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Abstract

We consider mixed integer programming (MIP) problems with ellip-
soidal uncertainty in problem data. Robust solutions to such problems
are formulated as solutions of second-order cone programming prob-
lems with integer constraints, which we solve by an adaptation of the
Benders decomposition technique towards MIP with conic constraints.
Numerical computation against robust 0-1 knapsack problems and gen-
eralized assignment problems indicates that robustness can be achieved
without substantial deterioration in optimal values.

Key words. mixed integer programming, robust optimization,
ellipsoidal uncertainty, Benders decomposition

1 Introduction

Robust optimization, a methodology against data uncertainty in optimiza-
tion, has attracted recent research interest. In continuous optimization, sig-
nificant contributions were made by Ben-Tal and Nemirovski ([4, 8, 5, 6, 7,
9]) and El-Ghaoui et al. [16, 17]. Robust discrete optimization has also been
studied, as is described in a monograph of Kouvelis and Yu [18] and a text-
book of Bertsimas and Weismantel [13]; see also Averbakh [2], Averbakh and
Berman [3], and Yaman, Karaşan, and Pinar [29]. In particular, Bertsimas
and Sim [10, 11] and Atämturk [1] treat mixed integer programming (MIP)
problems with some uncertainty described by intervals. Another paper [12]
by Bertsimas and Sim, see also [27] by Sim, deals with 0-1 optimization
problems with ellipsoidal uncertainty in objective functions and proposes an
algorithm which finds a local optimal solution.
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In this paper we consider MIP problems with ellipsoidal uncertainty
in problem data. The robust counterpart is formulated as a second-order
cone programming problem with integer constraints, which we solve by an
adaptation of the Benders decomposition technique towards MIP with conic
constraints. The relaxed problem resulting from the Benders decomposition
is an ordinary MIP problem, for which we can make use of existing efficient
softwares. The proposed algorithm is expected to converge to a global op-
timal solution under mild conditions. It is mentioned that the idea of the
proposed approach has been presented in its crude form in [25] with pre-
liminary computational experience, whereas the present paper is intended
to be an improved presentation together with more extensive computational
results.

The Benders decomposition is a computational technique well-established
in the area of optimization and a number of variants with varying applica-
bility and generality have been proposed (see, e.g., [22], [15]). The proposed
variant is based on the duality of linear programming over symmetric cones
and exploits the fact that conic programming can be solved efficiently by
interior point methods. In the particular case of second-order cone pro-
gramming problems with integer constraints, the proposed method enjoys
an additional advantage that a cutting plane to be added to the relaxed
problem can be obtained in an explicit form. This renders the proposed
method significantly efficient.

As a natural alternative, it would be appropriate to mention the branch-
and-bound approach to our problem. The idea is to branch on integer vari-
ables and derive upper-bounds by solving second-order cone programming
problems obtained by relaxing the integer constraints. Even though second-
order cone programming problems can be solved efficiently, it would be
time-consuming to solve thousands of them. Our computational experience
indicates that the proposed method compares favorably with the branch-
and-bound method.

This paper is organized as follows. In Section 2, we present a MIP
problem with second-order cone constraints as a robust counterpart of our
problem with ellipsoidal uncertainty in linear constraints. In Section 3,
we introduce a slightly more general problem, i.e., a MIP problem with a
convex-cone constraint, and propose an adaptation of the Benders decompo-
sition for it. This Benders decomposition takes a much simpler form when
specialized to the case of second-order cone constraints, which is described
in Section 4. In Section 5, we show computational results for robust 0-1
knapsack problems and generalized assignment problems.
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2 Robust MIP with ellipsoidal uncertainty

We consider a mixed integer programming (MIP) problem with ellipsoidal
uncertainty in linear constraints. Specifically we consider

max
x,y

. c>x + d>y

s. t. ã>i x + b̃>i y ≤ fi (i = 1, . . . , m),
x ∈ X,

(1)

where c ∈ Rnx , d ∈ Rny , ãi ∈ Rnx , b̃i ∈ Rny , fi ∈ R, and X = {x | l ≤
x ≤ u, x ∈ Znx} for some l, u ∈ Znx . Uncertainty lies in ãi and b̃i in the
following ellipsoidal manner:

ãi = ai + Piwi, b̃i = bi + Qiwi

with ‖wi‖ ≤ 1, where ‖ · ‖ denotes the Euclidean norm, ai ∈ Rnx , bi ∈ Rny ,
wi ∈ Rni , and Pi and Qi are nx × ni and ny × ni matrices, respectively. We
denote by Ei the set of such (ãi, b̃i), i.e.,

Ei =
{[

ai

bi

]
+

[
Pi

Qi

]
wi

∣∣∣∣ ‖wi‖ ≤ 1
}

.

By robust feasibility of a solution (x, y) we shall mean that (x, y) is
feasible for all possible realizations of (ãi, b̃i) from Ei for i = 1, . . . , m. As is
observed in [5], this leads us to the second-order cone constraint as follows.
Recall that the second-order cone is a convex cone defined as

C = {(z0, z1) ∈ R × Rn | z0 ≥ ‖z1‖},

which is self-dual in that the dual cone of C, defined by

C∗ = {s | s>z ≥ 0 (∀z ∈ C)},

coincides with C.
With the use of second-order cones Ci (i = 1, . . . ,m) in appropriate

dimensions, the robust feasibility of a solution (x, y) is represented as follows:

∀(ãi b̃i)> ∈ Ei : ã>i x + b̃>i y ≤ fi

⇐⇒ fi ≥ max{ã>i x + b̃>i y | (ãi b̃i)> ∈ Ei}
⇐⇒ fi ≥ a>i x + b>i y + ‖P>

i x + Q>
i y‖

⇐⇒ hi − Aix − Biy ∈ Ci,

where

Ai =
[

a>i
−P>

i

]
, Bi =

[
b>i

−Q>
i

]
, hi =

[
fi

0

]
.
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Thus, the robust counterpart of (1) is formulated as

max
x,y,ξ

. c>x + d>y

s. t. Aix + Biy + ξi = hi (i = 1, . . . ,m),
ξi ∈ Ci (i = 1, . . . , m),
x ∈ X.

(2)

We assume that (2) has an optimal solution.
With the notation

A =




A1
...

Am


 , B =




B1
...

Bm


 , G =




I1

. . .
Im


 , h =




h1
...

hm


 , ξ =




ξ1
...

ξm




(3)
and K = C1 × · · · × Cm, we may further rewrite (2) in a more compact form:

max
x,y,ξ

. c>x + d>y

s. t. Ax + By + Gξ = h,
ξ ∈ K,
x ∈ X.

(4)

Noting that (2) involves both integer and second-order cone constraints, we
call it mixed integer second-order cone programming. We shall present a
solution procedure for this problem based on the Benders decomposition
technique.

Remark 1. In our problem formulation it is assumed that uncertainty lies
only in the coefficients of the constraints, and not in the objective function
nor in the right-hand side vector. This assumption, however, is not restric-
tive. If c, d or fi is subject to uncertainty, we can consider an equivalent
problem, with new variables t and s = (s1, . . . , sm), of our form (2):

max
x,y,t,s

. t

s. t. ã>i x + b̃>i y − f̃isi ≤ 0 (i = 1, . . . ,m),
si ≤ 1 (i = 1, . . . ,m),
−si ≤ −1 (i = 1, . . . ,m),
−c̃>x − d̃>y + t ≤ 0,
x ∈ X.

