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Abstract

This paper derives a new necessary and sufficient condition for the smoothness of stationary
subdivision surface schemes.

First, we give a new necessary and sufficient condition for C1-continuity of stationary
subdivision. Tangent plane continuity is equivalent to the convergence of difference vectors.
Thus, using “normal subdivision matrix” [1], we derives a necessary and sufficient condi-
tion of tangent plane continuity for stationary subdivision at extraordinary points (including
degree 6). Moreover, we derive a necessary and sufficient condition for C1-continuity.

Second, we introduce new concepts such as the “j+1”-st difference vectors and the “j-
th difference mesh”, and construct procedure for generating j-th difference mesh from
j − 1-st difference mesh, and “j + 1-st difference vectors” from j-th difference vectors.
Here, we assume Cj-continuity at extraordinary points (including degree 6). Moreover, we
define T j+1-continuity for the subdivision surface as tangent plane continuity of the limit
surface generated by j-th difference mesh. Then, we can derive a necessary and sufficient
condition of T j+1-continuity using “j + 1-st normal subdivision matrix”. Next, we assume
T k-continuity at extraordinary points (including degree 6). Then, we can derive a necessary
and sufficient condition for Ck-continuity.

In this paper, we assume affine invariance. However, we can remove this assumption. So,
the necessary and sufficient condition of Ck-continuity at extraordinary points (including
degree 6) given in this paper is valid in a very general framework.

Moreover, the necessary and sufficient condition is valid for subdivision surfaces except
extraordinary points (including 6). That is, we derive the necessary and sufficient condition
of Ck-continuity for stationary subdivision schemes.

Key words: Subdivision surface, Ck-continuity, j-th difference vector, j − 1-st difference
mesh, j-th normal subdivision matrix
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1 Introduction

Subdivision [2–6] is a well-known method for geometric design and for computer
graphics, because the subdivision makes smooth surfaces with arbitrary topology.
A subdivision scheme is defined by subdivision matrices and a rule of change of
connectivity. Many researchers study the condition of continuity of subdivision
surfaces depending on subdivision matrices [5,7–14]. Moreover, multiresolution
analysis [15–20] derived by subdivision theory is extremely useful on mesh edit-
ing. Multiresolution analysis is a wevelet transform on semi-regular meshes. In the
framework, we want basis functions of subdivision and corresponding wavelet ba-
sis functions to be smooth. The wavelet basis functions are linear combination of
basis functions of subdivision. As above, we want to derive necessary and sufficient
conditions of Ck-continuity for subdivision schemes.

For smoothness of stationary subdivision schemes at extraordinary points, Reif [8]
derived a sufficient condition for C1-continuity. Moreover, Prautzch [9] derived
some conditions for Ck-continuity. However, they are not necessary and sufficient
condition.

Zorin [7] derived a necessary and sufficient condition for Ck-continuity with some
assumptions. However, his condition is not intuitive, because the condition is de-
scribed in terms of subdivision matrix Sk and eigen basis functions and parametric
map.

In this paper, on the other hand, we derive a necessary and sufficient condition for
Ck-continuity with affine invariance. Our condition is described in terms of “j-th
normal subdivision matrix” instead of subdivision matrix Sk. Here, j-th normal
subdivision matrix subdivides j-th difference vectors. And j-th difference vectors
converge to j-th derivatives at the extraordinary point. So, the necessary and suf-
ficient condition for j-th normal subdivision matrix is intuitive. And we use only
linear algebra for our analysis. So, this analysis can be understood easily.

Moreover, we can remove our assumption: affine invariance. Thus, we can derive a
necessary and sufficient condition of Ck-continuity for stationary subdivision with
no assumption.

In this paper, we assume subset of vertices of meshes are not dense. If there is a
dense set of vertices and the dense set is not C1-continuous, then any subdivision
scheme can not generate C1-continuous surface. Moreover, we assume that con-
trol points span at least plane. If all control points are on a line, by linearity of
subdivision, then any subdivision scheme can not generate surface.
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2 Ordinary Subdivision

In this section, we review ordinary subdivisions in general.

2.1 Subdivision Matrix

A subdivision scheme is defined by subdivision matrices and a rule of connectivity
change. The subdivision scheme, when it is applied to 2-manifold irregular meshes,
generates smooth surfaces at the limit. Fig. 1 is an example of the Loop subdivision.
In this figure, (a) is an original mesh; subdividing (a), we get (b); subdividing (b)
once more, we get (c); subdividing infinite times, we get the smooth surface (d). We
call (d) the subdivision surface. Here, a face is divided into four new faces. This is
a change of connectivity. In this paper, the change of connectivity is fixed to this
type, but other types of connectivity change can be discussed similarly.

Fig. 1. Loop subdivision [17].

Next, let us consider how to change the positions of the old vertices, and how to
decide the positions of the new vertices. They are specified by matrices called “sub-
division matrices”. The subdivision matrices are defined at vertices and they depend
on degree k of the vertex (the degree is the number of edges connected to the ver-
tex). For example, Fig. 2 denotes a vertex vj

0 which has five edges. Let vj
1, v

j
2, · · · , vj

5

be the vertices at the other terminals of the five edges. Then, subdivision matrix S5

is defined as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj+1
0

vj+1
1

...

vj+1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Sj
5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj
0

vj
1

...

vj
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where vj+1
0 is the new locations of the vertex vj

0 after the j +1-st subdivision, while
vj+1
1 , · · · , vj+1

5 are the newly generated vertices.

