and
uk fk (fes1+fr_1)/2; and the dlfference operators: 6 =1 5+fk (fer1—
fo)/ Az, 65 fr = (fo—fro 1)/ Az, 6" fr = (for— fi 1)/2Al" 0 fr = (fk+1_
2 fu+fo_1)/Az?. Here we emphasize an identity 6 (5, fi) = 0, (6 fr) = 0\ fu,
which is frequently used in what follows. In the above operators, the subscript
k denotes that they operate on the spatial index k. The similar operators with
subsctipt m are also used which operate on the temporal index m; they are de-
fined exactly the same as above. As a discretization of integral, the trapezoidal
rule is used:

al 1 al 1
Z "fiAx = (—fo + Z fe+ —fN> Az. (12)
k=0 2 k=1 2

As to the summation rule, the following summation-by-parts formula holds:

Proposition 4 (Summation-by-parts formula)

+ (Skflc)gk] N. (SBP)

S (sta) S0+ 327 (501 nde = [ ELE0) oSl

k=0 k=0

3.2 Two-point discrete variational derivative

In this and the subsequent subsection, “discrete variational derivatives” are
defined. Suppose the energy function G(u,u,) be of the form

(u, ug) Zfl w)g(ug), M e{1,2,...}. (13)

Observe that all G in the previous section fall into this category; for exam-
ple, for the nonlinear Klein-Gordon equation, M = 2, fi(u) = 1,¢1(u,) =



u?/2, fo(u) = ¢(u), and go(u,) = 1. Analogously, suppose the discrete ana-
logue of the energy be given in the form

M
Garp(U™) =3 AU g (67U g (6,UT™), 0<k<N.  (14)

=1
(see also Section 5 for the concrete examples of G4). The discrete energy

Ga is a real-valued scalar function of U™ which approximates G (u,u,) at
z = kAz, t =mAt. We also write Gq(U™) as a vector function.

Now recall the continuous variation calculation:

/L (G(u + du, uy + dug) — G(u,uy)) dz

—/ (—5u—|— Fu b ) dz + O(6u?)

0G
O,

= —dx+l 54 + 0(0u?). (15)

With a given discrete energy function (14), a discrete analogue of (15) becomes
as follows.

N
Z " (Gdk )) — Gd,k(U(m))) Aa: =
k

=0
N
Z [( sy U(m)) ) (Ulgm+1) _ U,gm))] Az + B (U™ U™)  (16)
k=0 k

where 6Gq/6(U™) U™) is an approximation of §G//du, and hence called
the “discrete variational derivative” of G4. More exactly, it is called “two-
points” discrete variational derivative, since it refers two approximate solutions
U™ and U™, when we are in need of distinguishing it from the “three-
points” discrete variational derivative introduced in the next subsection. The
discrete quantities appearing in (16) is defined as

(SGd L 8Gd 5o ath
s(U™D gtm), = (U™t utm), Sk ao+ (U™ Utm),
0G4
— & : 17
' (aé(U“"“’, U<m>>k> o
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Gy 3 AOD) = AOE™)
a(U(m+l)7U(m))k - P U[gm+1) U,Sm)
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do— (U ym)y, T = 2
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which are discrete approximations to G /du, 0G /du,, respectively. The iden-
tity (16) can be verified by some calculations with (SBP).

Remark 5 In the definitions definition (19a), the quantity ( fl(UIEmH)) _

AN /@D — Utm™y with U™ = U™ s defined by f/(U™), where
()" denotes differentiation. This notice applies to all the similar expressions.

3.3  Three-points discrete variational derivative

Suppose the energy G be given in the form (13). Analogously, suppose a
discrete energy be given in the form



Gy k(U(m+1), U(m)) —

M
Z U U g (U 6 U™ g (0, U 6, UMY, (20)

Observe that, in contrast to (14), this discrete energy refers two approximate
solutions. Like as in the previous subsection, with the discrete energy a discrete
analogue of (15) can be given as follows.

N

Z " (Gd,k(U(m+1); U(m)) . Gd,k(U(m), U(m—l))) Ax
k=0

Z , (5Gd U[gm+1) . U[gmfl) A,
= m+1 U(m),U(m_l))k 9

+ By(Um+) ym pm-Yy - (21)

We call the discrete quantity 6Gq/6(U™+D U™ U™m=Y), the “three-points
discrete variational derivative,” since it refers three approximate solutions.
The discrete quantities in above identity are defined as follows.

(SGd aCTYd

5(U(m+1), U(m)7 U(mfl))k = a(U(mH)7 U(m), U(mfl)) .

5- 0G4
-k 3(5+(U(m+1),U(m),U(m—l))]c

0G4
_ s+
g (aa(U“"“’, U™, U<m—1>)k> ’ 22)

oG o]
+ d (1) gr(m
- {S’“ (a&—(U(mH),UW,U(m”),)} (0% )] ’ (23)

M fl(m,erl) _fl(m,mfl)

0Gy st
8(U(m+1), U(m), U(m—l)) . = %(U]Em—l—l) . U}Em—l))

+7(m7m+1) _7(mam+1) +7(mvm_1) _7(m7m_1)
y (gl 91 + 9 91 ) ,(24a)
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i/[: (fl(m,erl)_'_fl(m,ml)) (gf,(m,erl)_i_ngr,(m,ml))
2 2

=1

(gl:t’(m,m—i—l) _ gl:tv(mam_l))
X — — . (24b)
LSE U )

In above definition the abbreviations £ .= f,(U™™ U™,

gt = gk (sEU Y sEU™) and so on, are used to simplify the nota-
tion. The double signs correspond. The identity (21) can be verified by some
calculations with (SBP).

