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ABSTRACT: In the nonlinear bifurcation analysis for large scaled structures, the standard
eigenanalysis of the tangent stiffness matrix yields important information, but, at the
same time, demands a large amount of computational cost. The scaled corrector method
was developed as a numerically efficient, eigenanalysis-free, bifurcation-analysis strategy,
which exploits byproducts of the numerical iteration for path tracing. This method,
however, has a problem in its accuracy, especially when eigenvalues are nearly or exactly
coincidental. As a remedy for this, we propose a new bifurcation analysis method through
the implementation of bifurcation mechanism of a symmetric structure into the scaled
corrector method. The bifurcation mode is accurately approximated by decomposing
a scaled corrector vector into a number of vectors by means of block diagonalization
method in group-theoretic bifurcation theory and, in turn, by choosing the predominant
one among these vectors. In order to demonstrate the usefulness of this method, it
is applied to the bifurcation analysis of reticulated regular-hexagonal truss domes to
compute accurately the locations of double bifurcation points and nearly coincidental

bifurcation points, and associated bifurcation modes.

Keywords: bifurcation analysis, block diagonalization, dihedral group, scaled correc-

tor, symmetric structures



1 Introduction

The finite-element nonlinear bifurcation analysis of structures has drawn keen interest,
and a number of numerical procedures have been developed for bifurcation point detection
and branch-switching. It is common to detect bifurcation points via the tracing of the
equilibrium paths (Riks [25, 26], Eriksson [3], Choong and Hangai [1], Fujii and Ramm [6]).
The direct method does not necessitate the path-following analysis in the computation
of the stability point via the construction of an extended system (Wriggers et al. [33],
Wriggers and Simo [34]); the pinpointing of the stability point is possible by solving the
extended system (Fujii and Ramm [6]; Fujii et al. [4]).

In the nonlinear bifurcation analysis for large scaled structures, the standard eigen-
analysis of the tangent stiffness matrix yields important information, but, at the same
time, demands a large amount of computation, despite the study on the solution meth-
ods of the finite element eigenanalysis (Sehmi [29]; Papadrakakis [24]). Eigenanalysis-free
bifurcation-analysis strategies, which exploit byproducts in the numerical iteration to ob-
tain equilibrium points, were developed (Noguchi and Hisada [23], Fujii and Noguchi [5],
Noguchi and Fujii [22]). A scaled corrector, which is a normalized correction vector in
the Newton—Raphson iteration in the corrector step, was found to simulate well the crit-
ical eigenvector in the vicinity of a critical point (Noguchi and Hisada [23]); it achieved

numerical efficiency but, at the same time, encountered the following difficulties:
e Nearly coincidental bifurcation points cannot be separated.
e Simple and double bifurcation points cannot be distinguished.

e For a double bifurcation point, which has two critical eigenvectors, only a single

critical eigenvector can be obtained.

Structures with axisymmetry or regular-polygonal symmetry, such as reticulated domes
and cylindrical shells, are known to have double bifurcation points. The bifurcation of
these structures was studied as a bifurcation problem of dihedral-group symmetry by
group-theoretic bifurcation theory (Healey [10], Ikeda et al. [16], Gatermann [7], Gater-
mann and Werner [8], Wohlever and Healey [32], Wohlever [31], Ikeda and Murota [15]).
This theory was implemented into the framework of FEM (Zingoni [35], Lin [18]). Block-
diagonalization method was employed to exploit symmetry and to reduce the computa-
tional cost involved (Healey [10], Zlokovi¢ [36], Dinkevich [2], Healey and Treacy [11],
lkeda and Murota [14], Murota and lkeda [21], Ikeda et al. [12]), and to classify vibra-
tion modes (Mohan and Pratap [19, 20]). This method was employed to investigate the
possible occurrence of bifurcations in materials (lkeda et al. [13, 17]).

A new bifurcation analysis procedure is proposed in this paper by incorporating the
bifurcation mechanism of symmetric structures into the scaled corrector method. The

bifurcation mode is accurately approximated by decomposing a scaled corrector vector



into a number of vectors on the basis of the symmetry of the structure and, in turn, by
choosing the predominant one. The usefulness of this technique is demonstrated through
its application to the bifurcation analysis of reticulated regular-hexagonal truss domes to

extract bifurcation modes, and to accurately search for the locations of bifurcation points.