(5)

Remark 2. Interval uncertainty in linear constraints of (1) can be treated
as follows. Uncertainty in ãi and b̃i is represented as ãi = ai + Piwi, b̃i =
bi + Qiwi with wi ∈ [−1, 1]ni . We denote by Ii the set of such (ãi, b̃i). i.e.,

Ii =
{[

ai

bi

]
+

[
Pi

Qi

]
wi

∣∣∣∣ wi ∈ [−1, 1]ni

}
.
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The robust feasibility of a solution (x, y) is represented as follows:

∀(ãi b̃i)> ∈ Ii : ã>i x + b̃>i y ≤ fi

⇐⇒ fi ≥ max{ã>i x + b̃>i y | (ãi b̃i)> ∈ Ii}
⇐⇒ fi ≥ a>i x + b>i y + max{w>

i (P>
i x + Q>

i y) | wi ∈ [−1, 1]ni}

⇐⇒ ∃z+
i , z−i such that

{
fi ≥ a>i x + b>i y + 1>z+

i + 1>z−i ,
−z−i ≤ P>

i x + Q>
i y ≤ z+

i , z+
i ≥ 0, z−i ≥ 0,

where 1 denotes a vector whose elements are all 1. Hence, the robust coun-
terpart of (1) is formulated as a MIP problem:

max
x,y,z+,z−

c>x + d>y

s. t. a>i x + b>i y + 1>z+
i + 1>z−i ≤ fi (i = 1, . . . , m),

−z−i ≤ P>
i x + Q>

i y ≤ z+
i (i = 1, . . . ,m),

z+
i ≥ 0, z−i ≥ 0 (i = 1, . . . , m),

x ∈ X.

(6)

3 Benders decomposition for MIP with conic con-
straints

As a general framework for our Benders decomposition approach to mixed
integer second-order programming, we consider an optimization problem
slightly more general than (4), where K is a general closed convex cone
rather than the direct product of second-order cones. That is, we consider

max
x,y,ξ

. c>x + d>y

s. t. Ax + By + Gξ = h,
ξ ∈ K,
x ∈ X

(7)

with a closed convex cone K.
According to the general recipe of the Benders decomposition, we first

eliminate the second-order cone variable ξ through projection. Let Ω denote
the feasible region of (7). We define the projection of Ω onto the (x, y)-space
by

proj(Ω) = {(x, y) | ∃ξ such that (x, y, ξ) ∈ Ω}.
Let Q be a convex cone defined by

Q = {v | G>v ∈ K∗},

where K∗ is the dual cone of K, i.e.,

K∗ = {s | s>ξ ≥ 0 (∀ξ ∈ K)}.
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The set of extreme rays of Q is denoted by Extr (Q). We assume that
Q has an interior feasible solution, i.e., there exists a vector v such that
G>v ∈ intK∗.

An explicit representation of proj(Ω) can be obtained through the Farkas
lemma for closed convex cones.

Proposition 1. Suppose that Q has an interior feasible solution and is
closed. Then we have

proj(Ω) =
{

(x, y)
∣∣∣∣

v>(Ax + By) ≤ v>h (∀v ∈ Q),
x ∈ X

}

=
{

(x, y)
∣∣∣∣

v>(Ax + By) ≤ v>h (∀v ∈ Extr (Q)),
x ∈ X

}
.

Proof. It suffices to show the first equality because the second easily follows
from the fact that any element of a closed convex cone is a nonnegative
combination of its extreme rays.

For any (x, y) ∈ proj(Ω), there exists a ξ such that (x, y, ξ) ∈ Ω. Then,
by the definition of the dual cone, it holds that

v>h = v>(Ax + By + Gξ) = v>(Ax + By) + v>Gξ ≥ v>(Ax + By)

for any v ∈ Q.
Conversely, take any (x, y) which satisfies x ∈ X and v>(h−Ax−By) ≥ 0

for any v ∈ Q. Since Q has an interior feasible solution, the set {Gξ | ξ ∈ K}
is closed. By the Farkas lemma (Lemma 1 below), there exists ξ ∈ K such
that Gξ = h − Ax − By.

We have used the following lemma (see, e.g., Theorem 3.2.3 in [24]) in the
proof of Proposition 1.

Lemma 1. (Farkas lemma) Let K ⊆ Rn be a closed convex cone and G be
an m × n matrix. Suppose that the set {Gξ | ξ ∈ K} is closed. Then the
system Gξ = b, ξ ∈ K has a solution if and only if b>v ≥ 0 for each v with
G>v ∈ K∗.