Remark 6 The three-points discrete variational derivative defined here is a
special case of Furihata’s “four-points” discrete variational derivative[8], where
two of the referred four approximate solutions are identical.

3.4 Conservative schemes by the previous approach

With the two-points or three-points discrete variational derivatives defined
above, Furihata[8] proposed the following schemes for the equation (P1).

Scheme 1 (Implicit scheme for (P1)) For a given set of initial data v uW,
we compute U™ (m=2,3,...) by

)g7m) _ _ 0Ga

The initial data U© is obtained from the initial data u(z,0), and UY from
u(z,0) and uy(x,0), using some other numerical schemes. This notice also
applies to all the schemes in ths paper. The discrete variational derivative
in the right hand side generally includes the second-order difference operator
5,<f>, which corresponds to 9% /0x?, and thus possibly refers outside the defined
region 0 < k < N (see the examples in Section 5). The undefined values are
assumed to be resolved by some discrete boundary conditions. The discrete
boundary conditions are also assumed to satisfy a certain condition so that
the scheme becomes conservative.

Proposition 7 (Conservation property of Scheme 1) Suppose that dis-

crete boundary conditions are imposed so that BQ(U(mH),U(m),U(m*I)) =
0 (m=1,2,3,...). Then Scheme 1 is conservative in the sense

10



N +77(0)y2
e om) s .

form=1,2,..., holds.

Scheme 2 (Explicit scheme for (P1)) For a given set of initial data v, v Uu?,
we compute U™ (m =1,2,...) by

(m+2)  pr(m+1)  rr(m) (m—1)
Uk Uk Uk + Uk _ _ 6Gd , 0 S k S N (27)
AL SO gom),

Y

Proposition 8 (Conservation property of Scheme 2) Suppose that dis-
crete boundary conditions are imposed so that By (U™ U™) = 0 (m =
1,2,3,...). Then Scheme 2 is conservative in the sense

N +77m)y (s—r7(m)
Zl!{(émUk )(6mUk )—|—Gd7k(U(m))}AZL’

holds for m = 2,3, .. ..

4 New approach based on the system representations

New schemes based on the representations (Pls) and (P2s) are proposed.
To this end, the idea of discrete variational derivative is first extended to
multivariate function G (see Matsuo[14] for complete treatment of general
multivariate energy function). Furthermore, the relation between the previous
and new approaches is discussed.

4.1 Discrete variational derivatives for multivariate energy function G

In this subsection, four different discrete variational derivatives for four dif-
ferent discretizations of the energy G are presented. Note that the following
variation calculation holds in continuous context.

11



L, . -
/ (G(v+5v U+ 0u, uy + duy) —G(v,u,uw)) dz

_/ ( )dx + [gf ]0 + O(6u?) + O(60?). (29)

Recall the definition G(v,u,u,) = v?/2 + G(u,ug). Since this G' does not
depend on vy, there is no boundary term as to v in (29). Though the derivative
6G /v is just v in this case, we prefer to leave it since it clarifies the variational
structure. Since G is separable into u parts v parts, 5G/5u and 8G/8u$ are
identical to dG/du and OG /du,, respectively.

4.1.1  Two-points discrete variational derivative for G

Suppose the discrete modified energy function be of the form

(V™)

Gap(U™ VM) = + Gar(U™). (30)

The following is a multivariate extension of the discrete variation identity (16).

Lemma 9 (Discrete variation identity I for G) As to the discrete mod-
ified energy function Gy defined in (30), the discrete variation identity holds:

N
Z " (Gdyk(U(erl), V (m+1)) o Gd,k(U(m); V (m))) Aflf _

=0

al Gy (mt+1)  7o(m)
n Um _Um

> Ké(rﬂmﬂkrﬂm))k)( e U

where ~
Ner AR AL
= , (32)
5(‘/(m+1),v(m))lc 2
and ~
G G
d _ d (33)

is what defined in (16).

PROOF. The modified energy function éd,k is separable into U,Em) parts and
Vk(m) part, and they can be considered independently. For U,Sm) parts, i.e.
Gq(U™), the discrete variation identity (16) holds. For Vk(m) part,

12



k=0 2
l 0G4 (
=3 v _pim) Ag, (34)
2 s, v, )
(|

4.1.2  Three-points discrete variational derivative for G
Suppose the discrete modified energy function be of the form

B V(m+1)v(m)
Gap(UHD, U™, VD, v (M) = b b G (U, U™). (35)

The following is a multivariate extension of the discrete variation identity (21).