2 Group-theoretic bifurcation theory

We introduce in this section a brief account of group-theoretic bifurcation theory as a
summary of lkeda and Murota [15]. More mathematical issues can be found, e.g., in
Sattinger [28] and Golubitsky et al. [9].

2.1 Group equivariance

Consider a sufficiently smooth nonlinear governing equation of a discretized system

F(u, f) =0, (1)
where F = (I}, Fy, ..., F,)T is an n-dimensional nonlinear function vector, u = (uy, ug, ..., u,)"
is an n-dimensional (nodal displacement) vector, and f is a (loading) parameter. In this
paper we assume that F is derived from a potential function, which implies that the
tangent stiffness matrix K = 0F/0u is a symmetric matrix.

The symmetry of the nonlinear governing equation (1) is expressed by the equivariance

to a group G, namely,

T(g)F(uvf):F(T(g)uvf)v for g € G, (2)

where an element ¢ of G represents a geometrical transformation, and 7'(¢g) is an orthog-
onal n X n representation matrix expressing the influence of ¢ on the vectors F and u.

The pre-bifurcation solutions (u, f) are assumed to be G-invariant in the sense that
T(g)u=u, for g € G (3)

while a bifurcated solution has a reduced symmetry labeled by a subgroup of . Hence

a recursive occurrence of bifurcation is described by a hierarchy of subgroups?
GG —Gy— - (4)

Here — denotes the occurrence of bifurcation, and G; (¢ = 1,2, ---) stand for subgroups

of G that label the reduced symmetry of the bifurcated solutions.

2.2  Block diagonalization

Let V' be the space of solutions u of system (1) that is G-equivariant in the sense of (2).
According to the theory of group representation, the space V' is decomposed uniquely into
a direct sum as
V= Ve, (5)
LER(G)

% Actual forms of (4) for particular groups are given, e.g., in Ikeda et al. [13], Ikeda and Murota [15],
Tanaka et al. [30], and Saiki et al. [27].



where V# denotes the subspace associated with a (real) irreducible representation® u of
G/, and R(G) indicates the set of all irreducible representations of G. The decomposition
(5) is called the isotypic decomposition.
In accordance with the decomposition (5), we may consider the coordinate transfor-

mation

u= H"ut, (6)

HER(G)

where u* is an independent variable associated with the subspace V# and H* is a matrix
made up of vectors forming an orthonormal basis of the subspace V*. Collecting H* for
all 1 € R(G), we define

H=(..,H" .., (7)

which is an n x n orthogonal matrix (H'H = I, with the identity matrix I,, of order n).
The transformation matrix H is not uniquely determined, but it should be chosen in view
of other factors, such as computational cost for the transformation. A natural choice for
discrete structures, such as trusses, is suggested in [21].

As a consequence of (2) and (3), the tangent stiffness matrix X' = 0F/du commutes
with T'(g) for all ¢ € G, i.e.,

T(g)K = KT(g), forgedG. (8)

It follows from (8) that the matrix K can be transformed by H in (7) into a block diagonal

form:
. O
K=H'KH= K+ : (9)
O

where K* = (H*)T K H*. Since det K = 0 if and only if det K* = 0 for some , the critical
points can be classified according to the diagonal block K* that becomes singular. Tt is

noted that, generically, such g is uniquely determined for a critical point.

®An irreducible representation means a representation matrix that does not split into a direct sum of

representations of smaller sizes. See, e.g., Ikeda and Murota [15] for this account.



3 Scaled corrector method
The scaled corrector method is briefly reviewed (Noguchi and Hisada [23]).

3.1 Newton iteration

We consider predictor-corrector steps during path-tracing of the governing equation (1).
In the corrector step, with the use of the corrector (du,d f), which is expected to reduce

the norm ||F(u, f)||, is determined from the Newton equation
Kéu—péf=—-F(u,f), (10)
where p = —0F/Jdf. When K is nonsingular, we have
su= K ' pdf - F(u, f)). (11)
Consider the eigenvalue problem of the tangent stiffness matrix K:
K®; =\, (12)

where A; and @; are the eigenvalue and eigenvector of K, respectively; it is assumed that
(®,)'®; =1 and (®;)T®; = 0if i £ j. It then follows that