Here, the subdivision matrix Sj
5 is a square matrix. The superscript j means the j-th

step of the subdivision. Here, neighbor vertices of a vertex v are called vertices on
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Fig. 2. subdivision matrix.

the 1-disc of v. The subdivision matrix is generally defined not only on vertices in
the 1-disc, but also on other vertices around, · · · . Here, we discuss only subdivision
matrices that depend on vertices in the 1-disc. However, we can discuss other sub-
division matrices, similarly. In this paper, we assume that the subdivision matrix is
independent of j. A subdivision scheme of this type is called “stationary”.

In this way, the subdivision matrix is written for a vertex. However, since a newly
generated vertex is computed by two subdivision matrices at the ends of the edge,
the two subdivision matrices must generate the same location of the vertex. So, the
subdivision matrices have this kind of restriction.

For example, subdivision matrices Sk (k ≥ 3) for the Loop subdivision are

Sk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − kβ β β β β β · · · β

3
8

3
8

1
8

0 0 · · · 0 1
8

3
8

1
8

3
8

1
8

0 0 · · · 0

3
8

0 1
8

3
8

1
8

0 · · · 0
...

. . .

3
8

1
8

0 0 · · · 0 1
8

3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where k is the degree of the associated vertex, and

β =
1

k

(
5

8
−
(

3

8
+

1

4
cos

(
2π

k

))2
)

.

The degree k of a vertex is at least two. A vertex whose degree is two is a boundary
vertex. The degree of a vertex of 2-manifold meshes is at least three. In this paper,
we do not discuss boundaries of meshes. So, we assume that the degree is at least
three.

As seen above, a stationary subdivision scheme is defined by subdivision matrices

4



Sk (k ≥ 3). Then, by the theorem 2.1 in [10], the limit surface of subdivision
f : |K| → R3 is the following parametric surface:

f [p](y) =
∑

i

viφi(y),

vi ∈ R3, φi(y) ∈ R, y ∈ |K|, p = (v0, v1, · · · ),
where K is a complex, |K| is a topological space, that is, the mesh, i is an index
of a vertex, vi is the position of the i-th vertex, p = (v0, v1, · · · ), and φi(y) is
the weight function with the i-th vertex. Moreover, the weight function φi(y) is
dependent on the subdivision matrices. If the sum of each row of the subdivision
matrix is 1, vertices at each stage of the subdivision is affine combinations of the
original vertices. Therefore,

∀y ∈ |K|, ∑
i

φi(y) = 1.

So, weight functions make affine combinations, too. If the combination is not affine,
it is not invariant under the translation of the coordinates systems, and hence we
usually consider only affine combinations. Therefore, in what follows we assume
that the sum of elements in each row of the subdivision matrix is equal to 1.

Here, we denote φ(y) = (φ0(y), φ1(y), · · · ). Then, φ(y) decides a set of repre-
sentable surfaces. Then, the set is spanned by φ(y). So, we call the weight functions
basis functions. The limit surface of the subdivision is a point in such a functional
space.

2.2 C0-continuity

First, we discuss convergence for stationary subdivision at extraordinary points.
This problem was solved already.

Now, the subdivision scheme is written as:

pj+1 = Skp
j,

where pj = (vj
0, v

j
1, · · · , vj

k)
�. So, in order for the limit position limj→∞ vj

0 to exist
for arbitrary p0, there must be limj→∞ Sj

k. Therefore, we could change the problem
of C0-continuity to the problem of convergence of limj→∞ Sj

k.

So,

p∞ = S∞
k p0.

5



In order for the limit surface of subdivision to be C0-continuous at the extraordinary
point,

p∞ =

⎛
⎜⎜⎜⎜⎜⎝

v∞
0

v∞
0

...

⎞
⎟⎟⎟⎟⎟⎠ .

Here, we can easily solve this problem. Now, clearly, Sk has an eigen value λ1 = 1
with right eigen vector (1, · · · , 1)� from affine invariance. Let Sk = V −1

0 HV0,
where H is the Jordan normal form. λ1 has a single cyclic subspace of size 1,
because v∞

0 must be bounded and rank S∞
k = 1. Thus,

p∞ = S∞
k p0

=

⎛
⎜⎜⎜⎜⎜⎝

1
... ∗
1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0
... 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

V0p
0 =

⎛
⎜⎜⎜⎜⎜⎝

1
... 0

1

⎞
⎟⎟⎟⎟⎟⎠V0p

0.

Here, |λi| < λ1, i = 2, 3, · · · , because rank of p∞ must be 1. So, the condition is
that Sk has the first eigen value λ1 = 1 with a single cyclic subspace of size 1 and
|λi| < λ1, i = 2, 3, · · · .

Then, on edges and faces, clearly, subdivision surfaces are C0-continuous. So, this
condition is valid for subdivision surfaces.

3 C1-continuity

In this section, we derive a sufficient and necessary condition of C1-continuity for
stationary subdivision with affine invariance. Here, we assume C0-continuity at v∞

0 .