Lemma 10 (Discrete variation identity IT for G) As to the discrete mod-
ified energy function Gy defined in (35), the discrete variation identity holds:

N
S (Gap (@D Ut v D vy G (U, gD v m v i) Ay
k=0
3 G v
= RN TN 2
(Séd V'k(m'i‘l) . V'k(m—l) A
SV Dy m)_y D 2 v
+ By(U g™, utmy), - (36)
where .
0Gy < (m)
AGER 2GR A M 0
and

s(U+Y m yln-ny, - s(U+Y m yln-ny,
is what defined in (21).

PROOF. For the U™ part, the discrete variation identity (21) holds. For
the Vk(m) part,

13



k=0 2 2
N (m+1) _ {,(m-1)
— Z //Vk(m) ‘/;c V;c A
k=0 2
al g (m+1) (m)
& = g A (39)
Par 5(V(m+1), V(m), ‘/(mfl))lc 9
O
Remark 11 If G4 is defined by
(m+1)y2 (m)\2
) ) 9 y 2
+ Gd’k(U(erl), U(m)), (40)
then ]
6Gd B ‘/I'C(m+1) + ‘/I-C(mfl) (41)
6(‘/ (m+1),v(m),v(mfl))k - 5 ,

and a slightly different discrete variation identity are obtained.

4.1.3 Discrete variational derivative for G using staggered mesh points

So far only the integral time mesh mAt (m = 0,1,2,...) has been consid-
ered. Now let us also consider the “staggered” time mesh (m + 1/2)At (m =
0,1,2,...), and approximate the intermediate function v on this staggered
time mesh. This approximate solution is denoted by V (m+3) Two new dis-
crete variational derivatives for G are presented below.

Firstly, suppose the discrete modified energy function be of the form
a1

("

Gap(UmD U v m3)) =

))2
, S+ Gap(UT U (42)

Observe this refers two approximate solutions U,gmﬂ), U,Sm) in u parts, while

1
only one solution Vk(er?) in v part. This is in contrast to the definition (30)

(or (35), respectively), which in both u and v parts refers one (or two) ap-
proximate solution(s). The next lemma holds as to the discrete energy (42).

Lemma 12 (Discrete variation identity III for G) As to the discrete mod-
ified energy function Gy defined in (42), the discrete variation identity holds:

14



N
S (Gdyk(U(m—l—l), U™ v (m+%)) _ Gd,k(U(m), Um- v (m—%))) Az
k=0

_ i , K 0Gy

= 5(U(Tn+1), U(m)7 U(mfl))k

5C¥d (m+3) (m-1)
+ (5(V(m+%) V(m—%))k> (Ve Ve )| A

Y

+ BZ(U(m“), U(m), U(m_l)), (43)
where . .
LM, Al 47 m
5V D v D), 2
and B
0G 0G
d o d (45)

sUmt g ytm=vy, — s+ gt gy,
is what defined in (21).

PROOF. For the u part, the proof is similar to Lemma 10. The v part is
similar to Lemma 9. O

Secondly, suppose the discrete modified energy function be of the form

_ 1 V(m—l_%)v(m_%)
Gd,k(U(m), V(m+§), V(m—a)) _ k 5 k + Gd,k(U(m))- (46)

This is in contrast with (42); now it refers one approximate solution for u and
two solutions for v. For the discrete energy, the following lemma holds.

Lemma 13 (Discrete variation identity IV for G) As to the discrete mod-
ified energy function Gy defined in (46), the discrete variation identity holds:

N

> (G, VD) Y D)) _ Gy (U, V) v ) ) Ag
k=0

al 0G > (

n m+1) (m)

= — — (U, - U.")

x| (g, i -

0Ga (m+3) 1 (m=d)
+ (5(V(m+%), V(m+§), V(m—%))k> (Vi Ve )| A
+ B (UM™Y U (47)

15



where

1 = Vk ? , (48)

and

= (49)

is what defined in (16).

PROOF. For the u part, the proof is similar to Lemma 9. The v part is
similar to Lemma 10. O

4.2 New schemes for the equation (P1s)

With the discrete variational derivatives for the modified energy function G,
four new schemes for (P1s) are presented, each of which is derived from the
corresponding one of the discrete variations Lemma 9,10,12, and 13.

Scheme 3 (New implicit scheme I for (P1s)) Let Gqy be what defined
in (30), and corresponding discrete variational derivative in Lemma 9. Then
for a given set of initial data U, V' O we compute U™, V™ (m =1,2,..))
by

U]Em+1) . U]Em) 6G~,d ‘/I-C(m+1) + ‘/I-C(m) (50 )
— = a
At §(V (1) y (m)y, 2 ’
Vk(m+1) _ k(m) - 6G (50b)
At st gtmy,?
for 0 <k <N.

Theorem 14 (Conservation property of Scheme 3) Suppose that discrete
boundary conditions which satisfy By (U™ U™) =0 (m = 0,1,...) are
imposed. Then Scheme 3 is conservative in the sense

N N
Z”Gd’k(U(m),V(m))AIE = Z”Gd,k(U(U),V(U))A]I m = 1,2,. cey (51)
k=0 k=0

holds.

