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Abstract. Suppose that we have a timetable of a round-robin tour-
nament with a number of teams, and distances among their homes.
The home-away assignment problem is to find a home-away assignment
that minimizes the total traveling distance of the teams. This paper
also deals with the break minimization (maximization) problem, which
finds a home-away assignment that minimizes (maximizes) the number
of breaks, i.e., the number of occurrences of consecutive matches held
either both at away or both at home for a team. Part of the aim of this
paper is to give a unified view to the three problems, the break minimiza-
tion/maximization problems and the home-away assignment problem.
We see that optimal solutions of the break minimization/maximization
problems are obtained by solving the home-away assignment problem.
For the home-away assignment problem, we propose a formulation as
an integer program, and some rounding algorithms. We also provide a
technique to transform the home-away assignment problem to MIN RES
CUT and apply Goemans and Williamson’s algorithm for MAX RES
CUT, which is based on a positive semidefinite programming relaxation,
to the obtained MIN RES CUT instances. Computational experiments
show that our approaches quickly generate solutions of good approxima-
tion ratios.

Keywords: sports scheduling; dependent randomized rounding; semidef-

inite programming; approximation algorithm; MIN 2SAT; MIN RES
CUT; MAX RES CUT.

! Some of the results in this paper appear in our papers [12,13,18,19].



1 Introduction

Sports scheduling has recently become a popular topic in the area of schedul-
ing (see Chapter 52 (Sports Scheduling) [6]). Due to the variety of goals and
requirements in sports scheduling, there are many optimization problems aris-
ing from sports scheduling. Among others the home-away assignment, problem
and the break minimization (maximization) problem are well addressed in the
studies. The home-away assignment problem is to assign home or away to each
match of a given timetable of round-robin tournament so as to minimize the
total traveling distance of the teams involved in the tournament, and the break
minimization (mazimization) problem is to find a home-away assignment and
minimizes (maximizes) the number of breaks (consecutive pairs of home-games
or away-games).

We refer to some previous results on the two problems. The break mini-
mization problem has been dealt in [15,17,7,13]. In [13], Miyashiro and Matsui
transformed the break minimization problem to MAX RES CUT and applied
Goemans and Williamson’s algorithm for MAX RES CUT. We extended the
technique to the home-away assignment problem in [18] by introducing a different
technique to transform the home-away assignment problem to MIN RES CUT,
and proposed an algorithm based on positive semidefinite programming (SDP)
relaxation. In [19], the authors formulated the home-away assignment problem
as an integer linear programming problem and proposed a randomized algo-
rithm based on Bertsimas, Teo and Vohra’s dependent randomized rounding
method [2]. Some of the above results suggest close relations among the break
minimization/maximization problems and the home-away assignment problem.
In fact, the independent works [12] and [22] provide partial answers to the issue.

Part of the aim of this paper is to give a more unified view to the problems.
In the paper, we show the equivalence among the break minimization problem,
the break maximization problem, and the (constant case) home-away assignment
problem explicitly, and provide approximation algorithms for the problems, and
refinement of the proofs and the results in the previous papers [12,13,18,19]. We
also give comprehensive comparison of computational efficiency of our algorithms
to the problems.

This paper is organized as follows. The home-away assignment problem and
the break minimization/maximization problems are defined in Section 2 and
Section 3, respectively. We also give an equivalence theorem (Theorem 1) of the
problems in Section 3. In Section 4, we propose a formulation of the home-away
assignment problem as an integer program and randomized rounding algorithms.
In Section 5, we transform the problem to MIN RES CUT and propose an algo-
rithm based on SDP relaxation. Section 6 reports the results of computational
experiments.



T\S|1 2 3 4 5 6 7 T\S|1 2 3 4 5 6 7
1|8 5 2 3 4 6 7 1 |HHHAHAA
216 718 3 5 4 2 |AHAHAHA
3176812 45 3/AAAHHEHA
415 8 7 6 1 3 2 4 |HAHHAATH
5|14 16 7 8 2 3 5|AAHAAAH
62 35 47 1 8 6 |HH A AHH A
713 2 45 6 8 1 7|HAAHAATH
8|1 43 25 7 6 8|AHHAHHEH

Fig. 1. A timetable and HA-assignment of eight teams

2 Home-Away Assignment Problem

We introduce a mathematical definition of the home-away assignment problem.
Throughout this paper, we deal with a round-robin tournament with the follow-
ing properties:

— the number of teams (or players etc.) is 2n, where n is a positive integer;

— the number of slots, i.e., the days when matches are held, is 2n — 1;

— each team plays one match in each slot;

— each team has its home, and each match is held at the home of one of the
playing two teams;

— each team plays every other team once. of every other team exactly once.

Figure 1 is a schedule of a round-robin tournament, which is described as a pair
of a timetable and home-away assignment defined below.

We denote a set of teams by T' = {1,2,...,2n} and a set of slots by S =
{1,2,...,2n — 1}. A timetable T is a matrix whose rows and columns are in-
dexed by the set of teams T and the set of slots S, respectively. Each entry
7(t,s) ((t,s) € T x S) of a timetable T shows the opponent of team ¢ in slot s.
Thus, a timetable 7 should satisfy the following conditions:

— for each team ¢t € T, the t-th row of T contains each element of T'\ {t}
exactly once;
— for any (t,s) € T x S, 7(7(t, s),s) = t.

For example, team 2 of Fig. 1 plays team 3 in slot 5, and accordingly team 3
plays team 2 in the same slot.

A team is at home in slot s if the team plays a match at its home in s,
otherwise said to be at away in s. A home-away assignment (HA-assignment for
short), say A, is a matrix whose rows are indexed by T" and columns by S. Each
entry ass ((t,s) € T xS) of Ais either ‘H’ or ‘A, where ‘H’ means that in slot s
team ¢ is at home and ‘A’ is at away.

Given a timetable 7, an HA-assignment 4 is said to be consistent with T if
V(t,s) € TxS, {ats,ar(1,5),s} = {A,H} holds. We say that an HA-assignment A
is feasible if there exists a timetable 7 such that A is consistent with 7. A



schedule of a round-robin tournament is described as a pair of a timetable and
an HA-assignment consistent with the timetable, as Fig. 1.

A distance matriz D is a matrix with zero diagonals whose rows and columns
are indexed by T such that the element d(¢,t") denotes the distance from the
home of team ¢ to that of team #'. In this paper, we assume that D is symmetric
and satisfies triangle inequalities. Given a consistent pair of a timetable and an
HA-assignment, the traveling distance of team ¢ is the length of the route that
starts from t’s home, visits venues where matches are held in the order defined
by the timetable and HA-assignment, and returns to the home after the last
slot. The total traveling distance is the sum total of the traveling distances of all
teams.

Given only a timetable of a round-robin tournament, one should decide a
consistent HA-assignment to complete a schedule. In practical sports scheduling,
the total traveling distance is often required to be reduced [16]. In this context,
the home-away assignment problem is introduced as follows.