Proposition 1 yields another equivalent formulation of (7) as a mixed
integer semi-infinite programming problem as follows:

max
x,y

. c>x + d>y

s. t. v>(Ax + By) ≤ v>h (∀v ∈ Extr (Q)),
x ∈ X.

(8)

Noting that (8) has an infinite number of linear constraints, we consider
a relaxed problem with a certain finite set R ⊂ Extr (Q). This gives a MIP
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problem:

MIP(R)

∣∣∣∣∣∣∣

max
x,y

. c>x + d>y

s. t. v>(Ax + By) ≤ v>h (∀v ∈ R),
x ∈ X.

(9)

Let (x̄, ȳ) be an optimal solution of (9). If (x̄, ȳ) is feasible for (8), (x̄, ȳ) is an
optimal solution of (8). The feasibility of (x̄, ȳ) can be checked efficiently by
solving the following conic programming problem, say, by an interior point
method.

For any (x, y), we consider a conic linear programming problem described
by

D(x, y)

∣∣∣∣∣
min

v
. (h − Ax − By)>v

s. t. G>v ∈ K∗.
(10)

Proposition 2. A vector (x, y) with x ∈ X is feasible for (8) if and only if
the optimal value of D(x, y) is equal to 0.

Proof. Take any (x, y) with x ∈ X. The feasibility of (x, y) for (8) can be
written as

min{v>(h − Ax − By) | v ∈ Extr (Q)} ≥ 0.

Since Q is a closed convex set, we have

min{v>(h − Ax − By) | v ∈ Extr (Q)} = min{v>(h − Ax − By) | v ∈ Q}.

The optimal value of this problem is either 0 or −∞ because Q is a cone.

Hence, if D(x̄, ȳ) is finite for the optimal solution (x̄, ȳ) of the relaxed
problem (9), then (x̄, ȳ) is feasible, and hence optimal, for (8). When D(x̄, ȳ)
is unbounded, (x̄, ȳ) is not feasible for (8), but we can obtain an infinite
direction, i.e., v ∈ Q such that v>(h−Ax̄−Bȳ) < 0. Then we add a cutting
plane to (9) corresponding to this infinite direction v.

The proposed procedure for (7) with a closed convex cone K is summa-
rized as follows. We take a convergence tolerance ε > 0.

Step 1. Find a v ∈ Q and put R ← {v}.

Step 2. Solve the relaxed problem (9) to obtain an optimal solution (x̄, ȳ).

Step 3. Solve D(x̄, ȳ):

(a) If the optimal value is 0, then (x̄, ȳ) is optimal for (8). Termi-
nate.

(b) If the optimal value is unbounded, find an infinite direction v.
If v>(Ax̄+Bȳ−h) < ε, terminate. Otherwise, set R ← R∪{v}
and goto Step 2.
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In Step 3 (b), we find an infinite direction by solving the following problem,
where 1 denotes a vector whose elements are all 1.

D′(x, y)

∣∣∣∣∣∣∣

min
v+,v−

. (h − Ax − By)>(v+ − v−)

s. t. G>(v+ − v−) ∈ K∗, v+, v− ≥ 0,
1>v+ + 1>v− ≤ 1.

Proposition 3. D(x, y) is unbounded if and only if the optimal value of
D′(x, y) is negative.

4 Benders decomposition for robust MIP

The Benders decomposition, as described in the previous section, takes a
much simpler form when specialized to the case of (3) for the robust MIP
problem (2).

Since K = C1 × · · · × Cm is a direct product of second order cones, we
have ξ ∈ K if and only if ξi ∈ Ci for i = 1, . . . , m. Since G is an identity
matrix and C∗

i = Ci for i = 1, . . . , m, we also have Q = C∗
1 × · · · × C∗

m =
C1 × · · · × Cm and Extr (Q) = Extr (C1) × · · · × Extr (Cm). Accordingly,
the relaxed problem (9) is defined, with reference to a family of finite sets
Ri ⊂ Extr (Ci) (i = 1, . . . , m), as

MIP(R1, . . . , Rm)

∣∣∣∣∣∣∣

max
x,y

. c>x + d>y

s. t. v>i (Aix + Biy) ≤ v>i hi (∀vi ∈ Ri) (i = 1, . . . , m),
x ∈ X.