)\]‘ = (q)j)TI((I)]‘. (13)
When K is nonsingular, we have
1
E'=>" r<1>]4(<1>]4)T. (14)
g=1 "/

3.2 Simple critical point

Suppose that we consider a simple bifurcation point and denote the eigenvalue vanishing
at this point by A;. In the vicinity of this point, the eigenvalue Ay approaches zero, and,

in turn, |1/A1| becomes very large. Then (14) can be approximated as
K~ Lo, (a7, (15)
Ay
With the use of (15) in (11), we obtain
1
du o~ [A—1(¢1)T(P5f - F)]&, (16)

which indicates that the eigenvector ®; for the eigenvalue Ay in question can be approx-

imated by the corrector du. Hence by defining the scaled corrector

du

@SC —
|15 ull

(17)



with the corrector du in (11), we have
P ~ @, (18)
Combining this with (13) motivates the definition of a pseudo-eigenvalue A:
A= ()T Ko™, (19)
Since ®°¢ approximates € in the vicinity of the simple critical point, we have
A~ Ay~ 0. (20)

In numerical analysis, accordingly, the location of a bifurcation point can be monitored
by the vanishing of the value of pseudo-eigenvalue A.

It is noted that, by a well-known fact in linear algebra, we have

A > min \; (21)
J

for any vector @3¢ of unit length. This means that A is an approximation of Ay from
the above in the most customary case where Ay is the smallest eigenvalue and the simple

critical point in question is the first critical point on the fundamental path.

3.3 Nearly coincidental critical points

Consider a nearly coincidental critical point with M (> 2) eigenvalues, say, A1, ..., Ap,

close to 0. In this case, (15) reduces to
<Ny
K1~
— 22
S e
and, in turn, (16) becomes
M

Sum S [5-(8,) (pOf ~ F)J;. (23

j=1 "

Then the scaled corrector and the pseudo-eigenvalue are expressed respectively as

12
&Mi

Hs° c;®;, (24)
j=1
) M
Ao Y () (25)
j=1
with some constants ¢; (j = 1,...,M). Thus ®°° ceases to simulate accurately ®; due
to the mixing with ®; (j =2,...,M); ) also becomes inaccurate.



3.4 Double critical points

Consider a double bifurcation point at which two zero eigenvalues say, A; and Ay, vanish.

For this point, (24) and (25) respectively become

D¢ ~ 01¢1—|—02¢27 (26)
Ao ()P + ()N (27)

It is possible to search for the location of the double bifurcation point as a point where
the pseudo-eigenvalue \ vanishes. Yet, only a single vector ®*¢, which is an approximation
to the mixture of ®; and ®,, can be obtained, while in the tracing of the bifurcated paths
the two critical eigenvectors ®; and ®; in general need to be employed (cf., Subsection

5.3).



4 Revised scaled corrector method

As we have seen in Section 3, the scaled corrector method has problems at coincidental or
nearly coincidental bifurcation points. As a remedy for this, the method is revised through
the implementation of the block-diagonalization for symmetric structures presented in
Subsection 2.2.

With the use of the decomposition (5) of the solution space, the scaled corrector is

expanded into a number of vectors with particular symmetries
P = P, (28)
HER(G)

where ®# is a vector in V* expressed using the matrix H* in (7) as
o+ = I+ (H*) TP, (29)
Accordingly, we define the pseudo-eigenvalue for each p by
M= (@M TKe" /(@) Ter. (30)
Then, as a ramification of (21), the relationship

A > K (31)

min

is satisfied, where A“. is the smallest eigenvalue of K* in (9).

Consider a neighborhood of a critical point and denote by p* the irreducible repre-
sentation associated with this critical point. Then a critical eigenvalue, say Ay, is an
eigenvalue of K** and we have

Dk

AT~ A > 0. (32)

In practice, a particular p* need to be identified. A procedure suggested in this paper

is:
e compute M\ for all p by (30) using (17) and (29),

e for each p, plot AH against a pertinent displacement component for sufficiently many

equilibrium points near the critical point, and
e find a particular g = p* for which zero-crossing of the values of M is encountered.

In addition to the determining of this location, the type of bifurcation point can be

classified in view of the critical eigenvector ®*".