Home-Away Assignment Problem

Instance: a timetable 7 and distance matrix D.

Task: find an HA-assignment that is consistent with 7" and minimizes the total
traveling distance.

The complexity status of the HA-assignment problem is not yet determined,
though the problem is conjectured to be NP-hard.

A set of instances satisfying that all the non-diagonal elements of D are 1
is called the constant case. In the constant case, we denote the total traveling
distance with respect to A by w(A). We show that the constant case is essen-
tially equivalent to the ‘break minimization/maximization problems’ in the next
section.

In the following, we show that in the constant case the HA-assignment prob-
lem becomes an instance of MIN 2SAT. Given a set of clauses each of which
consists of at most two literals, MIN 2SAT is to find a true-false assignment to
literals that minimizes the number of satisfied clauses. We introduce a proposi-
tional variable Y; , for each index (¢, s) € T'x S that has the value TRUE if and only
if team ¢ plays a match at away in slot s. Then the traveling distance of team ¢
between slots s and s+1 is equal to 1 if and only if the clause Y; s VY; 541 has the
value TRUE. Similarly, the traveling distance of team ¢ before the first slot (after
the last slot) is equal to 1 if and only if the variable Y; 1 (Y7 2,,—1, respectively)
has the value TRUE. Conversely, given a true-false assignment to variables, the
corresponding HA-assignment is consistent with a given timetable 7 = (7 (¢, s))
if and only if Y; ; is the negation of Y, (; ;) , for all (¢,s) € T x S. Thus, in the
constant case the home-way assignment problem becomes an instance of MIN
2SAT. Bertsimas et al. [2] proposed an algorithm for MIN kSAT and showed
that the expected objective value obtained by their rounding method for MIN
kSAT is at most 2(1 — (1/2)*) times the optimal value. In the constant case,
since the HA-assignment problem can be modeled as MIN 2SAT, the approxi-
mation ratio of the above algorithm is bounded by 3/2. For MIN 2SAT, Avidor
and Zwick [1] proposed a 1.1037-approximation algorithm, which is based on



SDP relaxation and sophisticated but complicated randomizing technique. In
Section 3.1, we give a simple (5/4)-approximation algorithm for the constant
case HA-assignment problem (see Corollary 1).

3 Break Minimization/Maximization Problems

Given an HA-assignment A = (a.s) ((t,s) € T x S), it is said that team ¢
has a break at slot s (s € S\ {1}) if azs—1 = ar,s = A or ars—1 = ars = H.
The number of breaks in an HA-assignment is defined as the number of breaks
belonging to all teams. For instance, the HA-assignment of Fig. 1 has 20 breaks,
each of which is represented as a line under the corresponding entry. In practical
sports scheduling, such as [14], the number of breaks in an HA-assignment is
required to be reduced. The break minimization (maximization) problem is to
find an HA-assignment that minimizes (maximizes) the number of breaks for a
given timetable.

Break Minimization (Maximization) Problem

Instance: a timetable 7.

Task: find an HA-assignment that is consistent with 7 and minimizes (maxi-
mizes) the number of breaks.

Let the number of breaks in a home-away assignment A be b(A).

Lemma 1. [22] Let A be a feasible HA-assignment of 2n teams. Then, the fol-
lowing holds: w(A) + (1/2)b(A) = 2n(2n — 1), where w(A) denotes the total
traveling distance in the constant case.

Proof. We denote that A = (ats) ((t,8) € T x S). It is easy to see that for any
slot s € S\ {1}, {t €T :at5-1 =ars = A} =|{t €T : ar,s—1 = ar,s = H}|.
Thus the following holds:
w(A)=|{teT:a(t,1)=A}+|{teT:a(t,2n—-1) = A}|
+ Zses\{l}(2n - |{t € T: At s—1 = At,s = H}|)

=n+n+ (2n—2)2n — ESES\{I} HteT:aps—1=as =H}|)

=2(2n—1) = (1/2) Xieanpiy {t €Tt ars—1 = ars}|)

=2n(2n —1) — (1/2)b(A). 0

From the above, an HA-assignment minimizing the total traveling distance in
the constant case gives an optimal solution to the break maximization prob-
lem. Miyashiro and Matsui [12] proved the following lemma, which shows that
the break minimization and maximization problems are essentially equivalent.
Given an HA-assignment A = (a;s) ((t,s) € T x S), define a home-away assign-

ment A = (a,.) ((t,s) € T x S) as follows:
—fors=13,....2n—1, a4 s ;== ars (VL €T);



—fors=2,4,...,2n—2,if a; s = H then a; s := A, else a; , := H (Vt € T').

It is obvious that when A is consistent with a timetable T, A is also consistent
with 7. The definition of A directly implies the following.

Lemma 2. [12] Let A be a feasible HA-assignment of 2n teams. Then, the equal-

ity b(A) + b(A) = 4n(n — 1) holds.

Proof. Each team has a break at slot s (s € S\ {1}) in exactly one of A and A.

Hence, b(A) + b(A) = |T||S\ {1} = 2n(2n — 2) = 4n(n — 1). O
From the above lemmas, we have the following.

Theorem 1. Given a timetable T, the following conditions of an HA-assignment A
consistent with T are equivalent:

1. A minimizes the total traveling distance w(A) in the constant case,
2. A mazimizes the number of breaks b(A),

3. A minimizes the number of breaks b(A).

The break maximization is discussed in [5,12,16,22]. In the following, we
describe a technique to transform the break maximization problem to UN-
WEIGHTED MAX RES CUT.

Let G = (V, E) be an undirected graph with a vertex set V and an edge set E.
For any vertex subset V' C V', we define §(V') = {{v;,v;} 1 vs,v; €V, v; €V’ 5
vj}. The problem UNWEIGHTED MAX RES CUT is defined as follows: given
agraph G = (V, E) and a set E.,, € {X CV :|X| =2}, find a vertex subset V'
that maximizes |6(V') N E| under the condition that E.,; C §(V') holds.

Given a timetable 7 = (7(t, s)) ((t,s) € T x S), we construct an undirected
graph G = (V, E) with V' = {v; ;s : (t,5) € T'x S} and E = {{v;(1,s—1),s—1,Vt,s}
teT,se S\{1}}. We also introduce Ecu; = {{vt,5,Vr(t,5),s} : (t,5) € T'xS}. For
a feasible solution V' of this UNWEIGHTED MAX RES CUT instance, i.e., a
vertex subset V' C V satisfying E.,. C §(V'), construct an HA-assignment A4’ =
(ats) ((t,s) € T x S) as follows: if v; ; € V' then a; ; = A, else a; , = H. Clearly,
A’ is consistent with 7. It is easy to see that for each T there exists a bijection be-
tween the feasible set of the UNEWEIGHTED MAX RES CUT instance and the
set of consistent HA-assignments. For any (¢,s) € T xS\ {1}, a; ,_; = a; , if and
only if {v(¢,5—1),s—1,V,s} € §(V'). Thus we have [§(V')NE| = b(A’), and hence
the break maximization problem is formulated as UNWEIGHTED MAX RES
CUT. For (UNWEIGHTED) MAX RES CUT, Goemans and Williamson [10]
proposed a 0.878-approximation algorithm, and accordingly the above trans-
formation leads a 0.878-approximation algorithm for the break maximization
problem. In Section 3.1, we give a simple (3/4)-approximation algorithm for the
break maximization problem (see Corollary 1).