PROOF. By the assumption on the boundary conditions, and from Lemma 9,

16



—0. (52)

|

Scheme 4 (New explicit scheme I for (P1s)) Let Gqy be what defined in
(85), and corresponding discrete variational derivative in Lemma 10. Then for
a given set of initial data U, UM,V O v I we compute U™, Vv (™) (m =
2,3,...) by

yim _gimn 0Gy _ oy (53a)
AL oV Iy ey T e
m+1 m~—1 g
Vk( +1) k( ) _ 0Gy (53b)
AL (5(U(m+1); U(m), U(mfl))ka
for 0 <k < N.

Theorem 15 (Conservation property of Scheme 4) Suppose that discrete
boundary conditions which satisfy Bo(U™ D U™ UM™Yy =0 (m=1,2,..))
are imposed. Then Scheme 4 is conservative in the sense

N N
Z "@d k(U(m+1), U(m), Vv (m+1), \ %4 (m))Ax — Z ”éd k(U(l), U(O), Vv (1), Vv (0))Aaj,
k=0 k=0

(54)
holds for m =1,2,....

PROOQOF. The proof is similar to Theorem 14, except that Lemma 10 should
be used. O

Scheme 5 (New implicit scheme II for (P1s)) Let Gay be what defined
in (42), and corresponding discrete variational derivative in Lemma 12. Then
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for a given set of initial data U(U), U(I), Vv (%), we compute U(m+1), v (m+3) (m =
1,2,...) by

~ ma L m L
G e B 'R Ve B Vi
2At _5(V(m+%),v(m—%))k - 2 ) a
1 m—L -
‘/I'C(TTH‘Q) o Vk( 2) B (5Gd 55b
At © Uttt g, (55)
for 0 <k <N.

Note that this scheme is implicit; first, the equations (55a) and (55b) are
5

solved simultaneously to obtain U® and V &), Then U® and V ), and so
on. Sceme 5 have the following conservation property.

Theorem 16 (Conservation property of Scheme 5) Suppose that discrete
boundary conditions which satisfy Bo,(U™) UM UM™Yy =0 (m=1,2,3,..))
are imposed. Then Scheme & is conservative in the sense

N N
Z ,Iéd,k(U(m+1)a U(m), \%4 (m-l-%))Ax _ Z ”GN'd,k(U(l), U(O), Vv (
k=0 k=0

M

NAz, (56)

form=1,2,..., holds.

PROOF. Straightforward from Lemma 12. O

Scheme 6 (New explicit scheme II for (P1s)) Let Gay be what defined
in (46), and corresponding discrete variational derivative in Lemma 13. Then
for a given set of initial data U,V (_%), \% (%), we compute U™ |V (m+3) (m =
1,2,...) by

oty —glm 6Gq _ ymth) (57a)
At TSV D y )y by R
27, \4 27, \4 2 )k:
(m+3) (m—3) A
Vi Ve T 0Gq (57b)
AL s(Umt ytm),”’
for 0 <k <N.

This scheme is explicit if we compute UM, V/ (%), Uu? v (%), ... in this order.
1
We can also start with the initial conditions U, U™,V (=3); in this case,
3

we compute V(%), V(i), U(z), V(%), ..., in this order. Or we can start with

18



U® Uu® U?, from which we compute V(%),V(%),V(%),Um,..., and so
on. The next conservation property holds for the scheme.

Theorem 17 (Conservation property of Scheme 6) Suppose that discrete
boundary conditions which satisfy B;(U™ UM™) =0 (m =0,1,2,...) are
imposed. Then Scheme 6 is conservative in the sense

N N
S Gy (UMD, VD) Y ) Ag = 571G, (U0, V) VD) A,
k=0 =0
(58)
form=1,2,..., holds.

PROOF. Straightforward from Lemma 13. O

Remark 18 Another new scheme is derived from the fifth discrete variation
identity pointed out in Remark 11. The scheme, however, seems to have no
special advantage over other schemes, and thus is not discussed any further in
this paper.

4.3 Relation between the previous and new approaches

Now we have two previous schemes: Scheme 1 and Scheme 2, and four new
schemes: Scheme 3, 4, 5, and 6, for the equations (P1), or equivalently (P1s).
In this subsection, the relations between these schemes are discussed.

Scheme 1 can be regarded as the special case of Scheme 5 as follows.

Theorem 19 (Coincidence of Scheme 1 and 5) Scheme 5 reduces to Scheme 1
if the initial conditions imposed on Scheme 5 satisfy

v -

=V, 2. 59
At k ( )

PROOF. Observe that the equation (55a) is equivalent to

ma L m1
U]Em+1) _ U]Em) ) U]Em) _ U/Em_l) B Vk( +3) . Vk( 3) 60)
2A¢ 2A¢ 2 2
Then by induction
U(m+1) . U(m) L

k k — ‘/k( +2) (553,,)

At
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holds for m = 1,2, ..., under the assumption (59). Subtracting (55a’) with m
from m + 1 and dividing by At, we obtain

SAUM = -k E = d (61)
m ok At SU g gim-),-

This coincides with Scheme 1, since as pointed above

Scheme 5 needs three initial conditions: U@, UM, and V (%), while Scheme 1
needs only two: U and UW. It is quite natural to generate the missing
third condition for V (2) by (59); then Scheme 5 reduces to Scheme 1. On
the other hand, it is still possible to somehow find V(%), for example by
another numerical algorithm, which does not satisfy the assumption (59); then
Scheme 5 generates approximate solutions which Scheme 1 never generates.