3.1 Normal subdivision matrix

At the j + 1-st step of the subdivision, new vertices are computed by subdivision
matrix Sk as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj+1
0

vj+1
1

...

vj+1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Sk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj
0

vj
1

...

vj
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, we define a matrix ∆ as

∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · ·
−1 1 0 · · ·
−1 0 1 0 · · ·

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using a matrix D′
k = ∆Sk∆

−1, we get

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj+1
0

vj+1
1 − vj+1

0

...

vj+1
k − vj+1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= D′
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vj
0

vj
1 − vj

0

...

vj
k − vj

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the sum of each row of Sk is 1, because the subdivision scheme is affine
invariant. Therefore, the first element vj

0 does not affect elements vj+1
1 −vj+1

0 , vj+1
2 −

vj+1
0 , · · · , vj+1

k − vj+1
0 . So, we denote the vector consisting of the elements vj

1 −
vj
0, v

j
2 − vj

0, · · · , vj
k − vj

0 as dj (see Fig. 3) and the associated submatrix of D′
k as

Dk:

D′
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a ∗
0
... Dk

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, dj+1 = Dkd
j. We call this the difference scheme.

Moreover, we denote the column vector which is a set of x elements of dj as dj
x.

Similarly, we denote the column vectors corresponding to y elements, z elements
as dj

y, d
j
z.
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Fig. 3. Difference vectors. A row of dj is a difference vector vj
i − vj

0. So, difference vectors
converge to first derivatives at v∞0 .

Here, using u1, u2 ∈ Rk, we define a matrix ΛDk as

ΛDk(u1 ∧ u2) = Dku1 ∧ Dku2,

where ∧ is the wedge product. Then,

ΛDk(d
j
y ∧ dj

z) = Dkd
j
y ∧ Dkd

j
z.

Now, we define N j = (dj
y ∧ dj

z, d
j
z ∧ dj

x, d
j
x ∧ dj

y). Then,

N j+1 = ΛDk N j ,

where a row of N j is a cross product of between vj
i −vj

0 and vj
l −vj

0, that is, normal
on the neighborhood of vj

0. So, we see that the matrix ΛDk subdivides normals of
faces which connects a vertex whose degree is k.

Note that N j contains normals of unreal faces in the mesh (Real face can be written
as (vj

i − vj
0) × (vj

i+1 − vj
0) or (vj

k − vj
0) × (vj

1 − vj
0). Otherwise, the row of N j is

unreal face.).

Therefore, we call this matrix the “normal subdivision matrix”.

3.2 Tangent plane continuity

Now, we easily see that difference vectors converge to first derivatives at v∞
0 . So,

the limit surface of subdivision is tangent plane continuous at v∞
0 if and only if all

rows of N∞ (these are normals) point to the same direction (This is direction of
normal at v∞

0 . Here, normal n and −n are called same direction).
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Now, let ΛDk = V −1
1 AV1, where A is the Jordan normal form, V1 is a regular

matrix.

Therefore, in order to be tangent plane continuous,
limj→∞(ΛDk)

j = V −1
1 limj→∞(A)jV1 must be rank 1.

Now, we consider maximal element of A∞. Let Λi, i = 1, 2, · · · be eigen values of
A, where |Λi| ≥ |Λi+1|. Here, a Jordan cell of Λi can be written as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λi 1
. . . . . .

Λi 1

Λi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let l be the size of this Jordan cell. Then,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λi 1
. . . . . .

Λi 1

Λi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

n

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λn
i nC1Λ

n−1
i · · · nCl−1Λ

n−l+1
i

. . . . . .
...

Λn
i nC1Λ

n−1
i

Λn
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the maximal element (on absolute value) of this Jordan cell is nCl−1Λ
n−l+1
i ,

where n is a large positive integer.

Here, we can consider the maximal element of An.

3.2.1 The case of |Λ1| > |Λ2|

In this case,

lim
n→∞ An = lim

n→∞Λn
1

⎛
⎜⎝ 1

limn→∞ Λn
1

limn→∞ ∗n 0

0 0

⎞
⎟⎠ ,

where ∗ is the Jordan Block of Λ1. Let lm be the maximal size of all Jordan cells
of ∗. Then, the maximal element of ∗n is nClm−1Λ

n−lm+1
1 , where n is a large pos-

itive integer. Other elements of ∗n are sufficiently small for the maximal element
nClm−1Λ

n−lm+1
1 at n → ∞.
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If the Jordan cell with size lm is unique, then the maximal element is unique. Let j
be a positive integer such that the maximal element exists at j-th row of An. Then,

N∞ = lim
j→∞

(ΛDk)
jN0

=V −1
1 lim

j→∞
(A)jV1N

0

=V −1
1 lim

n→∞(nClm−1Λ
n−lm+1
1 ) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V1N
0

= lim
n→∞(nClm−1Λ

n−lm+1
1 ) ·

(
0 · · · 0 Vj 0 · · · 0

)
V1N

0

= lim
n→∞(nClm−1Λ

n−lm+1
1 ) ·

(
0 · · · 0 Vj 0 · · · 0

)
⎛
⎜⎜⎜⎜⎜⎝

vn0
1

vn0
2

...

⎞
⎟⎟⎟⎟⎟⎠

= lim
n→∞(nClm−1Λ

n−lm+1
1 )

⎛
⎜⎜⎜⎜⎜⎝

V1j · vn0
j

V2j · vn0
j

...

⎞
⎟⎟⎟⎟⎟⎠ ,

where Vj is j-th column of V −1
1 , Vij is i-th element of Vj , vn0

s is s-th row of V1N
0.

Now, rank N∞ = 1. So, if Λ1 is real positive, then the limit surface of subdivision
is tangent plane continuous.