The break minimization problem is well known in sports scheduling. Régin [15]
solved instances of up to 20 teams with constraint programming. Trick [17] pro-
posed integer programming formulations and solved instances of up to 22 teams.



Elf, Jinger and Rinaldi [7] formulated this problem as MAX CUT, and solved
instances of up to 26 teams. All of those methods are based on branch-and-bound
technique. Miyashiro and Matsui [13] transformed this problem to MAX RES CUT
and MAX 2SAT, and proposed an algorithm based on positive semidefinite pro-
gramming relaxation. It is conjectured that the break minimization problem is
NP-hard [7], though the complexity status is not yet determined.

It is well-known that an HA-assignment of 2n teams which is consistent to
a timetable has at least 2n — 2 breaks (see de Werra [4]). This lower bound and
above lemmas imply the following,.

Theorem 2. [4,12,22] Fvery feasible HA-assignment A of 2n teams satisfies
that 2n — 2 < b(A) < (2n — 1)(2n — 2) and w(A) > (2n — 1)(n +1).

Proof. If an HA-assignment has two rows that are componentwise equivalent,
the assignment is inconsistent to any timetable because the corresponding teams
cannot play the match between them. Thus, in any HA-assignment consistent
to a timetable, at most two teams have no breaks, being at home and at away
alternately. Hence, the other 2n—2 teams have at least one break, and the number
of breaks is more than or equal to 2n — 2. The lower bound 2n — 2 < b(.A) gives
that b(A) = 2n(2n—2) —b(A) < 2n(2n—2) — (2n—2) = (2n—1)(2n.—2) and the
inequality w(A) = 2n(2n—1)—(1/2)b(A) > 2n(2n—-1)—(1/2)(2n—1)(2n—-2) =
(2n—1)(n+1). O

It is known that for any even integer 2n > 0, there exists a timetable of 2n teams
that has a consistent HA-assignment with 2n — 2 breaks (see de Werra [4] for
example). The tightness of the lower bound 2n — 2 < b(A) implies that other
inequalities described above are also tight

Elf et al. [7] reported the following results: their algorithm for the break
minimization problem finds optimal HA-assignments of their instances very
quickly when the given timetables of 2n teams had HA-assignments with 2n —
2 breaks. Miyashiro and Matsui [12] proposed an O(n?) time algorithm for de-
ciding whether a given timetable of 2n teams has a consistent HA-assignment A
satisfying b(A) = 2n — 2. Their procedure reduces an instance of those problems
to 2n instances of 2-satisfiability problem (2SAT).

3.1 Generating an HA-assignment by Pairing Slots

Here, we propose an algorithm for generating an HA-assignment with a partic-
ular structure. A key idea of the following algorithm is similar to that of the
algorithm proposed in [12].

First, we describe a procedure for generating an HA-assignment A’ = (a; )
((t,s) € T x S) consistent with a given timetable and satisfying [Vt € T, Vs €
{1,2,...,n = 1}, aj 5,y = aj5,]. For each s € {1,2,...,n — 1}, assign (H,H)
to (@ 95_1,0] 2,), for the first step. After that, continue assigning home or away
to each of other teams so as to satisfy aj 55 1 = aj 5, Due to the consistency,
the opponent of team 1 in slot 2s, 7(1,2s), has to be at away in slot 2s. So as



to satisfy aT(l 25),25—1 a;(1725)72sa (a’{r(lﬂs)ﬂsfl’ alr(1,2s),2s)'
In the same way, the opponent of team 7(1,2s) of slot 2s — 1, 7(7(1,2s),2s — 1)
has to be at home, and so as to satisfy a'T(T(us)Jsfl) = alr(ru,zs),zs): we assign
(H,H) to (a] ;. 28),25—1)> r(r(1,25) 25))- Repeat this assignment procedure to the
rest of teams or the last slot s = 2n — 1, assign home or away to each team
as keeping consistency. Then it is easy to see that A’ is consistent with a given
timetable and satisfies that [Vt € T, Vs € {1,2,...,n — 1}, aj9, 1 = a; 9]
Similarly, we can generate an HA-assignment A’ that is consistent with a given
timetable and satisfying [Vt € T, Vs € {1,2,...,n — 1}, a} o = @} 9544]-
Given an HA-assignment A = (a; ) and a slot-subset S’ C S, an HA-assignment,

A" = (a} ;) obtained from A by flipping slots in S’ is defined as follows:

as (if s €S,
a,, =<« H (ifseS and a;s = A),

A (if s € S and a;s = H).

Now we describe an algorithm for generating an HA-assignment A* consistent
with a given timetable.

we assign (A, A) to

Pairing Slots

Step 0: Execute one of Steps 1 and 2 at random.

Step 1: Generate an HA-assignment A’ = (a; ;) consistent with a given timetable
and satisfying [Vt € T, Vs € {1,2,...,n — 1}, a; 5, | = a;,,]. Let A" = (a; )
be an HA-assignment obtained from .4’ by flipping slots in {2s — 1,2s} with
probability 1/2 for each s € {1,2,...,n — 1} independently. Output A* and
stop.

Step 2: Generate an HA-assignment A" = (a; ,) consistent with a given timetable
and satisfying [Vt € T, Vs € {1,2,...,n — 1}, a} 9, = 0} 9541]- Let A" = (a; )
be an HA-assignment obtained from .4’ by flipping slots in {2s,2s + 1} with
probability 1/2 for each s € {1,2,...,n — 1} independently. Output A* and
stop.

The procedure ‘Pairing Slots’ gives the following.

Theorem 3. [12] For each timetable, there exists a consistent HA-assignment A
satisfying that b(A) > 3n(n — 1), b(A) < n(n —1) and w(A) < (1/2)n(5n — 1).

Proof. Assume that an HA-assignment 4* is obtained in Step 1 of the procedure
Pairing Slots. Every team has a break at each slot s € {2,4,...,2n — 2}. For
each pair of a team t and a slot s € {3,5,...,2n — 1}, team t has a break
at slot s with probability 1/2. The expected value of the number of breaks is
E[b(A*)] = 2n(n — 1) + (1/2)(2n)(n — 1) = 3n(n — 1). Thus there exists an
HA-assignment A satisfying that b(A) > 3n(n — 1). The other inequalities are
obtained by applying the equalities in Lemmas 1 and 2. Similarly, we can show
the case that an HA-assignment A* is obtained in Step 2 of the procedure Pairing
Slots. O

From the above, we obtained an approximation algorithm for the break maxi-
mization problem and the constant case HA-assignment problem.