As to Scheme 2 and 6, the next result holds.

Theorem 20 (Coincidence of Scheme 2 and 6) If we start with the ini-
tial conditions U®, UM U, then Scheme 6 coincides with Scheme 2.

PROOF. Subtracting the equations (57a) with m—1 from m-+1 and dividing
by 2At, we obtain

3 m— L
Ut o~ oDyt oy 6Gy

2At 2At (Ut ),

which coincides Scheme 2. O

Both Scheme 2 and 6 need three initial conditions to start. Thus there is
no ambiguous free parameter as in the previous theorem which makes the
difference.

As a result, a conclusion is obtained that the new approach based on the sys-
tem representation (P1s) includes, and thus more general than, the previous
approach. This encourages us to work with the system representation, because
it provides wider variety of schemes. The new schemes, however, are not nec-
essarily superior; actually, Scheme 4 seems to be less practical than Scheme 2
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if we rewrite it as

Y Y S 0Ga (64)
(2At)? —s(Utth um gm-ny,

which is obtained from (57b), and unnecessarily broader than Scheme 2.

Notice also that Scheme 3 is a one-step method, and thus can be implemented
using some adaptive time mesh control strategy. Even in such circumstances
the conservation property (Theorem 14) is not destroyed. This is another re-
markable advantage of the new approach. Scheme 5 can be also adaptively
implemented if the initial conditions satisfy (59) and thus the scheme is re-
duced to one-step form with (55a’).

4.4 New schemes for the equation (P2s)

By slightly modifying Scheme 3, 4, 5, and 6, four new schemes for the equa-
tion (P2s) can be derived. Two of them are explicitly presented here. The
other two can be derived similarly.

The following scheme is based on Scheme 3.

Scheme 7 (New implicit scheme for (P2s)) Let Gqy be what defined in
(30), and corresponding discrete variational derivative in Lemma 9. Then for
a given set of initial data U@,V O we compute U™V (™) (m=1,2,...)
by

for 0 <k <N.

Theorem 21 (Conservation property of Scheme 7) Suppose that imposed
discrete boundary conditions satisfy By(U™Y U™) =0 and

=0, (66)



form =20,1,2,.... Then Scheme 7 is conservative in the sense

N N
" A (m) (m) _ 1A (0) (0) —
d ) — ) — Ly &y ey
S "Gap(U™, VI YAz =3 "G (U, VIONAZ m=1,2 (67)
k=0 k=0
holds.
PROOF. By the assumption (66), and from Lemma 9,
1 X, -
Ktz " (Gd,k(U(m+1); vV (m+1)) B Gd,k(U(m); 1% (m))) Az
k=0
3 G Uy — o
= 2 5(U(m+1), U(m))k At
5G /AR AL
" ( (m+1) : (m) : : ] Az
§(V (mtD) g (m)y, At ]
-5 (e, # (s,
= 6(U(m+l), U(m))k k (S(V (m+1), %4 (m))k
0Gy B 0Gy
(s, (g o, )| >
~2 |5t ),k \§(v iy ),
s 5G4 5G4 N
k 6(U(m+l), U(m))k (S(V (m+1), %4 (m))k .
~0. (68)

In the last equality, the summation-by-parts formula (SBP) is used. O

The assumption (66) is satisfied, for example, if both U,Em) and Vk(m) are peri-
odic in spatial index k. Scheme 7 may not seem symmetric because one-sided
difference operators d;, 6, are used. But the reduced scheme

@rr(m) _ «(2) Jer
0 =i s gy ) o

which is obtained by subtracting the equations (65a) with m from m + 1,
is symmetric. It is also possible to replace 6;, §, with symmetric difference
operator 6,<cl>; but that leads to a broader scheme

@ 7rm) _ (<12 0G4
o' Up ™ = (6k ) (5(U(m+1) U(m))]c ’ (70)




which is apparently less attractive. This notice also applies to the next scheme.
The following scheme is based on Scheme 6.

Scheme 8 (New explicit scheme for (P2s)) Let G4y be what defined in

(46), and corresponding discrete variational derivative in Lemma 13. Then for
1

a given set of initial data U(U), Vv (*%), Vv (5), we compute U(m), v (mt3) (m =
1,2,...) by

U]Em+1) _ U}Em) st 6Gy
At k 5(V(m+%), v (mt3), V(m—%))k
+ (m-l—%)
3 m—L
‘/I'C(TTH‘Q) o Vk( 2) _5_ 6Gd (71b)
IAL Yk 5(U(m+1), U—(m))]c )
for 0 <k <N.

Theorem 22 (Conservation property of Scheme 8) Suppose that imposed
discrete boundary conditions satisfy BI(U(m“), U(m)) =0(m=0,1,2,...)
and

3Gy . 3Gy
ST gy, ) v )y sy ),

~ N
i 5Cy 5C )
+5; <6(U(m+1)’U(m))k> : (5(V(m+%),V(m+%),V(m%))kﬂo = 0. (72)

Then Scheme 6 1s conservative in the sense

N N
Z ”éd,k(U(m+1)7 Vv (er%)7 Vv (m*%))Al. — Z ”éd,k(U(O)a \V4 (%)7 \V4 (*%))Ax’

k=0 k=0

form=1,2,..., holds.