10



5 Bifurcation of a system with regular-hexagonal symmetry

The bifurcation mechanism of a system with regular-hexagonal symmetry is briefly intro-
duced on the basis of Ikeda and Murota [15]. The revised scaled corrector method for such

a system, for which double bifurcation points are encountered generically, is proposed.

5.1 Description of symmetry

The symmetry of a regular hexagon shown in Fig. 1 is expressed by the invariance to the

following two kinds of transformations:

e r: counter-clockwise rotation at an angle of 27 /6 about the center of the hexagon,

and

e s: reflection with respect to the horizontal axis.

Thus the symmetry of the hexagon is labeled by the dihedral group of degree 6, being
defined as
D6:{e,r,---,r5,s,sr---,sr5}, (33)

where e denotes the identity transformation that leaves everything unchanged.

The symmetries of deformed regular hexagons are labeled by the subgroups of Deg,

DE | k=1,...,6/m;m=1,2
iy o
which are defined as
{ DE = {pin/m spin/mik=l | G001, m = 1}, (35)
Cp={r/™ | i=0,1,...,m—1}.

Here D! = D,,, C; = {e}; C; indicates asymmetry. Deformation patterns of the regular

hexagon labeled by these subgroups are shown in Fig. 2.

5.2 Irreducible representations of Dg

The group Dg has four one-dimensional irreducible representations and a pair of two-
dimensional irreducible representations, as listed in Table 1. The former corresponds to
simple critical points and the latter to double bifurcation points.

We denote the one-dimensional irreducible representations by

(—I'v—l')v (—I'v_)v (_7+)7 (_7_)7 (36)

which are defined in terms of the one-dimensional representation matrices as

TED ) = 1, TEH ()= 1
T(+7_) = 1 T(+7_) =1
TEHE =-1, TEY(s) = 1
T(_’_)(r) = -1, T(_’_)(s) =-1

11



where (—, 4), for example, indicates the antisymmetry with respect to the rotation r and
the symmetry with respect to the reflection s.
The two-dimensional irreducible representations are denoted by (j) for 7 = 1,2, which

are defined respectively by

G) () — cos(27j/6) —sin(275/6) O — 10 -
TV (r) = (sin(%j/6) cos(27j/6) ) , TY(s) = (0 _1) , J=1L2 (38)

Both of these two-dimensional irreducible representations are absolutely irreducible (ir-
reducible over complex numbers).

In general, the symmetry of an irreducible representation p of a group G is described
by a subgroup G* = {g € G | T"(g) = 1}, which also labels the symmetry of the critical

eigenvector that corresponds to p. In the case of Dg, we have

G(+7+) =D G(+7_) =C G(_7+) =D G(_v_) = ]:)2
ny ny n/2s n/2’ (39)
GH =y, GO =(,.

5.3 Block diagonalization

For a system equivariant to Dg, the isotypic decomposition (5) reads
V=vEHgagyvE-)gyeEt gy gy gy @), (40)

The transformation matrix (7) for the decomposition (40) is given by
H = (H(+’+), HE) gt gl g, H(Z)). (41)

With the use of the transformation matrix (41), the tangent stiffness matrix K can

be put into a block diagonal form (cf., (9)):

K = H'KH
K1)
K& O
K1)
- K(=-)
O KM
K®
= diag |KED KG) gD D) O g@ (42)

where diag[- - -] means the block-diagonal matrix with the diagonal block entries therein.
The diagonal block KU) (j =1,2) in (42) for a two-dimensional irreducible represen-
tation p = (1) or (2) splits further into two identical diagonal blocks, say K0 (j = 1,2),

L 5 ()
KU) = (K o ) . j=1,2, (43)

ie.,

o KU



if HG) (7 = 1,2) is chosen appropriately (cf., Subsection 5.5); this is a consequence of the
absolute irreducibility of p. Denoting such H () (7=1,2) as

HO = (O g2y, =19, (44)

we have

~

KO = (HONYT g gt = (O3 TR G2, (45)

Thus the block diagonal form (42) enjoys further block structures, namely,

K = diag |[KHH) K+ gD g2 0 (0 g g3 (46)
The two independent (critical) eigenvectors at a double bifurcation point can be obtained

from the eigenvalue problem of KU for j=1lorj=2.