Corollary 1. The procedure Pairing Slots is (i) a (3/4)-approzimation algo-
rithm for the break mazimization problem, and (ii) a (5/4)-approxzimation algo-
rithm for the constant case HA-assignment problem.

Proof. (i) Theorem 2 shows that every feasible HA-assignment 4 of 2n teams
satisfies that 2(2n — 1)(n — 1) > b(A). Thus, by the proof of Theorem 3, an HA-
assignment A* obtained by the procedure Pairing Slots satisfies that E[b(A*)] =
3n(n—1)=(3/49)4n(n —1) > (3/4)2(2n — 1)(n — 1).

(ii) Theorem 2 shows that every feasible HA-assignment A of 2n teams sat-
isfies that (2n — 1)(n + 1) < w(A). Thus, by the proof of Theorem 3, an HA-
assignment A4* obtained by the procedure Pairing Slots satisfies that E[w(A*)] =
(1/2)n(5n —1) = (5/4)2n(n — 1/5) < (5/4)(2n — 1)(n + 1). O

4 Integer Linear Programming Formulation

In this section, we formulate the HA-assignment problem as an integer pro-
gramming problem [19]. In the rest of this paper, we denote the last slot by 8,
ie, § = 2n — 1. We introduce 0-1 variables y; s ((t,s) € T x S) such that
Yt,s is 1 if and only if team ¢ is at away in slot s, and continuous variables
wes ((¢,s) € T x S\ {§}) where w; , represents the traveling distance of team ¢
between slots s and s + 1. Then we can formulate the HA-assignment problem

as follows:
(IP)

min. Y| > d(t,7(69)yes+ D, wis

teT \se{l1,s} seS\{s}

b w3 (0 g+ (A1) — A1)
<‘v’(t, s) €T x S\ {5}, where >

t'=7(t,s) and ' = 7(¢,s + 1))

we,s > (d(t', ") — d(t,t")) ye,s + d(t, ") yr,s11

V(t,s) € T x S\ {3}, where
<t' =1(t,s) and t" = 7(¢, s + 1))) )

Yt,s + y‘r(t,s),s =1 (V(t, S) eT x S),
ye,s € {0,1} (V(t,s) € T x S),
where wy s ((t,s) € T x S\ {§}) are continuous variables. The constraints in IP

are explained as follows. The first and second constraints give the lower envelope
of the following four points

(yt,syyt,erl;wt,s) S {(070)0)7 (170)d(tlat))) (07 ]-)d(t)t”))a (]-7 lyd(tlat,’))}

where ' = 7(t,s) and ¢ = 7(¢,s + 1), because the distance matrix satisfies
triangle inequalities. The third constraints guarantee that every HA-assignment,
corresponding to a feasible solution is consistent with the given timetable.



A linear relaxation problem LP is a linear programming problem obtained
from IP by substituting the 0-1 constraints for variables y; ; for nonnegativity
constraints y; s > 0 (V(¢,s) € T xS). We prove the theorem showing that LP has
an optimal solution satisfying half-integrality on variables y; s (V(¢,5) € T x S).

Theorem 4. [19] Suppose that a distance matriz D satisfies triangle inequali-
ties. In any extreme point optimal solution of LP, y, s € {0, %, 1} holds for any
(t,s) e T x S.

Proof. See Appendix.

4.1 Randomized Rounding Algorithms

Here, we propose algorithms for IP. In our algorithms, we solve the linear re-
laxation problem LP first. If an obtained solution is 0-1 valued, we have an
optimal solution of the original problem IP. Otherwise, we construct a feasible
solution of IP by rounding the obtained solution. In the following, we propose
three randomized rounding algorithms. We denote an optimal solution of LP

by (y*, w*).

A1l: Independent Randomized Rounding

The first algorithm generates a 0-1 valued solution as follows. For each pair
of teams {t,t'}, we decide the venue of the match independently of the venue of
another match. Let s be the slot when ¢ and t' play a match, i.e., 7(¢t,s) = ¢'.
Then we construct a solution y" of IP by setting the pair of variables (y; ,, vy’ ,)
to (1,0) or (0,1) with probability y; , and 1 —y; ;, respectively. The independent
rounding algorithm is similar to the LP-based approximation algorithm for MAX
SAT proposed by Goemans and Williamson [9].

A2: Dependent Randomized Rounding with Random HA -assignment

As we described in Section 3, IP becomes an instance of MIN 2SAT in the
constant case. For MIN kSAT, Bertsimas et al. [2] proposes an approximation
algorithm based on randomized rounding introducing dependencies in the round-
ing process. Our second algorithm described below is a direct application of their
algorithm to a general case. First, we construct an HA-assignment A* = (a; )
consistent with a given timetable by randomly choosing one of two possible
venues for each match. Next, we execute the following procedure.

Dependent Randomized Rounding
Step 0: Generate a uniform random number U € (0, 1].




Step 1: Set y;'; ((t,5) € T x S) as follows:

1 ( if [yf, > U and aj , is A] )
or [y;s >1—U and a; , is H] }
yt,s =
0 ( if [y; , < U and aj , is A] )
or [y <1-U and a ; is H] /

Step 2: Generate an HA-assignment A" = (a{,) by assigning ‘A’ to a;’, if y;', =
1, otherwise ‘H.’

It is easy to see that the above procedure outputs a feasible solution of IP.

A3: Dependent Randomized Rounding with the Procedure Pairing
Slots

In our third algorithm, we generate an HA-assignment A* = (a;,) by an
algorithm based on the procedure Pairing Slots described in Section 3.1 and
execute ‘Dependent Randomized Rounding’ procedure described above.

A practical procedure to obtain a better solution by our randomized rounding
algorithm A3 is to generate a number of initial HA-assignments .A* and output a
solution with the best objective value. For our third algorithm, we can generate
a number of initial HA-assignments A* from a specific HA-assignment A’ by
randomly flipping slots in {2s — 1,2s} at Step 1 and slots in {2s,2s + 1} at
Step 2 for each s € {1,2,...,n — 1} several times.

4.2 Derandomization

Here we discuss the derandomization of procedures proposed in Section 4.1. We
can derandomize the procedures A1 and A3 by an ordinary method of conditional
probabilities (see [9] for example). In the following, we describe a derandomize
procedure of A2, which extremely shortens practical computational time. Now
we suppose that an optimal solution (y*,w*), which is obtained by solving LP,
satisfies half-integrality on y. Then, it is easy to see that if the uniform random
number U obtained at Step 0 in the procedure ‘Dependent Randomized Round-
ing,” satisfies 0 < U < 1/2, then the variables y” and the HA-assignment A"
obtained in Steps 1 and 2 are independent of the magnitude of U. In case of
1/2 < U < 1, we can also show that y" and A" obtained in Steps 1 and 2 are in-
dependent of the magnitude of U. Thus, we only need to execute Steps 1 and 2
only for two cases that U € {%, 1} and output the better solution. Clearly, a
solution obtained by the above derandomized procedure satisfies that the corre-
sponding objective function value (total traveling distance) is less than or equal
to the expectation of that of solutions obtained by randomized rounding algo-
rithm A2. In our computational experiments, we use the above derandomized
procedures for randomized rounding algorithm A2.



