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Abstract

The concept of L♮-convexity is introduced by Fujishige–Murota (2000) as a dis-
crete convexity for functions defined over the integer lattice. The main aim of this
note is to understand the difference of the two algorithms for L♮-convex function
minimization: Murota’s steepest descent algorithm (2003) and Kolmogorov’s primal
algorithm (2005).

1 Introduction

The concept of L♮-convexity is introduced by Fujishige–Murota [2] as a discrete convexity
for functions defined over the integer lattice. This is a variant of L-convexity due to
Murota [5], and later turned out to be equivalent to integral convexity by Favati–Tardella
[1]. See [6] for details.

The main aim of this note is to understand the difference of the two algorithms for L♮-
convex function minimization: Murota’s steepest descent algorithm [7] and Kolmogorov’s
primal algorithm [4].

1.1 L♮-convex Functions

Let V be a nonempty finite set. A function g : ZV → R∪{+∞} with dom g 6= ∅ is called
L-convex if it satisfies the following properties:

(LF1) g(p) + g(q) ≥ g(p ∧ q) + g(p ∨ q) (∀p, q ∈ dom g),
(LF2) ∃r ∈ R such that g(p + λ1) = g(p) + λr (∀p ∈ dom g, ∀λ ∈ Z),

where dom g = {p ∈ ZV | g(p) < +∞}, the vectors p ∧ q, p ∨ q ∈ ZV are defined by

(p ∧ q)(v) = min{p(v), q(v)}, (p ∨ q)(v) = max{p(v), q(v)} (v ∈ V ),

∗On leave from Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan.
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and 1 ∈ ZV is the vector with all components equal to one. A function g : ZV → R∪{+∞}
with dom g 6= ∅ is called L♮-convex if the function g̃ : Z × ZV → R ∪ {+∞} defined by

g̃(p0, p) = g(p − p01) (p0 ∈ Z, p ∈ ZV ) (1)

is L-convex. The class of L♮-convex functions contains that of L-convex functions as a
proper subclass.

L♮-convex functions can be characterized by the following property:

Theorem 1 ([6]). A function g : ZV → R ∪ {+∞} with dom g 6= ∅ is L♮-convex if and

only if for all p, q ∈ ZV with supp+(p − q) 6= ∅, we have

g(p) + g(q) ≥ g(p − χZ) + g(q + χZ),

where Z = arg max{p(v) − q(v) | v ∈ V }.

An L♮-convex function restricted to the integer interval has the unique minimal and
maximal minimizers.

Proposition 2. Let g : ZV → R ∪ {+∞} be an L♮-convex function, and a, b ∈ ZV be

vectors with {p ∈ dom g | a(v) ≤ p(v) ≤ b(v) (v ∈ V )} 6= ∅. Then, the set arg min{g(p) |
a(v) ≤ p(v) ≤ b(v) (v ∈ V )} contains the unique minimal and maximal minimizers.

See [6] for more accounts on L♮-convex functions.

1.2 Murota’s and Kolmogorov’s Algorithms

To the end of this note, we assume that g : ZV → R ∪ {+∞} is an L♮-convex function
with arg min g 6= ∅. Murota’s steepest descent algorithm [7] is described as follows:

Murota’s steepest descent algorithm
S0: Find a vector p ∈ dom g.
S1: Set ε ∈ {1,−1} and X ⊆ V as follows.

S1-1: Let X+ be the minimal minimizer of ρ+
p (X) = g(p + χX) − g(p).

S1-2: Let X− be the maximal minimizer of ρ−p (X) = g(p − χX) − g(p).
S1-3: If min ρ+

p ≤ min ρ−p then set (ε,X) = (1,X+);
otherwise set (ε,X) = (−1,X−).

S2: If g(p) ≤ g(p + εχX), then stop (p is a minimizer of g).
S3: Set p := p + εχX and go to S1.

A minimizer of a submodular set function can be found in strongly polynomial time
by the existing algorithms [3, 8]. In particular, a maximal/minimal element in the set
of minimizers can be found without extra running time by Iwata–Fleischer–Fujishige’s
algorithm [3].