PROOF. The proof is similar to the previous theorem, except that this time
the discrete variation identity in Lemma 13 is used. O

In Section 2, it was noted that for the equations (P2), working with the system
representation (P2s) is more convenient; this is still true in discete context.
It is surely possible to rewrite the above schemes into their reduced form by
eliminating the intermediate variable V' so that only U is used in the actual
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computation. In the reduced schemes, however, we are forced to do a difficult
task to calculate the discrete energy without using V.

5 Applications

Application examples for the nonlinear Klein-Gordon equation (2) and the
“good” Boussinesq equation (8) are presented. All the experiments were done
with Windows PC system (CPU: Intel Pentium M 900MHz, 512MB memory)
and Intel Fortran Compiler for Windows 8.0. To solve nonlinear system of
equations, the numerical Newton solver NEQNF in IMSL, which provides
very convenient way of implementing nonlinear schemes, is used.

5.1 Application to the nonlinear Klein-Gordon equation

Examples of conservative schemes in the literature for the nonlinear Klein-
Gordon equation are [1,4,11,20,8]. Here four schemes are compared: the im-
plicit Scheme 3, the explicit Scheme 4, the implicit scheme by Strauss[20], and
the explicit scheme by Furihata[8]. The latter two were shown to be efficient
and stable in Furihata[8].

The following numerical experiment is carried out following Furihata[8]. The
function ¢(u) is chosen to —cos(u), so that the equation becomes the sine-
Gordon equation (SG):

Pu  0®u . u?
52 = 52 S, G(u,uz) = - ~cosu. (74)

The equation is considered over x € [—10,10] under the Neumann boundary
condition u,(—10,t) = u,(10,¢) = 0. The SG has the exact solution

u(z,t) = 4arctan (exp (%)) : where ¢=0.2, (75)

when it is considered over the whole spatial domain = € (—o00,00). This is
truncated and used as the initial conditions for the numerical experiment.
The discrete energy function in Scheme 3 is defined as

_ 1 [ (stUmy2 o (5o 7m)y2 ymy2
Gap(U™, V)= o <( e Ui ) ;( kU ) _COS(U<m>)+( e )

The discrete partial derivatives becomes
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0G4 cos(U™) = cos(U™)

JUTT gy, T e g (77a)
m—+1 m
+ (m+1) (m) — Yk 3
0G I A 770
AV mHD) [y (m)y, 2 '

Then the concrete form of Scheme 3, which is addressed as the “new implicit
scheme” below, becomes

U]Em-l—l) . U]Em) V(m—l—l) + Vk( m)

Az = 5 , (78a)
Vk(mﬂ) — Vk(m) _ 5@ U,Emﬂ) + U,Em) N cos(U,gmH)) — cos(U,Em)) (78h)
At g 2 gt _gm

The above scheme refers undefined points UE"f), UI(V"TF)I, which are resolved by
the discrete Neumann boundary conditions,

v =y U™ =u, form=0,1,2,.... (79)

The assumption in Theorem 14 becomes

B, (UM™Y Uym)
_%[5 U™ skstut™ 4 seatptut™ . st ot
o ptut™ . seatui™ 4 o ut™ L stutm ]0
= [0 R U™ - i 0 U™ + 0 ph U™ u;@ﬁUkm]O- (80)

In this calculation the trivial identities s; 6; = d;, and s} d; = d; are used.
The right hand side vanishes in light of the discrete boundary conditions (79),
which implies 67 6-U™ + 67670 = 0 and pf6tUM™ — poatul™ = 0
at k = 0, N. Thus along the approximate solutions the discrete energy (76)
remains constant. The discrete energy in Scheme 4 is defined by

Gy k(U(mH), um, vy (M)) =
1 ((6:U,£m“>><6:U,5m>> - (6,:U,5m“>><6,:v,£m>>)

2

m V(m+1)v(m)
— CoSs (/L:;U,g )) + -k "k
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Then the concrete form of Scheme 4, which is addressed as the “new explicit
scheme” below, becomes

U(m+1) . U(m—l)

. 82
2A1 £ o
m+1 m—1 " 2Un
VD g s U —eosi U
oAt U™ = 1 U™

The conservation property is confirmed similarly as above, from Theorem 15.

In each scheme, an attempt was made to find maximal time mesh size At
beyond which the scheme became unstable. Table 1 shows the results, where
N, is the number of overall time steps. As to the maximal time mesh size
in Strauss and Furihata schemes, the results in Furihata[8] are confirmed.
The new explicit scheme only allows smaller time mesh sizes than Furihata’s
explicit scheme; this is somewhat expected, since the scheme is “broader” than
Furihata’s scheme (see (64)). In contrast to that, the new implicit scheme is
surprisingly stable. Actually, it even integrates the problem only with one time
step. Note that, the maximal time mesh size “20” just comes from the problem
setting (the problem is integrated over 0 < ¢t < 20). With respect to the
computation time, it is clear that explicit schemes are far faster than implicit
schemes. The speed of Furihata’s explicit scheme, in particular, strikes us. The
new explicit scheme falls behind it due to the restriction on the maximal time
step size. The new implicit scheme is faster than Strauss’s scheme, thanks
to its strong stability and wide time mesh size. Note that the computation
times of implicit schemes strongly depends on the performance of the solver of
nonlinear equations. They can be improved by optimizing the implementation.