5.4 Classification of critical points

At a critical point, one of the blocks in (42) in general becomes singular and the critical
point can be classified in view of the associated irreducible representation listed in Table

1. Namely,
e (+,+) corresponds to a limit point of the loading f.

e (+,-), (—,4), and (—,—) are associated with simple bifurcation points with Cg,
Ds-, and DZ2-invariant critical eigenvectors, respectively. The symmetries of the
solutions on bifurcated paths are identical with the symmetries of the critical eigen-

vectors.

e (7) (j = 1,2) correspond to double bifurcation points with C;- and Cg-invariant
critical eigenvectors, respectively. The symmetries of the solutions on bifurcated
paths labeled by Dé—symmetries (t=1,...,6/7) are different from the symmetries
of the critical eigenvectors labeled by C;.

5.5 Construction of transformation matrix

A systematic way to construct the transformation matrix H, presented in Murota and
lIkeda [21] with reference to the concept of orbit, is described.
The orbit of a nodal point, say, ¢ is defined to be the set of points obtained from ¢ by

transformations by the elements g of group G, namely,

{9-9 |geG} (47)

As shown in Fig. 4, Dg-invariant set of nodal points can be decomposed into the following

four types of orbits:

e orbit of type 0 consists of the center node,

13



e orbit of type 1V consists of six nodes of regular hexagonal shape,

e orbit of type 1M consists of six nodes of regular hexagonal shape in a different
direction than 1V, and

e orbit of type 2 consists of a dozen of Dg-invariant nodes.

The column vectors of the transformation matrix H associated with the orbits of types
0, 1V, and 1M are shown in Fig. 5, in which the arrows denote in plane deformations and
numerals denote out-of-plane deformations. Note that the orbit of type 2, which is not

employed in this paper, is omitted in this figure.

5.6 Implementation into the revised scaled corrector method

The bifurcation mechanism of D,,-invariant system is implemented into the framework of

the revised scaled corrector method.

5.6.1 Simple bifurcation point

For a simple bifurcation point, for which p* is one-dimensional,

*

P ~ & (48)

holds in its neighborhood for some p*. The critical bifurcation mode, therefore, can be
approximated by the scaled corrector ®*", as is also the case with the scaled corrector
method.

5.6.2 Double bifurcation point

For a double bifurcation point with two critical eigenvalues, corresponding to a two-
dimensional irreducible representation g = (1) or u = (2), the revised method presented
in Section 4 can further be refined. In view of the block structures (43) and (44), split

the eigenvector &) for j =1 and j = 2 into two independent eigenvectors:
V) = U1 | <I>(])27 j=1,2, (49)

where
@(])1 _ H(j)l(H(j)l)T@SC7 @(])2 — I{(])?(I{(j)?)T@SC7 ] — 17 9. (50)

It turns out to be convenient to choose this decomposition such that @)1 is D}—invariant
(7 = 1,2). Then for g = (1) or (2) the definition of the pseudo-eigenvalue (30) may be

replaced, with a slight abuse of notation, with

~

M= (@V)TReWi /(@) Tel)i ;=1 2, i=1,2. (51)

This means that for each p we have a pair of pseudo-eigenvalues distinguished by 7z = 1, 2.

14



The two independent eigenvectors )1 and ®)? obtained herein is useful in the

tracing of bifurcated paths. As was made clear in [15, 21], the bifurcated paths at the

double bifurcation point associated with p = (1) are to be found in the directions:

+p(1, Dy (= D{)-invariant,
+7(r) o) Di-invariant,
+7(r2) Di-invariant,
+$1)2, Di-invariant,
+7(r) @) DS-invariant,
:I:T(r2)<I> Di-invariant.

The bifurcated paths associated with p = (2) are to be found in the directions:

== G Dy (= Di)-invariant,
+7(r?) @)1 DZ-invariant,
+7(r4) @) Dj-invariant.

Fig. 3 illustrates schematically these directions.

15



Table 1: Classification of critical points of Dg-invariant system

Multiplicity | Irreducible Types of Symmetry groups
M representations p | critical points Eigenvector | Bifurcated paths
1 (+,4) Limit point of f Dg No bifurcation
1 (+,-) Cs Cs
(—+) Simple bifurcation D3 D3
(_7 _) DZQ% DZQ%
2 (7)) =12 Double bifurcation C; D;
(t=1,...,6/7)

16



27 /6

horizontal axis

Figure 1: A regular hexagon

O0Q
OQGQ

Figure 2: Deformation patterns of the regular hexagon
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j) forj=2

()1 TEeWt et o122  _7re? _7(r2)et)?