On the other hand, Kolmogorov’s primal algorithm [4] is obtained by replacing Step
S1 of Murota’s algorithm with the following:

Kolmogorov’s primal algorithm
S1: Set ε ∈ {1,−1} and X ⊆ V as follows.

S1-1: Let X+ be any minimizer of ρ+
p (X).

S1-2: Let X− be any minimizer of ρ−p (X).
S1-3: If ρ+

p (X+) = 0 then set (ε,X) = (−1,X−);
if ρ−p (X−) = 0 then set (ε,X) = (1,X+);
otherwise choose either of (1,X+) and (−1,X−) arbitrarily as (ε,X).
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Figure 1: Behavior of Kolmogorov’s and Murota’s algorithms for g2 with the initial vector
(0, 3). Each value associated with each integral lattice point shows the function value of
g2 at that point.

Kolmogorov’s algorithm has more flexibility in the choice of a next step (ε,X) than
Murota’s algorithm, and therefore Murota’s algorithm can be seen as a specialized imple-
mentation of Kolmogorov’s algorithm.

Kolmogorov [4] has shown that the number of iterations required by his algorithm
(and hence Murota’s) is bounded by 2K∞

g , where

K∞
g = max{||p − q||∞ | p, q ∈ dom g}.

Kolmogorov’s algorithm, however, may require more iterations than Murota’s, as shown
in the following example.

Let g2 : Z2 → R ∪ {+∞} be an L♮-convex function defined as

g2(p1, p2) =

{

max{2p1 − p2,−p1 + 2p2} ((p1, p2) ∈ Z2
+),

+∞ (otherwise).

Note that (0, 0) is the unique minimizer of g2. Let (0, k) be the initial vector of the
algorithms. Then, Kolmogorov’s algorithm may possibly generate the following sequence
of vectors with length 2k + 1:

(p1, p2) (0, k) (1, k) · · · (k − 1, k) (k, k) (k − 1, k − 1) · · · (1, 1) (0, 0)

g2(p1, p2) 2k 2k − 1 · · · k + 1 k k − 1 · · · 1 0

On the other hand, Murota’s algorithm generates the following sequence of length k + 1:

(p1, p2) (0, k) (0, k − 1) · · · (0, 1) (0, 0)

g2(p1, p2) 2k 2(k − 1) · · · 2 0

which is shorter than the one by Kolmogorov’s algorithm (see Figure 1).
More generally, we consider an L♮-convex function gn : Zn → R ∪ {+∞} defined as

gn(p) =











(n + 1)max{pi | i = 1, . . . , n} −
n

∑

j=1

pj (p ∈ Zn
+),

+∞ (otherwise)
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where n is a positive integer with n ≥ 2. If we apply the two algorithms to gn with
the initial vector (0, . . . , 0, k), then Kolmogorov’s algorithm may generate the following
sequence of length 2k + 1:

(0, . . . , 0, k), (1, . . . , 1, k), (2, . . . , 2, k), . . . , (k − 1, . . . , k − 1, k), (k, . . . , k, k),
(k − 1, . . . , k − 1, k − 1), (k − 2, . . . , k − 2, k − 2), . . . , (1, . . . , 1, 1), (0, . . . , 0, 0),

while Murota’s algorithm generates the following sequence of length k + 1:

(0, . . . , 0, k), (0, . . . , 0, k − 1), (0, . . . , 0, k − 2), . . . , (0, . . . , 0, 1), (0, . . . , 0, 0).

It should be noted that both algorithms require 2K∞
g iterations in the worst case (see

[4] for such an example), i.e., the order of the worst-case bound is the same.

2 Analysis of the Number of Iterations

In this section we analyze the number of iterations required by Kolmogorov’s and Murota’s
algorithms.

2.1 Analysis of Kolmogorov’s Algorithm

The analysis given in this section is essentially the same as the one in [4]. We present the
result in [4] in a way consistent with the analysis for Murota’s algorithm given in Section
2.2.

To analyze the number of iterations required by Kolmogorov’s algorithm, we define
values β+(p) and β−(p) for each vector p ∈ dom g as follows:

β+(p) = min{||q − p||∞ | q ∈ arg min{g(q′) | q′ ≥ p}},

β−(p) = min{||q − p||∞ | q ∈ arg min{g(q′) | q′ ≤ p}}.