Note that vn0
j is not necessarily non-zero vector, that is, ∃N0, vn0

j = (0, 0, 0). Then,
the limit surface of subdivision is not tangent plane continuous. However, the set
of such N0 (such control points p0) is not dense set. Therefore, we discuss Ck-
continuity of subdivision schemes except such case.

If the Jordan cell with size lm is not unique, then the maximal element is not unique.
Then, rank V −1

1 A∞ 	= 1. So, the limit surface of subdivision is not tangent plane
continuous.

10



3.2.2 The case of |Λ1| = |Λ2| > |Λ3|

In this case,

lim
n→∞ An = Λ∞

1

⎛
⎜⎜⎜⎜⎜⎝

1
Λ∞

1
limn→∞ ∗n 0 0

0
Λ∞

2

Λ∞
1

1
Λ∞

2
limn→∞ ∗́n 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where ∗ is the Jordan Block of Λ1, ∗́ is the Jordan Block of Λ2. Let ĺ be the maximal
size of all Jordan cells of ∗ and ∗́. If the Jordan cell with size ĺ is unique, then we can
discuss similarly. Otherwise, rank V −1

1 A∞ 	= 1. So, the limit surface of subdivision
is not tangent plane continuous.

Moreover, in other cases (for example, |Λ1| = |Λ2| = |Λ3| > |Λ4|), we can discuss
similarly.

Note that N j includes normals for unreal faces (for example, (vj
1−vj

0)× (vj
3 −vj

0)).
However, we must not consider their convergence. Because, if normals for real
faces (for example, (vj

1 − vj
0) × (vj

2 − vj
0)) converge to the same direction, then

normals for unreal faces converge to the direction.

3.3 C1-continuity

In previous subsection, we discuss the condition of tangent plane continuity. Thus,
here, we assume tangent plane continuity, and we discuss the condition of C1-
continuity.

Let R1 = {i|i-th row of N∞ is normal of real face} (Remember the definition of
N0. N0 includes unreal faces.). ∀i ∈ R1, N∞

i must point to the same direction
including sign if and only if the limit surface is C1-continuous, where N∞

i is i-th
row of N∞.

3.3.1 The Case of All Vij are real

Note that there is a row of N∞ which is (v∞
1 − v∞

0 ) × (v∞
k − v∞

0 ). Here, normal
of real face is (v∞

k − v∞
0 ) × (v∞

1 − v∞
0 ). So, if the element of Vj corresponding to

(v∞
1 − v∞

0 ) × (v∞
2 − v∞

0 ) is non-negative, then the element of Vj corresponding to
(v∞

1 − v∞
0 )× (v∞

k − v∞
0 ) must be non-positive. If the element of Vj corresponding

to (v∞
1 − v∞

0 ) × (v∞
2 − v∞

0 ) is non-positive, then the element of Vj corresponding
to (v∞

1 − v∞
0 ) × (v∞

k − v∞
0 ) must be non-negative.
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Therefore, we define “proper sign” of N∞ as same sign of normal of real face.

So, ∀i ∈ R1, all Vij must be proper sign.

If ∀i ∈ R1, all Vij are proper sign and non-zero, then the limit surface is C1-
continuous.

If ∃i ∈ R1, Vij = 0, then the real face corresponding to N∞
i vanishes. See Fig. 4.

Fig. 4. Vanished face. (vj
1 − vj

0) × (vj
2 − vj

0) is the normal of real face (vj
0, v

j
1, v

j
2). If the

element of Vj corresponding to (v∞1 −v∞0 )×(v∞2 −v∞0 ) is 0, then the triangle (v∞0 , v∞1 , v∞2 )
vanishes.

First, if ∀i ∈ R, Vij = 0, then the surface is not C1-continuous. In order to be
C1-continuous, at least three faces must not vanish.

If ∃i ∈ R1, Vij = 0, then there are three types of vanished faces. First type is, like
Fig. 4, (v∞

i − v∞
0 ) = a(v∞

i+1 − v∞
0 ), where a ∈ R is positive.

Second type corresponds to the case of a is negative. Third type corresponds to the
case of a = 0 or (v∞

i+1 − v∞
0 ) vanishes (that is, 0 · (v∞

i − v∞
0 ) = (v∞

i+1 − v∞
0 )).

Here, we can check the type. Now, we assume triangle (v∞
0 , v∞

i−1, v
∞
i ) does not

vanish. Then, if the element of Vj corresponding to (v∞
i−1 − v∞

0 )× (v∞
i+1 − v∞

0 ) and
elements of Vj of other non-vanished real face are proper sign, then a is positive.
If not proper sign, then a is negative. If the element of Vj corresponding to (v∞

i−1 −
v∞
0 ) × (v∞

i+1 − v∞
0 ) is 0, then (v∞

i+1 − v∞
0 ) vanishes.

If the triangle (v∞
0 , v∞

i−1, v
∞
i ) vanishes, we can consider similarly for triangle (v∞

0 , v∞
i−2, v

∞
i−1).

In order to be C1-continuous at v∞
0 , a must be positive. If a < 0, then the neigh-

borhood of v∞
0 is not homeomorphic to disc, that is, the structure of 2-manifold is

broken at v∞
0 . The neighborhood of the third type is similarly not homeomorphic.