(11)
The problem D(x, y) in (10) can easily be solved in this special case.

Indeed the problem is decomposed into m independent problems, and each
of them admits an explicit solution. To be specific, suppose that we have a
solution (x̄, ȳ) to the relaxed problem (11) and put ξ̄i = hi − Aix̄ − Biȳ. If
ξ̄i lies in Ci for each i = 1, . . . , m, then we are done. Otherwise, for every i
such that ξ̄i 6∈ Ci we find an infinite direction vi from

D′′
i (x̄, ȳ)

∣∣∣∣∣
min

vi

. ξ̄>i vi

s. t. vi ∈ Ci, vi(0) = 1,
(12)

where vi(0) denotes the 0-th element of the vector vi. Fortunately, the
optimal solution to (12) can be given explicitly as follows.

Proposition 4. The optimal solution to (12) is given by

vi =
{

(1,−(P>
i x̄ + Q>

i ȳ)/‖P>
i x̄ + Q>

i ȳ‖)> (P>
i x̄ + Q>

i ȳ 6= 0),
(1,0)> (P>

i x̄ + Q>
i ȳ = 0).

(13)
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Proof. This is geometrically easy to see, but we can also show this as follows.
It is clear that vi given by (13) is feasible for (12) in each case. The dual
problem of (12) is

P′′
i (x̄, ȳ)

∣∣∣∣∣∣∣

max
ξi,µi

. µi

s. t. ξi + µi

[
1
0

]
= ξ̄i, ξi ∈ Ci.

(14)

Suppose that P>
i x̄ + Q>

i ȳ 6= 0. Then

µi = (fi − a>i x̄ − b>i ȳ) − ‖P>
i x̄ + Q>

i ȳ‖, ξi =
[
‖P>

i x̄ + Q>
i ȳ‖

−P>
i x̄ − Q>

i ȳ

]

is a feasible solution of (14) whose objective value is identical to that of (13)
for (12). This shows the optimality of (13). The other case can be treated
similarly.

The proposed procedure for the robust MIP problem (2) is summarized
as follows. We take a convergence tolerance ε > 0.

Step 1. For each i = 1, . . . , m, find a vi that satisfies vi ∈ Ci, say vi =
(1,0)>, and put Ri ← {vi}.

Step 2. Solve the relaxed problem (11) with R1, . . . , Rm to find an optimal
solution (x̄, ȳ).

Step 3. Check for the feasibility of (x̄, ȳ):

(a) If hi − Aix̄ − Biȳ ∈ Ci for each i = 1, . . . , m, output (x̄, ȳ),
which is optimal for (2), and terminate.

(b) Otherwise, let I = {i | hi − Aix̄ − Biȳ /∈ Ci} and

vi =
[

1
−(P>

i x̄ + Q>
i ȳ)/‖P>

i x̄ + Q>
i ȳ‖

]

for every i ∈ I. If v>i (Aix̄ + Biȳ − hi) < ε for every i ∈ I,
terminate. Otherwise, put Ri ← Ri ∪ {vi} for each i ∈ I and
goto Step 2.

5 Computational results

This section presents computational results to demonstrate the proposed
Benders decomposition method. In particular, we compare optimal values
of robust counterpart problems with those of the nominal problems, which
are free from uncertainty. We consider the knapsack problem and the gen-
eralized assignment problem.