The value β+(p) is the distance between p and the unique minimal minimizer of g in
the region {q′ ∈ ZV | q′ ≥ p}; β−(p) is the distance between p and the unique maximal
minimizer of g in the region {q′ ∈ ZV | q′ ≤ p}.

Proposition 3 ([4]). For p ∈ dom g, if β+(p) = β−(p) = 0 then p ∈ arg min g.

Proof. If β+(p) = β−(p) = 0, then we have g(p) ≤ g(p + εχX) for all ε ∈ {1,−1} and
X ⊆ V . Hence, p is a minimizer of g since g is an L♮-convex function (see, e.g., [6]).

Note that β+(p) = 0 (resp. β−(p) = 0) alone implies p ∈ arg min{g(p′) | p′ ≥ p}
(resp. p ∈ arg min{g(p′) | p′ ≤ p}), but does not imply p ∈ arg min g in general.

Each iteration of Kolmogorov’s algorithm increases neither of β+(p) nor β−(p) and
decreases strictly at least one of β+(p) and β−(p).

Proposition 4 ([4]). In Step S1, we have the following:

(i) If β+(p) > 0, then β+(p + χX+) = β+(p) − 1 and β−(p + χX+) ≤ β−(p).
(ii) If β−(p) > 0, then β−(p − χX−) = β−(p) − 1 and β+(p − χX−) ≤ β+(p).

Proof. We prove (i) only; the claim (ii) can be shown in the same way.
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[Proof of “β+(p + χX+) = β+(p) − 1”] We denote by p̂, q̂ ∈ ZV the unique minimal
vectors in arg min{g(p′) | p′ ≥ p} and in arg min{g(p′) | p′ ≥ p + χX+}, respectively. We
will show that

q̂ = p̂ ∨ (p + χX+), (2)

Y + ⊆ X+, where Y + = arg max{p̂(v) − p(v) | v ∈ V }. (3)

Then, we have

β+(p + χX+) = ||(p̂ ∨ (p + χX+)) − (p + χX+)||∞ = ||p̂ − p||∞ − 1 = β+(p) − 1,

where the first equality is by (2) and the second by (3).
We first prove (2). By the submodularity of g, we have

g(p̂) + g(p + χX+) ≥ g(p̂ ∨ (p + χX+)) + g(p̂ ∧ (p + χX+)). (4)

Since p ≤ p̂ ∧ (p + χX+) ≤ p + χX+ and X+ ∈ arg min ρ+
p , we have g(p + χX+) ≤

g(p̂ ∧ (p + χX+)), which, together with (4), implies

g(p̂) ≥ g(p̂ ∨ (p + χX+)). (5)

Since q̂ ≥ p + χX+ ≥ p and p̂ ∈ arg min{g(p′) | p′ ≥ p}, we have

g(q̂) ≥ g(p̂). (6)

Similarly, we have

g(p̂ ∨ (p + χX+)) ≥ g(q̂) (7)

since p̂∨ (p + χX+) ≥ p + χX+ and q̂ ∈ arg min{g(p′) | p′ ≥ p + χX+}. It follows from (5),
(6), and (7) that g(p̂) = g(q̂) = g(p̂ ∨ (p + χX+)), which in turn implies

q̂ ∈ arg min{g(p′) | p′ ≥ p}, p̂ ∨ (p + χX+) ∈ arg min{g(p′) | p′ ≥ p + χX+}.

It follows from the choices of p̂ and q̂ that p̂ ≤ q̂ and q̂ ≤ p̂∨ (p+χX+). These inequalities
and p + χX+ ≤ q̂ imply (2).

We then prove (3). Assume, to the contrary, that Y + \ X+ 6= ∅. Put

Z+ = arg max{p̂(v) − p(v) − χX+(v) | v ∈ V } = Y + \ X+.

Theorem 1 implies

g(p̂) + g(p + χX+) ≥ g(p̂ − χZ+) + g(p + χX+ + χZ+).