4.3 Constant Case

In the constant case, the linear relaxation problem LP of IP has the following
property.

Theorem 5. In the constant case, the linear relazation problem LP has a unique
optimal solution (y*,w*) satisfying y;, = 1/2 (¥(t,s) € T x S) and w; , = 1/2
(V(t,s) e T x S\ {s}).

Proof. Tt is clear that the solution (y*,w*) defined above is feasible to LP. The
corresponding objective value is equal to 2n(2(1/2)+(2n—2)(1/2)) = 2n>. First,
we show that an objective value of any feasible solution (y,w) of LP is greater
than or equal to 2n2. It is easy to see that the corresponding objective value Z
satisfies that

Z:Z Ye,1 + Y + Z Wy, s ZZ Yi,g +Yrs + Z Yt,s

teT seS\{s} teT seS\ {5}

= (1/2) Z (ytyl + y‘r(t,l),l) + (yt,§ + yr(t,§),§) + Z (yt,s + y‘r(t,s),s)

teT seS\ {5}
=1/2)) [1+1+ > 1| =(1/22n(1+1+2n-2)=2n"
teT seS\{5}

Next, we show the uniqueness. Let (y',w’) be an optimal solution of LP. The
optimality implies that

m? =y it >, w2 v tuat D> i

teT seS\{s} teT seS\{5}

=W/2)D | Wi+ Vi) + Whs +vepn )+ D, Whe T Vs

teT seS\{5}
=1/ [1+1+ > 1] =(1/22n(1+1+2n-2)=2n"
teT sES\{s}

and thus the equality > o7 > scg\ (5} Whs = 2seT Doses (s} Yt,s holds. The fea-
sibility of (y',w') implies that w; ; > max{y; ;,y; ;41 } for all (¢,s) € T x S\ {5}.
From the above, we have that w; ; = y; , for all (¢,s) € T'x S\ {5}. Similarly,



the following inequality

2n” = Z Y1 +Uis+ Z wy | > Z Yir +yis+ Z Yisr1

teT seS\{s} teT seS\{5}

= (1/2) Z Wen + Y1) + Whs + Vs .8) + Z Wts41 F Yr(t,st1),s41)
teT seS\{5}

=@/2)> |1+1+ > 1) =(1/2)2n(1+ 1 +2n—2) = 2n
teT seS\{8}

directly implies ), ZSES\{§} Wy s = Y ier Eses\{g} Yi.s+1 and thus wy ; =
Yi.s+1 for all (¢,s) € T x S\ {3}. From the above, we have the property that

VEET, yip =w; ) =Yip =Wy =" =Y
If (y', w') # (y*, w*), there exists an index (t',s') € T x S satisfying y;, . >
(1/2) and thus ¥(¢,s) € T\ {t'} x S, y; s = 1 —y;, ,» < (1/2). It contradicts the
feasibility of (y',w’). O
From the above, we can estimate the objective values obtained by our ran-
domized algorithms based on the linear relaxation problem LP. We denote the
optimal value of IP by Z'. We also denote the objective values obtained by our

first, second and third algorithms in Section 4.1 by ZA1, ZA% and Z23, respec-
tively. Then the following theorem holds.

Theorem 6. In the constant case, the followings hold:

1. E[ZM] =E[Z*?] = n(3n - 1) < 3277,
2. E[Z"] = (1/2)n(5n — 1) < 2217

Proof. It is easy to see that an HA-assignment A} obtained by our randomized
rounding algorithm A1l satisfies that E[b(A})] = (1/2)2n(2n — 2) = 2n(n — 1)
and thus

E[Z*] = Elw(A})] = 2n(2n — 1) — (1/2)E[b(A})] = n(3n —1).
Theorem 2 implies that (2n — 1)(n + 1) < Z™¥ and
E[Z2 =n(3n —1) = (3/2)n(2n — 2/3) < (3/2)(n+1)(2n — 1) < (3/2) 2.

Theorem 5 directly implies that E[Z41] = E[Z42).

Let A3 be an HA-assignment obtained by the procedure Pairing Slots. Theo-
rem 5 directly implies that E[Z4%] = E[w(A%)]. The proof of Theorem 3 implies
that

Elw(A3)] = (1/2)n(bn — 1) = (5/4)2n(n — 1/5) < (5/4)(2n — 1)(n + 1).

From Theorem 2, it is obvious that E[Z43] = E[w(A43)] < (5/4)(2n—1)(n+1) <
(5/4) 2. 0



The above theorem indicates that our algorithm A3 finds a solution whose
objective value is better that that of A1 and A2. However, our computational
experiments in Section 6 show that for a class of instances, A1 generates solutions
with better approximation ratios than A2 or A3 on average.

5 Formulation as MIN RES CUT

In this section, we propose a formulation of the HA-assignment problem as MIN
RES CUT and a randomized algorithm based on a positive semidefinite pro-
gramming relaxation [13,18]. First, we define the problem MIN RES CUT. Let
G = (V, E) be an undirected graph with a vertex set V' and an edge set E. For
any vertex subset V' C V', we define §(V') = {{v;,v;} 1 vi,v; €V, v; € V' 3 0v;}.
The problem MIN RES CUT is defined as follows: given a graph G = (V, E), a
specified vertex r € V, a weight function £ : E — R, and a set E.,y C {X C
V i |X] = 2}, find a vertex subset V' that minimizes 3, snp €(€) under
the conditions that r € V' and E.,, C 6(V') hold. Here we note that the con-
dition r ¢ V' is redundant for the definition of MIN RES CUT, because for
any V" C V, 6(V") = §(V \ V). The condition helps to formulate the HA-
assignment problem as MIN RES CUT. It is easy to show that MIN RES CUT
is NP-hard even if Ve € E, £(e) = 1 holds. The problem MAX RES CUT is
the maximization version of MIN RES CUT, and Goemans and Williamson [10]
proposed a 0.878-approximation algorithm for MAX RES CUT.

Now we formulate the HA-assignment problem as MIN RES CUT. Given a
timetable T = (7(t,s)) ((¢t,s) € T x S), let G = (V, E) be an undirected graph
with a vertex set V and an edge set E defined below. We introduce an artificial
vertex r and define V= {v; s : (t,s) € T x S} U{r}, E = {{vi,5-1,01,5} :
teT,s € S\{1}}U{{r,vs}: (t,5) € T x S}, and Ecuy = {{0t,6,Vr(t,6),5} °
(t,s) € T x S}. For a feasible solution V' of this MIN RES CUT instance, i.e.,
a vertex subset V' C V satisfying r ¢ V' and E., C 0(V'), construct an HA-
assignment A = (a;5) ((¢,s) € T x S) as follows: if vy s € V' then a; s = A, else
a;,s = H. This HA-assignment is consistent with 7 because each pair of vertices
corresponding to a match is in E.u, C 6(V'). Obviously, for any consistent HA-
assignment, there exists a unique corresponding feasible solution of the MIN RES
CUT instance. Thus, for each T, there exists a bijection between the feasible set
of the MIN RES CUT instance and the set of consistent HA-assignments.