(¢) (j) for j =1

Figure 3: Critical eigenvectors directed towards bifurcated paths
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type 0 type 1V type 1M type 2

Figure 4: Four types of orbits
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Figure 5: Column vectors of H for the orbits of types 0, 1V, and 1M (the arrows denote in-

plane deformation patterns, and the numerals denote out-of-plane deformation patterns)
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6 Hangai truss dome

The Hangai truss dome shown in Fig. 6(a) serves as a simple example of Dg-invariant
structure; the governing equation of this dome enjoys Dg-equivariance.

Finite displacement elastic bifurcation analysis was conducted to obtain the curves of
load versus displacement shown in Fig. 6(b); all members of the dome are assumed to
have the same cross section A and the same modulus of elasticity F; we set FA = 1 for
normalization; the vertical load of 0.2f was applied to the center node and the vertical
loads of 0.4f to the regular hexagonal nodes surrounding the center node.

On the fundamental path with Dg-invariant deformation of this truss dome, there are

four critical points:
e bifurcation point A with Ds-invariant bifurcated path,
e bifurcation point B with Di-invariant (i = 1,2, 3) bifurcated paths,
e bifurcation point C with Di—invariant (¢=1,...,6) bifurcated paths, and
e limit point D.

See (33) and (35) for the definition of the groups.

6.1 Block diagonalization

The block diagonalization of the tangent stiffness matrix K of the Hangai dome is con-
ducted.
On the fundamental path, K is of the form of

K=

OX X OO0 00000000 X X OX OO0 X O
O 0O O OX X X OX OX X © 0O 00O O X OX
OO OO X X OX OO0OX X OO0O0O0O0OoOoX O
O OO X OO X OX X OO0 00000 O X OX
OO X XX X OX X OO0 0000 OO0 O X X X
OX OX X X OX X OO0 0000 OO0 O X X X

X X X X X X X OX X X X X X X X oX o oX
X X X X X X ©X ©X X X X X X ©0oX ooX o
X X X X X X X ©X X X X X X X X ©OX X oo
O X X ©0 00000 QCCeX X X O©X X ©X
X 0000000000 X O©0X OX X ©X
O 0000000 CeEeX X X X X X X X X
O 0000000 OCOX ©@X X X X X X X X
O 00000000 X @CX X X X O o X X X
O O OO0 OO0 O0OX X X X X OoX oo oX X X
O O OO0 OO0 O0OX X X X X OX oo ooX X X
O 000 O0O0OX ©OOX X X X @e oo X X X
X OO X XX X 0000000 OoOoOo o X X X
X X X @O0 X Q00000000 oX X X X X
X X X 00X 0000000000 oX X X X X
X X X X Q0000000000 X OO X X X

—~

ot

=

where X means nonzero entries.

The free nodes of the Hangai truss dome, shown in Fig. 6(a), are decomposed into two
orbits: the orbit of type 0 for the center node and the orbit of type 1V for the hexagonal
nodes surrounding the center node. The transformation matrix H for this case is to be

obtained through the assemblage of the column vectors for these two orbits shown in

19



Fig. 5. With the use of this transformation matrix H in (46), the tangent stiffness matrix

K can be put into a block diagonal form

K = H'KH = diag | K+ k() g(=F)

=
N

|

|
N
=
—~
=
=
=
—~
=
=
=
—~
L]
&
>‘\>
—~
L]
&

O 0000000000000 000 OX X X

OO0 000000000000 OO0 O Ox X X
OO0 000000000000 OO0 O Ox X X
OO 000000000000 OO0 OX|looo
OO0 000000000000 OX X|oo oo
OO0 000000000000 OX X|oo oo
CoO0OO0O00O00 00000 ox|loooooo
©O 000000000 OoX X X|[ooo oo oo
©O 000000000 OoX X X|[ooo oo oo
©O 000000000 OoX X X|[ooo oo oo
©C 0 O0OlX X X X|ooooooooooooo
©C 0 O0OlX X X X|ooooooooooooo
©C 0 O0OlX X X X|ooooooooooooo
© 00 OIX X X X|[ocooooooooooooo
X X X X|[oo o o0ooooooooooo o oo
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The critical points A, B, C, and D, shown in Fig. 6(b), can be classified as the points where
KD KM K@) and K+ respectively become singular. This means, in particular,

that A and D are simple critical points and B and C are double critical points.