Computations are performed on a PC with Intel Pentium M 1.2GHz
CPU and 512MB RAM. Our implementation uses glpk-4.8 [19] to solve
MIP problems.
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5.1 Knapsack problem

We deal with the robust 0-1 knapsack problem

max
x

. c>x

s. t. ã>x ≤ f, x ∈ {0, 1}n

which is of the form of (1) with m = 1，nx = n, ny = 0, and X = {0, 1}n.
The instances are generated as follows. We put f = 4000 and randomly

generate 1000 instances with cj ∈ {80, 81, . . . , 120} and aj ∈ {100, 101, . . . , 200}
(j = 1, . . . , n) for each of n = 50, 100, 150, and 200. We set P = diag(α, . . . , α);
computation time is observed for α = 2.0 by varying n, whereas the rela-
tionship between α and optimal objective value is observed by varying the
value of α.

Table 1 shows the differences in optimal values between robust and nom-
inal problems, where the discrepancy in percentage of the optimal objective
values is measured by

∣∣∣∣
nominal value − robust value

nominal value

∣∣∣∣ × 100.

We can see that robustness is achieved without substantial deterioration in
optimal values.

Table 1: Difference in optimal values between robust and nominal problems
(%)

(1000 instances for each n)
n 50 100 150 200 250 300

max. 1.24 0.83 0.73 0.72 0.85 0.73
avr. 0.52 0.43 0.39 0.39 0.39 0.40
min. 0.21 0.25 0.25 0.26 0.26 0.27

Table 2 shows the number of iterations in the Benders decomposition
and Figure 1 is a histogram of the number of iterations for instances with
n = 300. These results show that almost all instances are solved within a
few iterations.

Table 3 shows the computation time of the Benders decomposition method,
where “s.d.” means the standard deviation. Robust problems can be solved
within 5 or 6 minutes, mostly with reasonable increase in computation time
compared with that for nominal problems. It mentioned, however, that in
some instances the computation time is very long.

Figure 2 shows how the objective value changes in iterations. We see
that we obtain near-optimal values within a few iterations.
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Table 2: Number of iterations in the Benders decomposition

(1000 instances for each n)
n 50 100 150 200 250 300

max. 8 7 6 7 9 11
avr. 2.06 2.44 2.34 2.29 2.30 2.62
min. 2 2 2 2 2 2

 0

 200

 400

 600

 0  2  4  6  8  10  12

Fr
eq

ue
nc

y

Number of iterations

Figure 1: Histogram of the number of iterations (n = 300)
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Table 3: Computation time (in seconds) for the knapsack problem

(1000 instances for each n)
n 50 100 150 200 250 300

robust max. 501.25 371.31 73.64 3540.45 5659.24 126913.93
upper quartile 0.17 0.51 0.96 1.79 3.16 9.66

median 0.06 0.24 0.45 0.75 1.23 2.29
lower quartile 0.03 0.14 0.28 0.44 0.64 1.00

min. 0.01 0.02 0.08 0.11 0.16 0.26
s.d. 21.31 11.84 2.99 120.79 190.45 4324.85

nominal max. 481.96 44.26 33.86 3531.88 978.95 6154.12
upper quartile 0.08 0.19 0.37 0.65 1.18 2.13

median 0.03 0.10 0.18 0.30 0.47 0.72
lower quartile 0.02 0.05 0.11 0.18 0.28 0.41

min. 0.01 0.01 0.01 0.01 0.02 0.03
s.d. 18.41 1.57 1.31 111.64 37.68 260.61

 3740

 3750

 3760

 1  2  3  4  5  6  7  8  9  10  11

O
bj

ec
tiv

e 
va

lu
e

Iterations

Figure 2: Objective value of the knapsack problem at each iteration of an
instance with n = 300
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Figure 3 shows the relationship between the magnitude of uncertainty α
with the optimal objective values. The parameter α is varied from 0.0 to 20.0
by 0.5. The optimal value gets smaller as the magnitude α of uncertainty
gets larger. We can see that this decrease is step-wise due to discrete nature
of the problem.

 3160

 3180

 3200

 3220

 3240

 0  2  4  6  8  10  12  14  16  18  20

O
bj

ec
tiv

e 
va

lu
e

Magnitude of uncertainty

Figure 3: Relationship between uncertainty and the optimal objective value
for an instance of the knapsack problem with n = 50

We next compare the Benders decomposition approach with the branch-
and-bound approach. We implemented a branch-and-bound method in C++
language using ss-4.3.3 [20] to solve relaxed second-order cone programming
problems. We tried with relatively small instances (n = 50) to find that the
branch-and-bound takes about 15 hours, whereas the Benders decomposition
method takes only a few seconds. The branch-and-bound method is slow
because it takes time to solve many SOCP problems.