However, even if a > 0, the neighborhood of v∞
1 is not homeomorphic to disc

(See Fig. 4), because the length of v∞
2 − v∞

0 is not equal to that of v∞
1 − v∞

0 . For
arbitrary p0 (control points), the length of v∞

2 − v∞
0 is not necessarily equal to that

of v∞
1 − v∞

0 . So, if a > 0, the subdivision surface is not necessarily C1-continuous

12



at v∞
1 (The subdivision surface is C1-continuous at v∞

0 ).

Therefore, in order for the subdivision scheme to be C1-continuous at arbitrary
extraordinary points, there must be no vanished faces, that is ∀i ∈ R1, all Vij must
be proper sign and non-zero.

3.3.2 The Case of ∃i, Vij is not real

If ∃i′, Vi′j are not real, then vn0
j has the factor V̄i′j (V̄i′j is the complex conjugate of

Vi′j), because ∀i, N∞
i must be real.

Thus, ∀i, Vij have the factor Vi′j , because ∀i, N∞
i must be real.

So, ∀i,
Vij

Vi′j
is real. Then, as is the case of ∀i, Vij are real, we can consider C1-

continuous.

Here, we can see that if the limit surface of subdivision is C1-continuous at all
extraordinary points (including degree 6), then the limit surface of subdivision is
C1-continuous, because, on edges and faces, the limit surface is C1-continuous
(Normals of two faces which connect to a edge are same direction).

Therefore, this condition is valid for subdivision surfaces.

4 Ck-continuity

Now, we get the condition for C1-continuity. So, we assume C1-continuity at ex-
traordinary points (degree k and degree 6). In this section, we get the condition
for C2-continuity at extraordinary point (degree k). Similarly, if we assume Ck−1-
continuity at extraordinary points (degree k and degree 6), we can get the condition
for Ck-continuity at extraordinary point (degree k).

4.1 Second difference vectors

In the case of tangent plane continuity, we made difference vectors dj and differ-
ence scheme dj+1 = Dkd

j. Similarly, in the case of C2-continuity, we make second
difference vectors and second difference scheme.

Second difference vectors are generated by first difference vectors in 2-disc (Here,
1-disc means triangles connecting with vj

0. 2-disc means triangles connecting with
vertices in 1-disc. Similarly, 1-ring means edges in 1-disc except edges connecting
with vj

0.). See Fig. 5. We can get (first) difference vectors in 2-disc.

13



Fig. 5. Difference vectors in 2-disc. Arrows denote difference vectors in 2-disc. We can
assume all degrees of vertices on 1-ring are six, because we can see the subdivided mesh
as new original mesh.

Now, we make second difference vectors. Let a second difference vector be u − v,
where v is a difference vector in 1-disc, u is a difference vectors in 2-disc except
those in 1-disc. Here, we can make first difference mesh M1

d . Position vectors of
vertices of M1

d are difference vectors in 2-disc, and the connectivity of M1
d is gen-

erated by connectivity of difference vectors in 2-disc. See Fig. 6.

Fig. 6. Connectivity of first difference mesh M1
d . Circle dashed lines denote edges of M1

d .
M1

d consists of central k-gon and hexagons and triangles between them. Position vectors
of vertices of M1

d are difference vectors. So, u is a vertex of central k-gon, v is a vertex of
hexagons except u. Then, v − u is a second difference vector.

The central k-gon of M1
d converge to a flat face including the origin. Other hexagons

of M1
d converge to flat faces at the neighborhood of the origin. So, second differ-

ence vectors converge to first derivatives at the origin of M1
d (See Fig. 7).

On the other hand, we can see that on the original mesh, the central k-gon converge
to tangent plane at v∞

0 , other hexagons converge to tangent planes at the neighbor-

14



Fig. 7. Three faces of first difference mesh M1
d . Dashed lines denote (first) difference vec-

tors. Real lines denote edges of M1
d . At the limit, central k-gon and hexagons are flat,

because we assumed C1-continuity. Then, these flat faces are tangent planes at the origin
and its neighborhood of M1

d .

hood of v∞
0 . So, second difference vectors converge to second derivatives at v∞

0 .
Thus, we can consider C2-continuity from second difference vectors.

Here, we can see that the limit surface generated by M1
d at the origin corresponds

to ∂f(y) at v∞
0 , where f(y) is the limit surface of subdivision. The k-gon and

hexagons of M1
d converge to flat faces, because we assumed C1-continuity at v∞

0 ,
and converge to vertices, because we assumed C0-continuity at v∞

0 . So, conver-
gence to a plane of second difference vectors means tangent plane continuity of
∂f(y) at v∞

0 . Moreover, C1-continuity of the limit surface generated by M1
d at the

origin means C1-continuity of ∂f(y) at v∞
0 , that is, C2-continuity of the limit sur-

face of subdivision at v∞
0 .

4.2 T 2-continuity

Here, we define a term on smoothness.

Definition 4.1
The limit surface of subdivision is T k-continuous at v∞

0 if and only if the limit
surface of subdivision is Ck−1-continuous at extraordinary points (degree k and
degree 6) and the limit surface generated from Mk−1

d is tangent plane continuous at
the origin.

In this case, we consider k = 2. Therefore, the limit surface of subdivision is T 2-
continuous if and only if second difference vectors span a plane at the limit (We
assumed C1-continuity of the limit surface of subdivision at v∞

0 .).

Here, we consider the condition for T 2-continuous. dj is difference vectors in 1-
disc. Let dj

2 be second difference vectors. Now, we can get a matrix D2,k such that
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⎛
⎜⎝ dj+1

dj+1
2

⎞
⎟⎠=D2,k

⎛
⎜⎝ dj

dj
2

⎞
⎟⎠ .