6.2 Search for bifurcation points

The original scaled corrector method and the revised one proposed in this paper were
employed to search for the bifurcation points A, B, and C of the Hangai truss dome
without resort to the eigenanalysis.

First, the original scaled corrector method was employed. The pseudo-eigenvalues A
for the scaled corrector ¢ in (17) were computed by (19) and plotted by (e) in Fig. 7
against the vertical displacement of the center node. For comparison, the eigenvalues
A; computed by the eigenanalysis are also shown in this figure by the dashed curves for
simple eigenvalues and by the solid curves for double eigenvalues; both of these curves
are monotone decreasing, and the zero crossing points of these curves correspond to the
locations of those bifurcation points. The pseudo-eigenvalues plotted in this manner
display a large scatter especially away from those bifurcation points. The zero crossing of
the pseudo-eigenvalues X indicated by (e) is not very clear and it is difficult to determine
the locations of bifurcation points.

Next, the revised scaled corrector method was employed. The pseudo-eigenvalues
M for = (+,4), (4, =), (= 4), (=, =), (1), (2) were computed by (30) and plotted in
Fig. 8. Here, for = (1) and p = (2), which are two-dimensional, two sets of \*’s for &)1
and ®U)2 (j = 1,2) were computed by (51). It is noted that the corresponding diagonal
blocks for (4, —) and (—, —) in (55) are one-dimensional and hence the pseudo-eigenvalues

coincide exactly with the eigenvalues; accordingly, s for (+,-) and (—,—) display no
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scatter. The pseudo-eigenvalues for p other than (+, —) and (—, —) display scatters, which
are significantly smaller than those for the original scaled corrector method in Fig. 7.

The zero crossing of the pseudo-eigenvalues A was recognized for
e i = (—,+) corresponding to the bifurcation point A,

e 1 = (2) to the bifurcation point B, and

e 1 = (1) to the bifurcation point C.

From Table 1, the point A can be classified as a simple bifurcation point with Dz-invariant
bifurcated path. The point B, at which pseudo-eigenvalues for y = (2) cross zero, is a
double bifurcation point with Di-invariant (i = 1,2, 3) bifurcated paths. Likewise, the
point C is a double bifurcation point with Di—invariant (¢ =1,...,6) bifurcated paths.
The multiplicity of bifurcation points has thus been identified by the revised method.

In addtion, we can see from Fig. 8 that the computed AM’s serve as an upper bound

on the true eigenvalue; it assesses the validity of (31).

6.3 Determination of bifurcation modes

For the simple bifurcation point A, the accuracy of the bifurcation mode ®*¢ computed
by the scaled corrector method and that of ®(=1) by the revised method are com-
pared with reference to the exact eigenvector ®; for the smallest eigenvalue A; com-
puted by the eigenanalysis. We plot in Fig. 9 the values of cos#** = (<I>SC)T<I>1 and
cos 8—F) = (@(=)T@, /||®(—1)||, which should coincide with the unity when the com-
puted bifurcation modes are exact. For the data of the scaled corrector method shown by
the dotted line, the accuracy up to 5 digits is ensured only in a very close neighborhood
of the bifurcation point A. For the data of the revised method shown by the solid line,
such accuracy is ensured in a wide range of the abscissa, the center node displacement.
This may suffice to demonstrate the superiority of the revised method.

For the double bifurcation point B, a pair of critical eigenvectors are to be obtained.
The critical eigenvectors obtained by the scaled corrector method and the revised method
are compared in Fig. 10. By the scaled corrector method, only a single bifurcation mode
®%¢ which does not necessarily coincide with the direction of a bifurcated path, was
obtained at an equilibrium point. By contrast, by the revised method, two bifurcation
modes 1 and &322 in (49) were successfully obtained; moreover, with the use of the
bifurcation mode &' obtained herein, bifurcated paths in the directions of (53) labeled
by D% (i =1,...,3) (cf., Table 1) can be found in a systematic manner.