Since χX+ + χZ+ = χX+∪Y + , we have g(p+ χX+ + χZ+) = g(p+ χX+∪Y +) ≥ g(p+ χX+),
where the inequality is by X+ ∈ arg min ρ+

p . Hence, we have g(p̂) ≥ g(p̂ − χZ+), a

contradiction to the fact that p̂ is the minimal minimizer in {p′ ∈ ZV | p′ ≥ p} since
p̂ − χZ+ ≥ p.

[Proof of “β−(p + χX+) ≤ β−(p)”] We denote by p̌, q̌ ∈ ZV the unique maximal
vectors in arg min{g(p′) | p′ ≤ p} and in arg min{g(p′) | p′ ≤ p + χX+}, respectively.

We first show q̌ ≥ p̌. By the submodularity of g, we have g(p̌)+g(q̌) ≥ g(p̌∨q̌)+g(p̌∧q̌).
Since p̌ ∈ arg min{g(p′) | p′ ≤ p} and p̌ ∧ q̌ ≤ p̌, we have g(p̌) ≤ g(p̌ ∧ q̌). Therefore,

5



g(q̌) ≥ g(p̌ ∨ q̌) holds. Since q̌ ≤ p̌ ∨ q̌ ≤ p + χX+ and q̌ is the maximal vector in
arg min{g(p′) | p′ ≤ p + χX+}, we have q̌ = p̌ ∨ q̌, i.e., q̌ ≥ p̌.

If β−(p) = 0, i.e., p̌ = p, then we have β−(p + χX+) = 0 and q̌ = p + χX+ since
p + χX+ is a minimizer of g in the set {p′ ∈ ZV | p̌ = p ≤ p′ ≤ p + χX+}. Hence, we
assume β−(p) > 0 in the following.

We then show X+ ∩ Y − = ∅, where Y − = arg max{p(v) − p̌(v) | v ∈ V }. Assume, to
the contrary, that X+ ∩ Y − 6= ∅. Then, Theorem 1 implies

g(p + χX+) + g(p̌) ≥ g(p + χX+\Y −) + g(p̌ + χX+∩Y −)

since X+∩Y − = arg max{p(v)+χX+(v)− p̌(v) | v ∈ V }. Since X+ ∈ arg min ρ+
p , we have

g(p + χX+) ≤ g(p + χX+\Y −), which implies g(p̌) ≥ g(p̌ + χX+∩Y −). Since β−(p) > 0, we
have p̌ ≤ p̌ + χX+∩Y − ≤ p, a contradiction to the fact that p̌ is the maximal minimizer of
g in {p′ ∈ ZV | p′ ≤ p}.

Finally, we have

β−(p + χX+) = ||(p + χX+) − q̌||∞ ≤ ||(p + χX+) − p̌||∞ = ||p − p̌||∞ = β−(p),

where the inequality follows from q̌ ≥ p̌ and the second equality by X+ ∩ Y − = ∅.

We note that a slightly weaker statement is shown in [4][Theorem 1], where the equalities
“=” in “β+(p + χX+) = β+(p) − 1” and “β−(p− χX−) = β−(p) − 1” in the statement of
Proposition 4 are replaced with inequalities “≤”.

Proposition 5 ([4]). The number of iterations of Kolmogorov’s primal algorithm for

L♮-convex function g is bounded by β+(p◦) + β−(p◦), which is further bounded by 2K∞
g .

2.2 Analysis of Murota’s Algorithm

The results in this section except for the last proposition (Proposition 12) are based on
the unpublished memorandum [9].

In [7], Murota firstly proposes a steepest descent algorithm for L-convex functions,
which is then adapted to L♮-convex functions through the relation (1). For the simplicity
of the proof, we firstly analyze the number of iterations required by the algorithm for
L-convex functions, and then restate the result in terms of L♮-convex functions.

2.2.1 Analysis of Steepest Descent Algorithm for L-convex Functions

Murota’s steepest descent algorithm for L-convex functions is described as follows, where
Ṽ = {0} ∪ V and g̃ : ZṼ → R ∪ {+∞} is an L-convex function with arg min g̃ 6= ∅.