(As in the case of difference scheme, we use matrices corresponding to matrix ∆.)
We name this second difference scheme.

Here, we define matrix D′
2,k as

⎛
⎜⎝ dj+1

dj+1
2

⎞
⎟⎠=

⎛
⎜⎝Dk 0

∗ D′
2,k

⎞
⎟⎠
⎛
⎜⎝ dj

dj
2

⎞
⎟⎠ .

Here, we define “second normal subdivision matrix” ΛD2,k as

N j+1
2 =ΛD2,kN

j
2 ,

where N j
2 = (

⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

y

∧
⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

z

,

⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

z

∧
⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

x

,

⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

x

∧
⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

y

).

⎛
⎜⎝ dj

dj
2

⎞
⎟⎠

i

is i elements of

⎛
⎜⎝ dj

dj
2

⎞
⎟⎠.

Let ΛD2,k = V −1
2 BV2, where B is Jordan normal form. So,

N∞
2 =(ΛD2,k)

∞N0
2

=V −1
2 B∞V2N

0
2 .

Now, we define a matrix T , T is Jordan normal form, as

N∞
2 =V −1

2 B∞V2N
0
2

=V −1
2

⎛
⎜⎝T 0

0 0

⎞
⎟⎠

∞

V2N
0
2 .

Here, all rows of ((d∞
2 )x ∧ (d∞

2 )y, (d
∞
2 )y ∧ (d∞

2 )z, (d
∞
2 )z ∧ (d∞

2 )x) point to same
direction if and only if the limit surface generated from M1

d is tangent plane contin-
uous, that is, the limit surface of subdivision is T k-continuous (Remember tangent
plane continuity of the limit surface of subdivision).
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So, the maximal rank of T∞ must be 2k + 2, because rank of rows corresponding
to d∞∧ d∞ of N∞

2 is 1 and rank of rows corresponding to d∞
2 ∧ d∞

2 of N∞
2 must be

1 and maximal rank of rows corresponding to d∞ ∧ d∞
2 of N∞

2 is 2k. Here,

V −1
2 =

⎛
⎜⎜⎜⎜⎜⎝

∗
∗′

G

⎞
⎟⎟⎟⎟⎟⎠ ,

where G corresponds to rows d∞
2 ∧ d∞

2 = ((d∞
2 )x ∧ (d∞

2 )y, (d
∞
2 )y ∧ (d∞

2 )z, (d
∞
2 )z ∧

(d∞
2 )x) of N∞

2 , ∗ corresponds to rows d∞
1 ∧ d∞

1 of N∞
2 , ∗′ corresponds to d∞

1 ∧ d∞
2

of N∞
2 .

Now, we define set of non-zero column of G as C (∀c ∈ C, c 	=
⎛
⎜⎝ 0

...

⎞
⎟⎠). Here, we

consider rows of T∞ corresponding to C. Because, we want to consider maximal
column of F , where

V −1
2 B∞ =

⎛
⎜⎜⎜⎜⎜⎝

∗
∗′

F

⎞
⎟⎟⎟⎟⎟⎠ .

Let ΛT,i, i = 1, 2, · · · be eigen values of T corresponding to C, where |ΛT,i| ≥
|ΛT,i+1|.

4.2.1 The case of |ΛT,1| > |ΛT,2|

In this case,

B∞ =

⎛
⎜⎝T∞ 0

0 0

⎞
⎟⎠

=Λ∞
T,1

⎛
⎜⎜⎜⎜⎜⎝

1
Λ∞

T,1
∗ 0 0

0 1
Λ∞

T,1
T∞

1 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where T1 is Jordan Block of ΛT,1, ∗ is Jordan Blocks of other eigen values of T .
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Here, ΛT,1 is maximal eigen value corresponding to C. So, eigen values of ∗ whose
magnitudes are larger than |ΛT,1| corresponds to zero-column of G. Therefore, ∗
does not affect d∞

2 ∧ d∞
2 .

So, we consider maximal element of (T1)
∞. Let l be the maximal size of all Jordan

cells of T1. Let Jc,i, i = 1, 2, 3, · · · , q be Jordan cells of T1 whose sizes are l (q ∈
N).

(Here, we assume that the first rows of Jc,i, i = 1, 2, 3, · · · , q correspond to C.
Otherwise, we can see that new size of the Jordan cell is old size minus 1. Similarly,
we can get maximal elements of T1.)

Then, on T n
1 , the maximal element (on absolute value) of all Jordan cells of T1 is

nCl−1Λ
n−l+1
T,1 , where n is a large positive integer. Here, T n

1 has q maximal elements.

At n → ∞, nCl−1Λ
n−l+1
T,1 is sufficiently larger than other elements which corre-

sponds to C. Therefore, we can ignore effects of the other elements.

Let ri, i = 1, 2, · · · , q be rows of C corresponding to nCl−1Λ
n−l+1
T,1 . Then, maximal

rows of F are nCl−1Λ
n−l+1
T,1 · ri, i = 1, 2, · · · , q. So, for arbitrary N0

2 , if q = 1, the
rank of d∞

2 ∧ d∞
2 is 1. Then, if ΛT,1 is real positive, the limit surface generated by

M1
d is tangent plane continuous.