Table 1
The SG: computation time and maximal time mesh size in each scheme
Scheme Time (in seconds) Max. At (Ny)
Strauss Implicit  0.100 0.5 (40)
Furihata Explicit 0.000350 0.8 (25)
New Implicit 0.0263 20 (1)
New Explicit 0.00128 0.25 (81)

Figure 1 shows the shapes of the numerical solutions. In each scheme, two
results with different time mesh sizes around the maximal time mesh size are
presented. That is, Strauss scheme with N; = 40, 38; Furihata scheme with
N; = 25,20; the new implicit scheme with N, = 5,1; and the new explicit
scheme with N; = 81,80. The numerical solutions are plotted with fat cir-
cles, and the (untruncated) exact solution with solid surface. Except the new

26



implicit scheme, the schemes are shown to become unstable when the time
mesh sizes exceed the limits. The vertical scales are fixed, so that the unstable
solutions shortly jump out the screens.

Figure 2 shows the evolution of the discrete energies. The concrete forms of the
discrete energies of Strauss[20] and Furihata[8] are summarized in Furihata[8].
As far as the time mesh sizes do not exceed the limit, the schemes happily
conserve their corresponding discrete energies to the machine accuracy.

5.2 Application to the “good” Boussinesq equation

The “good” Boussinesq equation (GB) has quite peculiar soliton structures
and have drawn much interests[12,13,6,22]. To summarize, solitons behave in
completely different ways depending on their amplitudes. For example, the
GB has the one solition solution on the whole interval z € (—o0, 00):

u(z,t) = —Asech? <§(x — ct)) , (83)

where A > 0 is “amplitude,” p = /2A4/3, and ¢ = /1 — 24/3. Observe that
the velocity ¢ becomes imaginary for A > 3/2. In that region the soliton
ceases to exist; i.e. the GB admits the soliton solution only for a finite range
of velocity. The more interesting phenomena is observed when two solitons
collide; if both solitons are small enough, they pass through each other like
as the other usual solitons do. But when they exceed some limit, the solution
“blows-up” at the collision, even if both amplitudes are smaller than 3/2 for
being stable one-solitons.

Another noteworthy feature of the GB is that it can be formulated as a Hamil-
tonian system|[21,19], and in view of this, several numerical schemes were de-
velopped([5,3]. Strangely, however, no conservative scheme have been explicitly
considered so far. One reason for this may be that in general no scheme can
be both symplectic and Hamiltonian-conserving[9], and for Hamiltonian sys-
tems, symplecitc integrators have drawn more attention in these years than
Hamiltonian-conserving integrators, though it is still not clear in PDE con-
texts which approach is better. In this paper, we focus our attention on
Hamiltonian-conserving schemes. The GB is considered over = € [—T75,75],
and u, Uy, Uz, v, v, are assumed to be periodic in space. As the initial data,
the soliton solution above is truncated and used. The missing initial value
v(z,0) is obtained as v(z,0) = [, uy(z,0)dx = —cu(zx,0), if we neglect the
exponentially small boundary value u;(—75,0). In all the experiments below,
the number of spatial mesh points are taken to N = 200.

Two conservative schemes are presented and tested below. The first, addressed

27



PORNWAUION

PORNWAUION

PORNWAUION

PORNWAUION

Strauss 40

Furihata 25

New Explicit 81

o

o

RPORNWAUION

RPORNWAUION

RPORNWAUION

RPORNWAUION

Strauss 38

Furihata 20

°

New Explicit 80 o

Fig. 1. The SG: numerical solutions; (top) Strauss Implicit N = 40, 38, (middle up-
per) Furihata Explicit N = 25,20, (middle lower) New Implicit N = 5,1, (bottom)

New Explicit N = 81,80
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Fig. 2. The SG: evolutions of the discrete energies

as the “implicit scheme,” is Scheme 7 with

SO O GO 4 G U ()
= 4
Gak 5 + 3 + 1 + 5 (84)
whose concrete form becomes
U]Em+l) . U]Em) _(5+ ‘/I-C(erl) + Vk(m) (85 )
At Tk 2 ’ &
V(m+1) _ V(m) ~ - -
=0 (U - 67 U™
U(m+1) 2 U(m+1)U(m) U(m) 2
_|_(k )?+ k3 p (U ) . (85b)

The references outside 0 < £ < N are resolved with the discrete periodic
boundary conditions

U™ = U vmoan and - V™ = VI v for m=10,1,2,....
(86)
Under these conditions, the assumptions in Theorem 21 are satisfied, and the
conservation property holds. The second one is Scheme 8 with

m m m —77(m (m+3),(m—-1)
0 N (/S0 K 7 80 e (7 /S50 S /S /S

~ (
Gg. =
d.k 9 3 4 9

, (87)

whose concrete form becomes
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1
R A (88a)
(m+3) _ m—3)
Vi, 2=V, 2 7 m m
S (i -

+ (88b)

(U + U™ + (U;E"”)?)
- |

The scheme is called the “explicit scheme” below.