Finally we compare the ellipsoidal uncertainty with the interval uncer-
tainty. According to Remark 2, the robust counterpart of the 0-1 knapsack
problem with interval uncertainty reads as follows:

max
x,z+,z−

. c>x

s. t. a>x + 1>z+ + 1>z− ≤ f,
−z− ≤ P>x ≤ z+, z+ ≥ 0, z− ≥ 0, x ∈ {0, 1}n.

Interval uncertainty and ellipsoidal uncertainty are compared in Table 4
in terms of the optimal objective values of the robust problems. The third
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rows of the table show the ratios in percentage of the two optimal objective
values: ∣∣∣∣

optimal value with interval uncertainty
optimal value with ellipsoidal uncertainty

∣∣∣∣ × 100.

Table 4 shows that ellipsoidal uncertainty is superior to interval uncertainty
in that optimal value does not change so much. It may be said that the
ellipsoidal uncertainty is more appropriate than the interval uncertainty,
the latter of which is often too “conservative” as discussed in the literature
(see, e.g., [9]).

Table 4: Comparison of optimal values with interval and ellipsoidal uncer-
tainty for the 0-1 knapsack problem (%)

(100 instances for each n)
n 50 100 150 200 250 300

ellipsoidal max. 100 99.89 99.87 99.89 99.87 99.84
/nominal min. 99.10 99.47 99.55 99.59 99.59 99.46
interval max. 99.34 98.90 98.71 98.68 98.71 98.84

/nominal min. 98.27 98.19 98.14 98.09 98.20 98.07
interval max. 99.49 99.19 99.10 99.04 98.95 99.84

/ellipsoidal min. 98.57 98.44 98.30 98.34 98.42 98.33

5.2 Generalized assignment problem

Let M and N be the sets of machines and jobs, respectively. Each job j ∈ N
must be processed on one of the machines, say i ∈ M , and it requires cost
cij . In addition, each machine has a capacity, denoted by bi for i ∈ M ,
which limits the number of jobs to be assigned. The generalized assignment
problem is to determine an optimal assignment that minimizes the total
processing cost (see, e.g., [21, 26, 28] for details). This problem can be
formulated with binary variables xij for i ∈ M and j ∈ N as follows:

GAP

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x

.
∑

i∈M

∑

j∈N

cijxij

s. t.
∑

i∈M

xij = 1 (∀j ∈ N),
∑

j∈N

aijxij ≤ bi (∀i ∈ M),

xij ∈ {0, 1} (∀i ∈ M, ∀j ∈ N).

(15)

Computation has been done in the following manner. The benchmark
problems distributed by [14, 23, 28] are employed. We pick a constraint, say
i-th constraint, to incorporate uncertainty by Pi = 0.1 × diag(ai1, . . . , ain).
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This means that there is a single machine whose capacity has some un-
certainty for each job. Table 5 summarizes the results. In particular, the
difference in the optimal objective values between the robust and nominal
problems is small.

Table 5: Computation time (in seconds) and number of iterations for the
generalized assignment problem

instances |M | |N | time iterations difference (%)
a05100 5 100 0.57 3 0.12
a05200 5 200 0.87 1 0
a10100 10 100 0.64 1 0
a10200 10 200 1.29 1 0
a20100 20 100 2.32 1 0
a20200 20 200 96.17 2 0.04
b05100 5 100 1687.71 3 0.54
b05200 5 200 72699.50 10 0.25
b10100 10 100 119.82 1 0
c05100 5 100 527.34 2 0.47
c05200 5 200 4165.73 3 0.17
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[1] A. Atämturk, Strong formulations of robust mixed 0-1 programming,
Math. Program. to appear.