If q 	= 1, then ∀i, ri and r1 must be linear dependent. Otherwise, the rank of d∞
2 ∧

d∞
2 	= 1. If ∀i, ri and r1 are linear dependent and ΛT,1 is real positive, the limit

surface generated by M1
d is tangent plane continuous. Otherwise, the rank of d∞

2 ∧
d∞

2 	= 1.

Note that N j
2 includes normals for unreal faces of M1

d . However, we must not con-
sider their convergence. Because, if normals for real faces of M1

d converge to the
same direction, then normals for unreal faces of M1

d converge to the direction.

4.2.2 The case of |ΛT,1| = |ΛT,2| > |ΛT,3|

In this case,
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B∞ =

⎛
⎜⎝T∞ 0

0 0

⎞
⎟⎠

=Λ∞
T,1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Λ∞

T,1
∗ 0 0 0

0 1
Λ∞

T,1
T∞

1 0 0

0 0
Λ∞

T,2

Λ∞
T,1

1
Λ∞

T,2
T∞

2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where T1 is Jordan Block of ΛT,1, T2 is Jordan Block of ΛT,2, ∗ is Jordan Blocks
of other eigen values of T . Let ĺ be the maximal size of all Jordan cells of T1 and
T2. Then, let J́c,i, i = 1, 2, · · · , q be Jordan cells of T1 and T2 whose sizes are ĺ
(q ∈ N).

(Here, we assume that the first rows of J́c,i, i = 1, 2, · · · , q correspond to C in a
similar way of first case.)

Then, on T n
1 and T n

2 , the maximal element (on absolute value) is nCĺ−1Λ
n−ĺ+1
T,1 or

nCĺ−1Λ
n−ĺ+1
T,2 , where n is a large positive integer. There are q maximal elements.

At n → ∞, nCĺ−1Λ
n−ĺ+1
T,1 and nCĺ−1Λ

n−ĺ+1
T,2 are sufficiently larger than other ele-

ments which corresponds to C. Therefore, we can ignore effects of the other ele-
ments.

Let ri, i = 1, 2, · · · , q be rows of C corresponding to nCĺ−1Λ
n−ĺ+1
T,1 or nCĺ−1Λ

n−ĺ+1
T,2 .

Then, maximal rows of F are nCĺ−1Λ
n−ĺ+1
T,1 ·ri and nCĺ−1Λ

n−ĺ+1
T,2 ·rj. So, for arbitrary

N0
2 , if q = 1, the rank of d∞

2 ∧ d∞
2 is 1. Then, if ΛT,i corresponding to r1 is real

positive, the limit surface generated by M1
d is tangent plane continuous.

If q 	= 1, then ∀i, ri and r1 must be linear dependent. Otherwise, the rank of d∞
2 ∧

d∞
2 	= 1. Here, if ΛT,1 is real, then ΛT,2 is −ΛT,1 or not real. So, if ∀i, ri and r1

are linear dependent and ∀i, ri corresponds ΛT,1 ( ΛT,2) and ΛT,1 (ΛT,2) is real
positive, the limit surface generated by M1

d is tangent plane continuous. Otherwise,
for arbitrary N0

2 , the rank of d∞
2 ∧ d∞

2 is not necessarily 1.

In other cases (for example, |ΛT,1| = |ΛT,2| = |ΛT,3| > |ΛT,4|), we can discuss
similarly.

4.3 C2-continuity

Now, we can assume T k-continuity at v∞
0 . Next, we derive the condition of Ck-

continuity at v∞
0 .
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Here, the limit surface of subdivision is Ck-continuous at v∞
0 if and only if the

limit surface of subdivision is Ck−1-continuous at extraordinary points (degree k
and degree 6) and the limit surface generated from Mk−1

d is C1-continuous at the
origin.

So, in this case of k = 2, we consider C1-continuity for the limit surface generated
from M1

d .

Let R2 = {i|i-th row of N∞
2 is normal of real face of M1

d}. See Fig. 8. For u
of central k-gon, triangles (u, v1, v2), (u, v2, v3) are real faces of M1

d . The trian-
gles (u, v0, v1), (u, v3, v4) are also real faces of M1

d . However, it is sufficient that
we check only direction of normals of real faces (u, v1, v2), (u, v2, v3), because we
assumed C1-continuity at v∞

0 and vertices on 1-ring of v∞
0 .

Fig. 8. Real faces of M1
d . For a vertex u of central k-gon, triangles (u, v1, v2), (u, v2, v3)

are real faces of M1
d . Similarly, for u′ triangles (u′, v′1, v′2), (u′, v′2, v′3) are real faces of M1

d .

Let rij be the i-th element of the column vector rj.

4.3.1 The Case of ∀j,∀i, rij are real

Here, as in the case of C1-continuity, we define “proper sign” of rj as same sign of
normal of real face of M1

d .

So, if q = 1, and ∀i ∈ R2, ri1 are proper sign, then the limit surface generated by
M1

d is C1-continuous, that is, the subdivision surface is C2-continuous.

As in the case of C1-continuity, we can consider the case of ∃i, ri1 = 0.

In the case of q 	= 1. Similarly, if ∀i ∈ R2, ri1 are proper sign, then the limit
surface generated by M1

d is C1-continuous, that is, the subdivision surface is C2-
continuous, because ∀j, rj and r1 is linear dependent.