Firstly, the computation times and maximal time mesh size allowed in each
scheme are examined. The amplitude is taken to A = 0.5 (accordingly p ~
0.55735, ¢ = 0.81650). Then the problem is integrated over 0 < ¢ < 40. Table 2
summarizes the results. The implicit scheme can integrate the problem with
only one time step, and thus is quite stable. In the explicit scheme, there is a
restriction on the size of time mesh; but thanks to being explicit, it is quite
fast. In each scheme the discrete energy is conserved to the machine accuracy
(the graph is omitted).

Table 2
The GB: computation time and maximal time mesh size in each scheme

Scheme Time (in seconds) Max. At (Ny)

New Implicit 1.10 40 (1)
New Explicit 0.0338 0.263 (152)

Secondly, long-time behaviours of the schemes are verified. The truncated
one soliton solution (A = 0.5) is integrated over very long time 0 < ¢ <
10000, in which the soliton goes around the spatial interval about 184 times.
In the implicit scheme N; = 10000 (At = 1), and in the explicit scheme
N, = 40000 (At = 1/4). Figure 3 shows the results, where only 100 snap shots
are drawn to avoid the screens being painted out. In both graphs, the soliton
solution successfully propagates keeping its soliton shape. Figure 4 shows the
evolutions of the discrete energies. Both are well conserved; actually they are
conserved up to the machine accuracy.

Thirdly, more qualitative aspects of the schemes are explored. To this end,
the collision of two small solitons is considered; namely, the initial conditions
are set to u(x,0) = ¢.(x + 50,0) + ¢_.(z — 50,0), and ui(z,0) = —co.(z +
50,0) + ¢¢_.(z — 50,0), where ¢.(x,t) is the one-soliton solution (83), and
¢_c(z,t) is its flipped version with the velocity —c. The size of velocities of
the two solitons (and accordingly the amplitudes) are set to equal. Two cases
with different amplitudes A = 0.3 and A = 0.4 are experimented. In [12] it
was reported that the solution blowed up numerically when A > 0.3691. In
this experiment, the number of temporal mesh points are taken to N; = 100
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Fig. 4. The GB: evolutions of the discrete energies (one soliton case)

in the implicit scheme, and N; = 400 in the explicit scheme, and the problem

is integrated over 0 < ¢t < 100. Figure 5 shows the results. When A = 0.3,
solitons. When A = 0.4, however, the situation dramatically changes. Both

both the implicit and explicit schemes successfully track the collision of the
graphs suddenly end around ¢ ~ 60. In the implicit scheme, the Newton solver
fails to find the solution there. In the explicit scheme, the solution becomes
fairly unstable and is destroyed (the solution jump out the screen there). This
agrees with the blow-up result in [12]. In Figure 6 are the conservation results.
When A = 0.3, the discrete energies are conserved to the machine accuracy.
When A = 0.4, they are conserved for a short while, but collapse at around
t ~ 60 due to the blow-up of the solution.

only the lowest order spatial difference operators
The order can be arbitrarily increased under the

Y

Remark 23 In this paper
are considered for simplicity.
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Fig. 5. The GB: numerical two solitons; (top left) implicit, A = 0.3, (top right)
explicit, A = 0.3, (bottom left) implicit, A = 0.4, (bottom right) explicit, A = 0.4

discrete periodic boundary condition, using the technique developed in [18].
In particular, conservative pseudospectral schemes can be derived which seem
to be promising.

6 Concluding remarks

In this paper a new approach for designing conservative schemes for the non-
linear wave equations, (P1) and (P2), is proposed. The essential idea there is
to employ the system representations (P1s) and (P2s), and develop the multi-
variate versions of discrete variational derivatives. Several new schemes based
on this approach are presented, and the relation between this new approach
and the previous approach is clarified. To summarize, the new approach has
the following advantages: (a) it can provide further stabler schemes; (b) it in-
cludes the previous approach in that the previous schemes can also be derived
out of the new approach; (¢) in some new schemes, the time mesh can be
adaptively changed; and (d) the equations (P2) is covered for the first time
in the new approach. Numerical experiments for the Sine-Gordon equation
and the “good” Boussinesq (GB) equation are presented, which confirm the
usefulness of the proposed approach. For the GB, in particular, the schemes
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Fig. 6. The GB: evolutions of the discrete energies (two soliton case); (top) A = 0.3,
(bottom) A = 0.4

in this paper seem to be the first conservative schemes in the literature as far
as the author knows.

The remaining issues include the followings. First, for the wave equations the
symplectic, particularly the multi-symplectic integrators[10] are also promis-
ing. Careful comparisons between these integrators and the present approach
should be made both theoretically and numerically. Second, high-order ver-
sions of the presented schemes, which can be constructed using the techniques
in [14,18,15,16], should be tested. The author is now working on this issue,
and the report will be reported as soon as it is possible.
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