Next, we discuss the total traveling distance. In the following, we denote
any singleton {v} by v for simplicity. Given a pair of timetable 7 and an HA-
assignment A consistent with 7, the traveling distance of team ¢ between slots
s and s + 1, denoted by w; s, is defined as follows:

0 (lf (aLS: at,s+1) = (Hv H)))

w — d(T(tv 5)7 T(ta s+ 1)) (lf (at,sv at,s+1) = (Av A));
ts d(t, T(t, s+ 1)) (lf (at7s, a't,s+1) = (H, A)),
d(T(t,S),t) (lf (at7s,0,t75+1) = (A,H))



In the following, we use the notations t' = 7(t,s), t' = 7(t,s + 1), N(s,r) =
{ve,s, 7 }NS(V")], N(s+1,7) = |{ve,s41,7}NI(V")] and N (s, s+1) = |[{ve,s, V¢ s41}N
o(V")| for simplicity. We show that the traveling distance wy s satisfies the fol-
lowing equations:

wys = d(t', ") Jvg,s NV | Jogs41 NV
+d(t, ") (1= |og,s NV']) |og,s41 NV
+d(t',t) lve,s NV (1= Jugs01 NV))
= d(t',t”) {N(S,T) +N(S+ ;)7‘) _N(S)S+ 1)}

" —N(S,T)+N(S+1,T)+N(S,S+1)
+d(t,t ){ 5 }

, N(s,r) —N(s+1,7r)+ N(s,s+ 1)
+d(t,t){ : }

VAN " ’
_ (") d(z;,t )+d(t’t)N(s,r)
1ogn "y _ /
d(t',t") +d(152,t ) —d(t ’t)N(s—l— 1,r)
—d(t', t") + d(t,t") + d(¢',t)
2

N(s,s+1).

The first equality is obvious, because [a;s = A <= |vz, NV'| = 1] and
[at,s41 = A <= vy 511 NV'| = 1]. The second equality is obtained by applying
the equations

loe,s NV'|=N(s,7), |uest1NV'|=N(s+1,r), (1)

and

N(s,r)+ N(s+1,r) — N(s,s +1
I T IO, B ICRA . B (CEE) Rt

Equations (1) and (2) are obtained from the properties that r ¢ V' and
VVI g Va |6(V,) n {{T) Ut,s}a {T, vt,s+1}7 {vt,s; Ut,s+1}}| € {07 2}

The third equality is trivial. Here we note that, if we employ only Equations (1),
wy, s becomes a quadratic function of N(s,r) and N(s+1,7). Using Equation (2),
we can transform the quadratic function to a linear function of N(s,r), N(s+1,r)
and N(s,s +1).

In a similar way, we can show that the traveling distance of team ¢ before
the first slot and after the last slot, denoted by wy o and w; ; respectively, satisfy
that

weo =d(t,7(t,1)N(1,r),
we s =d(7(t, 8),t)N(8,r).



From the above, the total traveling distance is represented by a linear function
of variables |e N 6(V"')| (e € E) as follows:

d@e',t") —d(t,t") +d(t', t)

) 5 N(s,r)

. d(t', t") + d(t, ") — d(t', t
)BT 3) 9 INELGLIE: G 20D (s 1,r)
teT s=0 teT s=1 1oqn "

L= d(t', t)+d(t,t)+d( ’t)N(ss+1)
+3 d(t,T(t,1))N Zd (3,7).
teT teT

Thus, by introducing an appropriate weight function ¢ : E — Ry (see below),
the total traveling distance satisfies that

Y Wi = Leepl@lend(V)| = E.cpnsom Le) (3)

teT s=0

and the objective function value of the MIN RES CUT, with respect to £(e), is
equivalent to the total traveling distance. From the above, the HA-assignment
problem is formulated as the MIN RES CUT.

We define a weight function ¢ : E — R, as follows:

d(t',t'") —d(t,t") + d(t',t)
2

d(r(t,s — 1),t) +d(t,#') — d(r(t,5 — 1),1)
+ 2

K({Ut,sv 7"}) =

(Vt e T,Vs € S\ {1,5}),

d(T(tv 1)) T(t) 2)) — d(t) T(t) 2)) + d(T(tv 1)) t)

g({vt,lar}) = d(th(ta 1)) + ) )

(({ve5,7}) = d(7(t,8),t) +

—d('¢") + d(t, ") + d(t', t)
2

é({’l}t7s,’l)t7s+1}) = (Vt € T, \V/S € S \ {§})

Then, the total traveling distance satisfies Equation (3) and thus the objective
function value of the MIN RES CUT with respect to £(e) is equivalent to the
total traveling distance.

Finally, we briefly describe an SDP relaxation problem and a randomized al-
gorithm for MIN RES CUT. For MAX RES CUT, Goemans and Williamson [10]
proposed a 0.878-randomized approximation algorithm using semidefinite pro-
gramming. Here we apply Goemans and Williamson’s algorithm to the proposed



MIN RES CUT formulation of the HA-assignment problem. In the following, we
explain the procedure. The algorithm consists of the following three steps.

1. Semidefinite Programming
For a given instance of MIN RES CUT (V,E,r, ¢, E.,), let W be a matrix
whose rows and columns are indexed by V such that W;; = W;; = w({i, j})
if {i,j} € E, otherwise W;; = W;; = 0. Then solve the following semidefinite
programming problem:

minimize E E Cinij
i g

subject to X;; = 1 (Vi e V),
X;;j=-1 (Vi,j} € Eew),
X = 0, X is symmetric, X € RV >V,

where C = (diag(We) — W)/4.
2. Cholesky Decomposition
Decompose an (almost) optimal solution X of the semidefinite program-

ming problem in Step 1 into a matrix X such that Xy = X\TjX\ (Cholesky
decomposition).
3. Hyperplane Separation

Generate a vector u at uniformly random on the surface of d-dimensional
unit ball and put Vi = {i € V : u"Z; > 0} where d is the number of rows of
X and Z; is the column vector of X index by i € V. Output a vertex subset
v (B, e

VAW (if r € 7).

The above three steps terminate in polynomial time. Note that a practical proce-
dure to obtain a good solution is to repeat Step 3 a number of times and output
a solution with the best objective value.

Goemans and Williamson [10] showed that the maximization version of the
above algorithm finds a feasible solution of MAX RES CUT, and its expected
objective value is at least 0.87856 times the optimal value. In case of MIN RES
CUT, any non-trivial bound of approximation ratio of the above algorithm is
not known.

6 Computational Experiments

In this section, we report our computational results. Tables 1 and 2 shows the
approximation ratios, Tables 3 and 4 are the results of CPU time in seconds of the
weighted case and the constant case, respectively. Computational experiments
were performed as follows.