Moreover, we can consider the case of ∃i, ri1 = 0 similarly.
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4.4 The Case of ∃j,∃i, rij is not real

If ∃j′, ∃i′, ri′j′ is not real, then ∀i, rij′ must have the factor ri′j′ , because all rows
of N∞

2 must be real for arbitrary N0
2 (As is the case of C1-continuous, the corre-

sponding row of V2N
0
2 must have the factor r̄i′j′ which is the complex conjugate of

ri′j′ for arbitrary N0
2 ).

So, ∀i,
rij′
ri′j′

is real. Then, we can see that there is the new row 1
ri′j′

rj′ whose elements

are real. ∀j, we can consider similarly.

Therefore, as is the case of ∀j,∀i, rij are real, we can consider C2-continuous.

Here, as in the case of C1-continuity, if the limit surface generated by M1
d is C1-

continuous at all extraordinary points (including degree 6), then the limit surface
generated by M1

d is C1-continuous. Then, the limit surface of subdivision is C2-
continuous, because the limit surface generated by M1

d at the origin corresponds to
∂f(y) at v∞

0 , where f(y) is the limit surface of subdivision.

Therefore, this condition is valid for subdivision surfaces.

4.5 Convergence to j-th derivatives

In previous subsection, we derived the necessary and sufficient condition for sub-
division surfaces to be C2-continuous. We used the relation that the limit surface of
subdivision is Ck-continuous at v∞

0 if and only if the limit surface of subdivision
is Ck−1-continuous at extraordinary points (degree k and degree 6) and the limit
surface generated by Mk−1

d is C1-continuous at the origin. In this subsection, we
explain this relation.

We can see that second difference vectors converge to linear combinations of sec-
ond derivatives at v∞

0 . See Fig. 9.

Let ∂1 be the differentiation of direction v∞
1 − v∞

0 and vertex vj be linear combi-
nation of vj

2 and vj
3, where (vj − vj

1)//(v
j
1 − vj

0). Let f(y) be the limit surface of
subdivision. Then,
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Fig. 9. Convergence to second derivatives. vj is linear combination of vj
2 and vj

3, where
(vj − vj

1)//(vj
1 − vj

0). limj→∞(vj − vj
1 − vj

1 + vj
0) is the second derivative of direction

v∞1 − v∞0 . So, second difference vectors converge to linear combinations of second deriva-
tives.

∂2
1f(v∞

0 )= lim
h→0

∂1f(v∞
0 + h) − ∂1f(v∞

0 )

h

= lim
h→0

limt→0
f(v∞0 +h+t)−f(v∞0 +h)

t
− limt→0

f(v∞0 +t)−f(v∞0 )

t

h
= lim

j→∞
(vj − vj

1 − vj
1 + vj

0)

= lim
j→∞

(αvj
2 + βvj

3 − 2vj
1 + vj

0)

= α lim
j→∞(vj

2 − 2vj
1 + vj

0) + β lim
j→∞(vj

3 − 2vj
1 + vj

0),

where α, β ∈ R, α + β = 1. Therefore, second difference vectors converge to
second derivatives at v∞

0 .

Similarly, j-th difference vectors, which are difference vectors between j − 1-st
difference vectors, converge to linear combinations of j-th derivatives at v∞

0 .

The second derivatives must span a plane, because, for arbitrary p0 (control points),
the subdivision scheme must be C2-continuous. So, the subdivision scheme must
be T 2-continuous, because second difference vectors converge to linear combi-
nations of second derivatives. Therefore, the limit surface generated by M1

d is
C1-continuous at the origin if and only if the limit surface of subdivision is C2-
continuous (Here, we assumed C1-continuity at extraordinary points).

So, we could discuss the necessary and sufficient condition for subdivision sur-
faces to be Cj-continuous at extraordinary points. In the analysis of smoothness,
similarly, we use j-th normal subdivision matrix on j − 1-st difference mesh.

In the analysis, we use only linear algebra. So, this analysis is intuitive and can be
easily computable.
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5 Conclusion

In this paper, we proposed a new analysis of smoothness for stationary subdivision
schemes.

We assume affine invariance for subdivision. Most of existing subdivision schemes
satisfy this assumption.

Our first contribution is the necessary and sufficient condition for stationary sub-
division surfaces to be C1-continuous. First, we made difference vectors which
converge to first derivatives. Next, we defined normal subdivision matrix which
subdivides difference vectors. So, we could discuss the convergence of difference
vectors as analysis of Jordan cells of normal subdivision matrix.

Our second contribution is the necessary and sufficient condition for stationary
subdivision surfaces to be Ck-continuous. First, we defined first difference mesh
M1

d and second difference vectors which converge to second derivatives. Similarly,
we can define k− 1-th difference mesh and k-th difference vectors which converge
to k-th derivatives.

Moreover, we define T k-continuity of the subdivision surface at the extraordinary
point as Ck−1-continuity of the subdivision surface at extraordinary points (the ex-
traordinary point and extraordinary point with degree 6) and tangent plane continu-
ity of the limit surface generated by Mk−1

d at the origin.

Then, we could define second normal subdivision matrix similarly. Thus, we could
derive the necessary and sufficient condition to be T 2-continuous. Here, if the sub-
division surface is T k-continuous and the limit surface generated by Mk−1

d is C1-
continuous, then the subdivision surface is Ck-continuous. So, we can derive the
necessary and sufficient condition to be Ck-continuous. In this paper, we derived
the condition to be C2-continuous.

In this paper, we assumed affine invariance. However, this assumption can be re-
moved easily. Therefore, we could derive the necessary and sufficient condition for
stationary subdivision surfaces to be Ck-continuous with no assumption.
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