For the double bifurcation point C, only a single bifurcation mode ®%¢ again was
obtained by the scaled corrector method. By contrast, a pair of bifurcation modes @ (1)1
and W2 were successfully obtained by the revised method. Moreover, bifurcated paths

in the directions of (52) labeled by D} (i = 1,...,6) can be found in a systematic manner.
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As we have seen, the revised method is consistent with the bifurcation analysis at a

double bifurcation point and, hence, is superior to the original scaled corrector method.
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Figure 7: Pseudo-eigenvalue A computed by the scaled corrector method for the Hangai
truss dome (dashed and solid curves: simple and double eigenvalues A\; computed by the

eigenanalysis, respectively)
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7 Reticulated regular-hexagonal truss dome structure

As an example of a large-scaled symmetric structure, we refer to the regular hexagonal
elastic reticulated truss dome structure with 50 layers shown in Fig. 11(a).

Finite displacement elastic bifurcation analysis was conducted to obtain the curves of
load versus displacement shown in Fig. 11(b). All members of the dome are assumed to
have the same cross section A and the same modulus of elasticity F; we set FA = 1 for
normalization. The vertical load of ¢f was applied to the center node, the vertical loads
of 2¢f,2%¢cf,... were applied to the 49 layers of the regular hexagonal nodes from inside
towards outside, where ¢ = 6.28 x 107'¢ to normalize the loading pattern vector.

On the fundamental path with Dg-invariant deformation of this truss dome, there are

four critical points:
e limit point E,
e bifurcation point F with Di-invariant (i = 1,...,6) bifurcated paths,
e bifurcation point G with Dé—invariant (1 =1,2,3) bifurcated paths, and
e bifurcation point H with Ds-invariant bifurcated path.

Note that the critical points E and F are nearly coincidental.

7.1 Construction of the transformation matrix

The regular hexagonal truss dome structure shown in Fig. 11(a) consists of: one orbit of
type 0 for the center node, 25 orbits of type 1V for hexagonal nodes, and 25 orbits of type
1M for hexagonal nodes in another direction. The transformation matrix H for this dome
can be constructed through the assemblage of the column vectors for the orbits of types
0, 1V, and 1M shown in Fig. 5. The numbers of column vectors of H*, which represent
the sizes of the blocks in (46), are listed in Table 2.

7.2 Search for bifurcation points

The original scaled corrector method and the revised one proposed in this paper were
employed to search for the critical points E, F, G, and H of the regular-hexagonal truss
dome without resort to the eigenanalysis.

First, the original scaled corrector method was employed to obtain the pseudo-eigenvalues
A plotted by (e) in Fig. 12. The zero crossing of the pseudo-eigenvalues can be clearly seen
at the nearly coincidental critical points E and F; however, it is not possible to distinguish
these points. It is difficult to locate the bifurcation points G and H.

Next, the revised scaled corrector method was employed to compute the pseudo-
eigenvalues X for ®* in Fig. 13. Each of the four critical points E, I, G and H can be

clearly recognized by the zero crossing of the pseudo-eigenvalues X’s for
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p = (4, +) corresponding to the limit point E,

p = (1) to the double bifurcation point I,

p = (2) to the double bifurcation point G, and
e i = (—,+) corresponding to the simple bifurcation point H.

The multiplicity of bifurcation points has thus been identified by the revised method. The
bifurcation analysis can be conducted in a systematic manner with the use of the critical

eigenvectors obtained by the proposed method.
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Table 2: The numbers of column vectors of H* for the regular-hexagonal truss dome

structure with 50 layers

Irreducible representation g | Number of column vectors for H*

(+, +) 99
(+,-) 49
(= +) 74
(= —) 73

1
2

1484148
1474147

(1)
(2)
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8 Conclusions

A new bifurcation analysis method that combines the mechanism of bifurcation of sym-
metric structure with the scaled corrector method is proposed. The method proposed is
applied to the bifurcation analysis of reticulated regular-hexagonal truss domes to com-
pute accurately the locations of double bifurcation points and nearly coincidental bifurca-
tion points. Moreover, without resort to the eigenanalysis, a pair of critical eigenvectors
at a double bifurcation point can be computed accurately and the bifurcated paths can
be traced in a systematic manner. This shows the superiority of the proposed method

over the original scaled corrector method.
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