Each of Tables 1, 2, 3 and 4 shows the results when we generated ten timeta-
bles for each size of 2n = 16,18,20, 22, 24,26, 30,40. We constructed timeta-
bles of a round-robin tournament by the method described in [7]. We used



the distance matrix of TSP instance att48 from TSPLIB [21]. We chose cities
of att48 with indices from 1 to 2n. For each instance, we applied the algo-
rithms described in Section 4.1 and generated HA-assignments upp_itr times,
where upp_itr = min{max{2"*! 1000}, 10000}. We also applied Goemans and
Williamson’s SDP based algorithm described in Section 5 and generated 10000
HA-assignments by executing the hyperplane separation procedure 10000 times.
Finally, for each algorithm we output a solution with the best objective value. In
order to evaluate the quality of the best solutions, we solved the same instances
with integer programming in a similar formulation as Trick [17].

Computations were performed on the following softwares and machines; for
semidefinite programming problems, we used SDPA 6.0 [20] on Dell Dimen-
sion 8100 (CPU: Pentium 4, 1.4 GHz, RAM: 768 MB, OS: Vine Linux 2.6), and
for linear programming problems and integer programming problems, we used
XPRESS-MP Workstation (Model Builder 10.04, Integer Optimiser 10.27) [3]
and CPLEX 8.0 [11], respectively, on Dell Dimension 8250 (CPU: Pentium 4,
3.06 GHz, RAM: 512 MB, OS: Vine Linux 2.6). We did not solve integer pro-
grams for 2n = 20 to 40 in the constant case because it would not terminate
within reasonable computational time. In Tables 1 and 2, we summarize the
average of ratios of ‘the LP optimal value’ and ‘the objective function value
of the best solutions’ for each algorithm, where the ratios are described with
parentheses.

Weighted Case: Table 1 shows that all of the average of approximation ratios
of our three algorithms are less than 1.01. When 2n = 16,26, LP relaxation
problems give 0-1 valued solution. The notable points are:

(1) our first algorithm can generate solutions whose ratios are better than those
of others including the SDP based approach for any number of teams;

(2) randomized rounding algorithms (A1, A2, A3) based on LP relaxation give
more acceptable ratios even by the little difference compared with the SDP based
approach.

In our computational experiments, we executed each rounding procedure sev-
eral times and output the best of generated solutions. Thus, outputs depend not
only on the expectation but also on the distribution of the objective function
value of a generated solution. Depending on the structure of the set of variables
with value 1/2, there is possibility that our first algorithm Al with indepen-
dent rounding procedure performs better than the other two algorithms; this is
because the set of solutions (HA-assignments) that could be generated by Al
includes the set of solutions that could be generated by A2 or A3.

Constant Case: Table 2 shows that almost all of the average of approximation
ratios of our randomized rounding algorithms (A1, A2, A3) are less than 1.20,
when 2n = 16, 18. Contrary to the weighted case, the effectiveness of our third
algorithm is now emphasized. However, the SDP based approach gives solutions
of higher quality.

Half Integrality: As we showed in Theorem 4, LP has an optimal solution
satisfying half-integrality on y. In Tables 1 and 2, half int. shows the ratios of
the number of variables whose values are 1/2. In the weighted case, almost all



variables are either 0 or 1. In the constant case, all variables take 1/2 as shown
in Theorem 5.
CPU time: For the CPU time in Tables 3 and 4, LP based algorithms are much
faster than the SDP based approach and integer programs. For instance, in the
weighted case of 2n = 16, the SDP based approach and integer programs took
more than 21 seconds and 65 seconds in average, respectively, while LP based
algorithms spent less than 1 second. Moreover, LP based algorithms terminated
less than 8 seconds for any number of teams in the weighted case. Since Theo-
rem 5 gives a unique optimal solution to LP explicitly, we need not to solve LP
numerically in the constant case. We solved LP numerically for comparing with
the weighted case. Table 4 shows that LP based algorithm terminated less than
13 seconds in the constant case.

From the overall, we conclude that in the weighted case, LP based algorithms
are highly efficient in terms of both quality of solutions and computational speed
and SDP based algorithm finds better solutions in the constant case.

Appendix

We prove Theorem 4.
Let LP be a linear relaxation of the problem IP:
(LP)

min. Z Z dt,7(t,s)) ye,s + Z Wi,

teT | se{1,s} seS\{s}

s.t. wes > d(t, )y + (At 1) —d(t', 1) ye,s41

V(t,s) € T x S\ {8}, where
<t' =7(t,s) and t" =7(t,s + 1))) )

wis 2 (d(t', ") = d(t,8")) y1,s +d(t, ") Y1511

V(t,s) € T x S\ {3}, where
<t' =7(t,s) and t" =7(t,s + 1))) )

Yt,s + y‘r(t,s),s =1 (V(t, S) eT x S),

Yt,s > 0 (V(t,s) € T x S).

It is enough to show that any optimal solution in which y is not half-integral
can be expressed as a convex combination of mutually distinct feasible solutions
of LP. Assume that (y*,w*) is an optimal solution in which y* is not half-
integral. By the assumption, there exists at least one element of y* that is less
than 1/2 and exists at least one element more than 1/2. We introduce two
functions g; ,(y,y') and g7 (y,y') defined as follows:
9is(W,y") = d(t', )y + (d(t', ") — d(t', 1))y,

)

9r (s y') = (d(t',¢") — d(t,t")) y + d(t,t") y',

)



where t' = 7(t,s) and " = 7(t, s+1). It should be noted that g; ,(y,y') and g7 ,(y,y")
correspond to the right hand sides of the first and second constraints of LP, re-
spectively.

For a sufficiently small positive number € we construct two vectors (y*, w™)
and (y—,w™) as follows: for each (t,s) € T x S, we set

yrste (f 0<yi, <1/2),

ytJts: yts_6 ( 1/2<y2(,s<1)’
vis  (f y7, €{0,1/2,1}),
yts ( O<y:,s<1/2)’

yt_s: yts+ ( 1/2<y;s<1)7

yt,s (lf yz‘,s € {07 1/27 1}))
and for each (t,s) € T x S\ {5}, we set
’U}j:s = max{gtl,s(y::s? y:,_erl): gtzs(y::sa y:,_erl)}:

)

wti,s = max{gg,s(ygsv yti,erl): gtz,s(yf:sa yf:erl)}‘

Clearly, y;fs + yj(t’s)’s = Vs TYr(,s)s = 1 (VY(t,s) €T x S) and y* # y~ hold.
Choosing € small enough, we can ensure 0 < y* and 0 < y~. Hence, (y™,w™)
and (y~,w™) are a pair of mutually distinct feasible solutions of LP.