[2] I. Averbakh, On the complexity of a class of combinatorial optimization
problems with uncertainty, Math. Program. 90 (2001) 263–272.

[3] I. Averbakh and O. Berman, Algorithms for the robust 1-center problem
on a tree, European J. Oper. Res. 123 (2000) 292–302.

[4] A. Ben-Tal, A. Goryashko, E. Guslitzer and A. Nemirovski, Adjustable
robust solutions of uncertain linear programs, Math. Program. 99 (2004)
351–376.

15



[5] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper.
Res. 23 (1998) 769–805.

[6] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear pro-
grams, Oper. Res. Lett. 25 (1999) 1–13.

[7] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming
problems contaminated with uncertain data, Math. Program. 88 (2000)
411–424.

[8] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimiza-
tion — Analysis, Algorithms and Engineering Applications, MPS-SIAM
Series on Optimization, SIAM, Philadelphia, 2001.

[9] A. Ben-Tal and A. Nemirovski, Robust optimization—methodology and
applications, Math. Program. 92 (2002) 453–480.

[10] D. Bertsimas and M. Sim, Robust discrete optimization and network
flows, Math. Program. 98 (2003) 49–71.

[11] D. Bertsimas and M. Sim, The price of robustness, Oper. Res. 52 (2004)
35–53.

[12] D. Bertsimas and M. Sim, Robust discrete optimization under ellip-
soidal uncertainty sets, http://web.mit.edu/dbertsim/www/papers.html
(2004).

[13] D. Bertsimas and R. Weismantel, Optimization over Integers, Dynamic
Ideas, Belmont, 2005.

[14] D. Cattrysse, M. Salomon and L.N. Van Wassenhove, A set partitioning
heuristic for the generalized assignment problem, European J. Oper. Res.
72 (1994) 167–174.

[15] A.M. Geoffrion, Generalized Benders decomposition, J. Optim. Theory
Appl. 10 (1972) 237–260.

[16] L. El-Ghaoui and H. Lebret, Robust solutions to least-squares problems
with uncertain data, SIAM J. Matrix Anal. Appl. 18 (1997) 1035–1064.

[17] L. El-Ghaoui, F. Oustry and H. Lebret, Robust solutions to uncertain
semidefinite programs, SIAM J. Optim. 9 (1999) 33–52.

[18] P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applica-
tions, Kluwer, Norwell, 1997.

[19] A. Makhorin, GLPK—GNU Linear Programming Kit.
(http://www.gnu.org)

16



[20] M. Muramatsu, SS—SOCP Solver.
(http://jsb.cs.uec.ac.jp/˜muramatu/SS/)

[21] R.M. Nauss, Solving the generalized assignment problem: An optimiz-
ing and heuristic approach, INFORMS J. Comput. 15 (2003) 249–266.

[22] G.L. Nemhauser and L.A. Wolsey, Integer and Combinational Opti-
mization, John Wiley & Sons, New York, 1988.

[23] I.H. Osman, Heuristics for the generalised assignment problem: Sim-
ulated annealing and tabu search approaches, OR Spektrum 17 (1995)
211–225.

[24] J. Renegar, A Mathematical View of Interior-Point Methods in Convex
Optimization, MPS-SIAM Series on Optimization, SIAM, Philadelphia,
2001.

[25] H. Saito and K. Murota, Benders decomposition for robust mixed in-
teger programming (in Japanese), Proc. Spring Conference of the Op-
erations Research Society of Japan, 2005, 236–237; also a paper (in
Japanese) submitted.

[26] M. Savelsbergh, A branch-and-price algorithm for the generalized as-
signment problem, Oper. Res. 45 (1997) 831–841.

[27] M. Sim, Robust Optimization, Ph.D. Thesis, Operations Research Cen-
ter, MIT, June 2004.
(http://www.bschool.nus.edu/STAFF/dscsimm/research.htm)

[28] M. Yagiura, T. Ibaraki and F. Glover, An ejection chain approach for
the generalized assignment problem, INFORMS J. Comput. 16 (2004)
133–151.
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