Murota’s steepest descent algorithm for L-convex functions
S0: Find a vector q̃ ∈ dom g̃.
S1: Let X̃ be the minimal minimizer of ρq̃(X̃) = g̃(q̃ + χX̃) − g̃(q̃).
S2: If g̃(q̃) ≤ g̃(q̃ + χX̃), then stop (q̃ is a minimizer of g̃).
S3: Set q̃ := q̃ + χX̃ and go to S1.

We analyze the number of iterations required by the algorithm. Let q̃◦ be the initial
vector found in Step S0, and denote by q̃∗ the smallest of minimizers of g̃ with q̃∗ ≥ q̃◦.
It is shown in [7] that the number of iterations of the algorithm is bounded by

K̂g̃ = max{||q̃ − q̃′||1 | q̃, q̃′ ∈ dom g̃, q̃(v) = q̃′(v) for some v ∈ Ṽ }.
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We show that the number of iterations is bounded by

K̂∞
g̃ = max{||q̃ − q̃′||∞ | q̃, q̃′ ∈ dom g̃, q̃(v) = q̃′(v) for some v ∈ Ṽ },

which is smaller than K̂g̃.

Lemma 6. In Step S1, q̃ ≤ q̃∗ and q̃ 6= q̃∗ imply

X̃ ∩ {v ∈ Ṽ | q̃∗(v) − q̃(v) = 0} = ∅ and arg max{q̃∗(v) − q̃(v) | v ∈ Ṽ } ⊆ X̃,

and hence, q̃ + χX̃ ≤ q̃∗ and ||(q̃ + χX̃) − q̃∗||∞ = ||q̃ − q̃∗||∞ − 1, in particular.

Proof. The first claim is already shown in [7][Lemma 3.2]; hence we prove below the
second claim. Put Ỹ = arg max{q̃∗(v) − q̃(v) | v ∈ Ṽ }, and assume to the contrary that
Ỹ \ X̃ 6= ∅ holds. Put

Z̃ = arg max{q̃∗(v) − q̃(v) − χX̃(v) | v ∈ Ṽ } = Ỹ \ X̃.

Theorem 1 implies

g(q̃∗) + g(q̃ + χX̃) ≥ g(q̃∗ − χZ̃) + g(q̃ + χX̃ + χZ̃).

Since χX̃ + χZ̃ = χX̃∪Ỹ , we have g(q̃ + χX̃ + χZ̃) = g(q̃ + χX̃∪Ỹ ) ≥ g(q̃ + χX̃), where the

inequality is by X̃ ∈ arg min ρq̃. Hence, we have g(q̃∗) ≥ g(q̃∗ − χZ̃), a contradiction to
the fact that q̃∗ is the minimal minimizer of g̃ with q̃∗ ≥ q̃ since q̃∗ − χZ̃ ≥ q̃.

Proposition 7. The number of iterations of the steepest descent algorithm for L-convex

function g̃ is equal to ||q̃◦ − q̃∗||∞, which is bounded by K̂∞
g̃ .

The following lemma is used in the analysis of the steepest descent algorithm for
L♮-convex functions.

Lemma 8. In each iteration it holds that

arg min{q̃∗(v) − q̃(v) | v ∈ Ṽ } = {v ∈ Ṽ | q̃∗(v) − q̃(v) = 0}.

Proof. The property (LF1) for g̃ implies q̃∗(v) = q̃◦(v) for some v ∈ Ṽ . Hence, the set
{v ∈ Ṽ | q̃∗(v)− q̃(v) = 0} is nonempty at the beginning of the algorithm. Then, Lemma
6 implies that this set is nonempty during the following iterations. Since q̃∗ ≥ q̃ holds by
Lemma 6, we have the claim.

2.2.2 Analysis of Steepest Descent Algorithm for L♮-convex Functions

We analyze the number of iterations required by the steepest descent algorithm for L♮-
convex functions.

The behavior of the steepest descent algorithm for g with the initial vector p◦ ∈ ZV is
essentially the same as that of the steepest descent algorithm for the L-convex function g̃

defined by (1) with the initial vector q̃◦ = (0, p◦) ∈ Z×ZV . The correspondence between
the two steepest descent algorithms is as follows (see [7]):

L♮-convex g L-convex g̃

p → p + χX ⇐⇒ q̃ → q̃ + (0, χX )
p → p − χX ⇐⇒ q̃ → q̃ + (1, χV \X)

7



where q̃ = (p0, p + p01) and p0 is a nonnegative integer representing the number of
iterations with (ε,X) = (−1,X−) so far.