From the definition, (y* + y~)/2 = y*. In the following, to prove (w* +
w™)/2 = w* we show that (w;, + w;,)/2 = wj, holds for any (t,s) € T x S\
{5}. Note that the distance matrix satisfies triangle inequalities, i.e., d-( )¢+ +
A r(t,54+1) = Ar(t,s),r(t,5+1)- Since we have

gt,s(y> ) ) - gt,s(ya Y ) = (d‘r(t,s),t + dt,‘r(t,s—i—l) - d‘r(t,s),‘r(t,s—i—l))(y - y’)y
the following relationship holds:

y<y = g/.(,y") <9gi.(,9),

y>y = g..w,y") > 9. (0,9).
Now we show that (w;", + w; ,)/2 = w} , holds for any (t,s) € T x S\ {8} in
each of the following three cases. Note that w; , = max{g; ,(7 ¢, U5 s11)s 9r.s Wi o> Yrss1)}
because (y*,w™*) is an optimal solution.
Case 1: y; ; <y/ 11 Choosing € small enough we can ensure y:f s < y:f +p1 and

Yrs < Urer1- Then, all of w; ,w;, and w;, are defined by g7 . Since (y* +
¥y~ )/2 =y* and gis(y, y') is a linear function of y and y', the following equalities
hold:

(1/2)(wt,s + wt s)

= (1/2)(9t s(yt s Y, s+1) + 9, s(yt s Ye, s+1))

= (1/2)9152,s(yt,s + Y o yt7s+1 + yt,s+1)
(I/Q)g?,s(Qy:,m 2y:,s+1) = th,s(yZ,m y:,s+1)
= w;

)s-



Case 2: y; ; > y/ ;1 Choosing € small enough we can ensure y;f s > y:f +p1 and

Yt,s > Ypst1- Lhen, all of w;s,wtfs and w;, are defined by g/ . Since (y* +

y~)/2 =y and g/ .(y,y') is a linear function of y and y', the equality (w;fs +
wy )/2 = wy ; holds.

Case 3: y/ , = Y/ .41 In this case, we have y;'s = ya'sﬂ and y; o = ¥y ¢11- Thus,

the equalities

gtl,s(yz(,s7 y:,s+1) = gf,s(y:,m y:,s+1)7
gt{s(?]tfs’ y::s%—l) = th,s(ytJ?s’ y::s%—l)’
gtl,s(y;sa ytis+1) = th,s(yti,s: y;5+1)

hold. Hence we can consider that all of w;s,wz s and w, , are defined by gt{s
(and/or g7,). Since (y* +y~)/2 = y* and g; ,(y,¥') is a linear function of y
and y', the equality (w;", +w;,)/2 = wy ; holds.

From the three cases above, we have (w/, + w,,)/2 = w}, for any (t,s) €
T x S\ {5}. Consequently, (wt + w™)/2 = w* holds. Thus, (y*,w*) can be
expressed as a convex combination of a mutually distinct pair (y*,w™) and
(y~,w™) of feasible solutions of LP. We therefore obtain Theorem 4.
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Table 1. Approximation ratios of the weighted case

2n

LP

ratio [half int.

Al
ratio

A2
ratio

A3
ratio

CcuT
ratio

16

1.00000

0.00000

1.00000

1.00000

1.00000

1.00158

18

0.99998

0.01307

1.00075

1.00246

1.00121

1.00295

20

0.99992

0.02158

1.00092

1.00282

1.00184

1.00236

22

1.00000

0.01688

1.00001

1.00329

1.00072

1.00385

24

1.00000

0.00471

1.00001

1.00000

1.00015

1.00423

26

1.00000

0.00000

1.00000

1.00000

1.00000

1.00357

30

0.99969

0.03172

1.00359

1.00875

1.00496

1.00635

40

0.99994

0.00654

1.00017

1.00187

1.00047

1.01007

Table 2. Approximation ratios of the constant case

LP

Al

2n

ratio

[half int.

ratio

A2
ratio

A3

CcuT

ratio

ratio

16

0.88831

1.00000

1.19226

1.15681

1.07847

1.00138

18

0.88831

1.00000

1.21044

1.15005

1.06241

1.00205

20

1.00000

1.36700)

1.28850)

1.22000)

1.13200)

22

1.00000

1.37355

1.30248

1.21240

1.13388

24

1.00000

1.38330

1.29931

1.21667

1.13924

26

1.00000

1.14941

30

1.00000

1.40467

1.30378

1.22533

1.15067

40

1.00000

(
( )
( )
(1.38817)
( )
( )

1.42725

(
(
(
(
(
(

)
)
1.31124)
)
)

1.30700

(
( )
( )
(1.21746)
( )
( )

1.22800

(
(
(
(
(
(

)
)
)
)
)

1.15688

Table 3. CPU time [s] for the weighted case

2n

Al

A2

A3

CUT

IP

ave.]

s. d.

ave] s

d.| ave]

s. d.

ave.]

s. d.

ave.]

s. d.

16

0.042

0.

0042

0.103

0.0082

0.115

0.0085

24.829

0.6830

0.779

0.1370

18

0.055

0.

0097

0.136

0.0165

0.162

0.0079

39.254

0.6962

1.379

0.0348

20

0.112

0.

0063

0.315

0.0127

0.409

0.0110

65.079

1.7357

2.194

0.0448

22

0.274

0.

0070

0.760

0.0156

0.945

0.0172

99.201

1.9557

3.433

0.0150

24

0.628

0.

0063

1.747

0.0241

2.109

0.0050

145.823

3.7068

5.599

0.2223

26

0.897

0.

0106

2.517

0.0231

3.192

0.0469

224.273

10.2988

7.308

0.2204

30

1.205

0.

0097

3.453

0.1302

3.854

0.2070

411.561

7.7994

13.855

0.3937

40

2.193

0.

0206

6.240

0.0501

7.766

0.1773

1955.173

26.2481

52.991

0.3504

Table 4. CPU time [s] for the constant case

Al

A2

A3

CUT

IP

2n

ave.

s. d.

ave. |

s. d.

ave.|

s. d.

ave.|

s. d.

ave.

| s. d.

16

0.042

0.0042

0.162

0.0042

0.179

0.0088

21.701

0.4570

65.900

66.1060

18

0.053

0.0048

0.212

0.0042

0.245

0.0053

32.844

0.7563

2737.900

4999.0000

20

0.119

0.0032

0.520

0.0047

0.613

0.0067

53.550

1.1190

22

0.278

0.0042

1.267

0.0048

1.438

0.0169

82.185

1.4721

24

0.648

0.0042

2.997

0.0048

3.347

0.0330

120.208

3.1711

26

0.926

0.0053

4.330

0.0047

5.004

0.0375

189.170

6.6839

30

1.242

0.0042

5.840

0.0082

5.964

0.0201

399.349

7.1816

40

2.227

0.0082

10.739

0.0120

12.471

0.0574

2157.351

69.2466

2n: the number of teams;
ratio: average of ratios of ‘the optimal value of IP’ and ‘the objective function value
of the best solutions’; digits in parenthesis denote the average of ratios with ‘the
optimal value of LP’ instead of ‘the optimal value of IP’;

half int.: ratio of the number of variables whose value is 1/2;
Al, A2, A3: Algorithms A1, A2 and A3 described in Section 4.1;
CUT: SDP based approach described in Section 5;
IP : the integer program in a similar formulation as Trick [17];
s. d.: standard deviation.

avg.: average;