To analyze the number of iterations required by the algorithm for L♮-convex functions,
we define values α+(p) and α−(p) for each vector p ∈ dom g as follows. For all p, p′ ∈ ZV

we define

d+
∞(p, p′) = max

[

0, max
v∈supp+(p−p′)

|p(v) − p′(v)|
]

,

d−∞(p, p′) = max
[

0, max
v∈supp−(p−p′)

|p(v) − p′(v)|
]

.

Let q̃∗ = (q∗0, q
∗) ∈ Z × ZV be the unique minimal vector in the set

{(q0, q) ∈ Z × ZV | q − q01 ∈ arg min g, (q0, q) ≥ (0, p◦)}.

Note that p∗ = q∗ − q∗01 is the minimizer of g found by the algorithm for L♮-convex
functions. Then, α+(p) and α−(p) are defined as

α+(p) = d+
∞(p∗, p), α−(p) = d−∞(p∗, p).

Since

α+(p◦) + α−(p◦) = d+
∞(p∗, p◦) + d−∞(p∗, p◦) = ||(q∗0 , q

∗) − (0, p◦)||∞,

the number of iterations is equal to α+(p◦) + α−(p◦) by Proposition 7. In particular, we
can prove the following property.

Proposition 9.
(i) If (ε,X) = (1,X+) in Step S1, then α+(p+εχX) = α+(p)−1 and α−(p+εχX) = α−(p).
(ii) If (ε,X) = (−1,X−) in Step S1, then α+(p + εχX) = α+(p) and α−(p + εχX) =
α−(p) − 1.

To prove Proposition 9, we restate Lemma 6 in terms of L♮-convex functions by using
the correspondence between the two steepest descent algorithms.

Lemma 10.
(i) Suppose that (ε,X) = (1,X+) holds in Step S1. Then, we have the following:

(i-1) supp+(p∗ − p) 6= ∅ and {v ∈ supp+(p∗ − p) | p∗(v)− p(v) = α+(p)} ⊆ X.

(i-2) if V \supp+(p∗−p) 6= ∅, then X∩{v ∈ V \supp+(p∗−p) | p∗(v)−p(v) =
−α−(p)} = ∅.

(ii) Suppose that (ε,X) = (−1,X−) holds in Step S1. Then, we have the following:

(ii-1) supp−(p∗−p) 6= ∅ and {v ∈ supp−(p∗−p) | p∗(v)−p(v) = −α−(p)} ⊆ X.

(ii-2) if V \supp−(p∗−p) 6= ∅, then X∩{v ∈ V \supp−(p∗−p) | p∗(v)−p(v) =
α+(p)} = ∅.

Proof. We first note that for all v ∈ V ,

p∗(v) − p(v) = q̃∗(v) − q̃(v) − q∗0 + p0 = {q̃∗(v) − q̃(v)} − {q̃∗(0) − q̃(0)}.
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Hence, we have the following equivalences for all u ∈ V and v ∈ V ∪ {0}, where p∗(0) −
p(0) = 0 for convenience.

p∗(u) − p(u) < p∗(v) − p(v) ⇐⇒ q̃∗(u) − q̃(u) < q̃∗(v) − q̃(v), (8)

p∗(u) − p(u) = p∗(v) − p(v) ⇐⇒ q̃∗(u) − q̃(u) = q̃∗(v) − q̃(v), (9)

p∗(u) − p(u) > p∗(v) − p(v) ⇐⇒ q̃∗(u) − q̃(u) > q̃∗(v) − q̃(v). (10)

[Proof of (i-1)] By Lemma 6 we have

arg max{q̃∗(v) − q̃(v) | v ∈ Ṽ } ⊆ X. (11)

This implies q̃∗(u) − q̃(u) > q̃∗(0) − q̃(0) for some u ∈ X (⊆ V ), which in turn implies
supp+(p∗ − p) 6= ∅ by (10) with v = 0. Therefore, we have

arg max{q̃∗(v) − q̃(v) | v ∈ Ṽ } ∩ V = {v ∈ supp+(p∗ − p) | p∗(v) − p(v) = α+(p)},

which, together with (11), implies the latter claim.
[Proof of (i-2)] By (8) and (9), we have q̃∗(v) − q̃(v) ≤ q̃∗(0) − q̃(0) for all v ∈

V \ supp+(p∗ − p). Therefore, if V \ supp+(p∗ − p) 6= ∅ then

arg min{q̃∗(v) − q̃(v) | v ∈ Ṽ } ∩ V = {v ∈ V \ supp+(p∗ − p) | p∗(v) − p(v) = −α−(p)}.

Hence, the claim follows immediately from Lemmas 6 and 8.
[Proof of (ii-1)] The proof is similar to that for (i-1). By Lemmas 6 and 8, we have

[(V \ X) ∪ {0}] ∩ arg min{q̃∗(v) − q̃(v) | v ∈ Ṽ } = ∅. (12)

This implies q̃∗(0) − q̃(0) > q̃∗(u) − q̃(u) for some u ∈ X (⊆ V ), which in turn implies
supp−(p∗ − p) 6= ∅ by (8) with v = 0. Therefore, we have

arg min{q̃∗(v) − q̃(v) | v ∈ Ṽ } ∩ V = {v ∈ supp−(p∗ − p) | p∗(v) − p(v) = −α−(p)},

which, together with (12), implies the latter claim.
[Proof of (ii-2)] The proof is similar to that for (i-2). By (9) and (10), we have

q̃∗(v)− q̃(v) ≥ q̃∗(0)− q̃(0) for all v ∈ V \supp−(p∗−p). Therefore, if V \supp−(p∗−p) 6= ∅
then

arg max{q̃∗(v) − q̃(v) | v ∈ Ṽ } ∩ V = {v ∈ V \ supp−(p∗ − p) | p∗(v) − p(v) = α+(p)},

which, together with Lemma 6, implies

{v ∈ V \ supp−(p∗ − p) | p∗(v) − p(v) = α+(p)} ⊆ V \ X.

Hence, the claim follows.

Proposition 9 is an immediate consequence of Lemma 10. Hence, we obtain the
following proposition.

Proposition 11. The number of iterations of Murota’s steepest descent algorithm for

L♮-convex function g is equal to α+(p◦) + α−(p◦), which is bounded by 2K∞
g .

Finally, we show that Murota’s steepest descent algorithm can be seen as the best
implementation of Kolmogorov’s algorithm from the viewpoint of the number of iterations.
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Proposition 12. The number of iterations of Kolmogorov’s primal algorithm for L♮-

convex function g is at least α+(p◦) + α−(p◦).

Proof. Let p ∈ dom g be any minimizer of g which can be found by Kolmogorov’s algo-
rithm. Then, Kolmogorov’s algorithm requires at least d+

∞(p, p◦) + d−∞(p, p◦) iterations.
On the other hand, the minimizer p = p∗ found by Murota’s algorithm attains the mini-
mum value of d+

∞(p, p◦)+ d−∞(p, p◦) among all minimizers of g, as shown below. This fact
implies the claim of the proposition since α+(p◦) + α−(p◦) = d+

∞(p∗, p◦) + d−∞(p∗, p◦).
Assume, to the contrary, that there exists p′ ∈ arg min g such that

d+
∞(p′, p◦) + d−∞(p′, p◦) < d+

∞(p∗, p◦) + d−∞(p∗, p◦) = ||(q∗0 , q
∗) − (0, p◦)||∞. (13)

Put p′0 = d−∞(p′, p◦). Then, the vector (p′0, p
′ + q′01) ∈ Z × ZV is contained in the set

S = {(q0, q) ∈ Z × ZV | q − q01 ∈ arg min g, (q0, q) ≥ (0, p◦)}

and satisfies ||(p′0, p
′ + p′01)− (0, p◦)||∞ = d+

∞(p′, p◦)+ d−∞(p′, p◦), which is a contradiction
to the fact that the vector (q∗0 , q

∗) is the unique minimal vector in S.
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