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Abstract

This paper considers a control synthesis problem for linear systems to meet design specifications given
in terms of multiple frequency domain inequalities in (semi)finite ranges. Our approach is based on the
generalized Kalman-Yakubovich-Popov (GKYP) lemma, and dynamic output feedback controllers of order
equal to the plant are considered. A new multiplier expansion is proposed to convert the synthesis condition to
a linear matrix inequality (LMI) condition through the linearizing change of variables by Scherer, Masubuchi,
de Oliveiraet al. In the single objective setting, the LMI condition may or may not be conservative, depending
upon the choice of the basis for the multiplier expansion. We provide a qualification for the basis matrix to
yield nonconservative LMI conditions. It turns out to be difficult to determine the basis matrix meeting such
qualification in general. However, it is shown that qualified bases can be found for some cases, and that the
qualification can be used to find reasonable choices of the basis for other cases. Finally, the synthesis method
is extended to the multiple objective case where a sufficient condition is given for the existence of a controller
to meet all the specifications specified.

1 Introduction

Frequency domain inequalities (FDIs) have played a crucial role in describing design specifications for feedback
control designs. Due to the infinite dimensionality, however, FDIs are not directly useful for rigorous assess-
ment/design of control systems. The Kalman-Yakubovich-Popov (KYP) lemma [1], [2] has been proven to be
a powerful tool to convert an FDI to a linear matrix inequality (LMI) which is numerically tractable. Many of
the state space theories have been developed with the aid of the KYP lemma in one way or another. On the
other hand, a drawback of the standard KYP lemma is that it does not exactly encompass the practical situation.
Namely, it characterizes FDIs in the entire frequency range, while practical requirements are usually described
by multiple FDIs in (semi)finite ranges; e.g., small sensitivity in a low frequency range and control roll-off in a
high frequency range. The prevailing method for adjusting the discrepancy is the so-called weighting functions.
However, the design iterations to search for good weighting functions can be tedious and time consuming, and
the controller complexity (order) tends to increase with the complexity of the weighting functions.

The objective of this paper is to develop a state space design theory that is capable of directly treating multiple
FDI specifications in various frequency ranges without introducing weighting functions. To our knowledge, this
problem has not been addressed in the literature. Our approach is based on the generalized Kalman-Yakubovich-
Popov (GKYP) lemma [3]–[5], recently developed by the authors, that provides an LMI characterization of FDIs
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in (semi)finite frequency ranges. It has been already confirmed the effectiveness of using the GKYP lemma
for several engineering design including open-loop shaping for feedback control systems, digital filter design,
and structure/control design integration [4]–[6], since those design problems can be reduced to SDPs or convex
optimization problems. However, unfortunately, the general output feedback controller synthesis problem is hard
to be converted into a convex problem in general. We will develop a multiplier method to render the synthesis
conditions convex through a standard linearizing change of variables [9]–[11]. In the single objective setting, we
will provide a condition for the multiplier basis to yield nonconservative design equations, and discuss how to
choose the basis to satisfy the condition exactly for some cases and approximately for other cases. The synthesis
method is then extended, with some conservatism, for the case of multi-objective specifications.

We use the following notation. For a matrix� , its transpose, and complex conjugate transpose are denoted
by�T and�� respectively. The Hermitian part of a square matrix� is denoted by����� ��� ���. For a
Hermitian matrix,� � ���� and� � ���� denote positive (semi)definiteness and negative (semi)definiteness.
The symbol�� stands for the set of� � � Hermitian matrices. For matrices� and� , � � � means their
Kronecker product. For� � 	� ��� and
 � ����, the function� � 	� ��� ����� � �� is defined by

����
� ��
�
�� �

�


�
�� �

��
	

Given a positive integer
, let�� be the set of positive integers up to
, i.e.,�� �� � �� �� 	 	 	 � 
 �.

2 Problem statement and formulation

2.1 Problem statement

Consider the plant���� described by�
�� ��



�

�
�� �

�
�� � �� ��

�� ��� ���

�� ��� �

�
��
�
�� �
�
�

�
�� (1)

and a feedback controller���� given by�
���
�

	
�

�
�� ��

�� ��

	 �
��
�

	
(2)

where� is the frequency variable (� for continuous-time and
 for discrete-time cases), and���� � 
��� , ����� �

��� ,���� � 
��� , ���� � 
��� , 
��� � 
��� , and���� � 
��� . Denote by���� �� ��������� the closed-loop
transfer function from� to 
. A state space realization of���� with the state��� � ��� �

� is given by

�
A B
C D

	
�

�
�� �������� ���� �� ��������

���� �� �����

�� �������� ����� ��� ���������

�
�� (3)

where the state dimension is� �� �� � ��.
The control synthesis problem of our interest is, given


 �

�

�� 
��


�� 
��

	
� ������ � ��� ����

find a full order (�� � ��) controller���� such that

������ � A� 	� �� �������
� � � 
 � � ������� (4)
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where

������ �� � � � 	� � ������ � �� ������ � � � (5)

and �� �� � if � is bounded and�� �� � � �
� if unbounded.
Let us explain the roles of three Hermitian matrices
�� and� in the design specification (4).
 repre-

sents frequency properties such as the positive real condition���� � ����� � � and the small gain condition
������ � �. These properties are expressed respectively as

�
� ����

� � � ��
�� �

	 �
�

�����

	
� � � 
 � 
�� ��

�
� ��
�� �

	

�
� ����

� � ���� �
� �

	 �
�

�����

	
� �	 � 
 � 
�� ��

�
���� �
� �

	

On the other hand, a pair of� and� provides (semi) finite frequency range as shown below.
For the continuous-time case, define

�� �

�
� �
� �

	
� �� � �

�
����� ���

���� ��

	
�

where

� � ��� ����� � 
�� �� � ��� �� �� ��� ������	

Then����� �� and������� are the imaginary axis and the closed right half plane, respectively. Note that
������� is the inside (� � �) or outside (� � ��) of the circle with the center at���, passing through the points
��� and���. It is then easily seen that

�������� � � �� � � � 
�� ��� ������ ���� � � �

which is the frequency interval�� � � � �� when� � �, or the frequency range (� � �� or �� � �) when
� � ��.

For the discrete-time case, define

�� �

�
�� �
� �

	
� �� �

�
�� ��� 	 !
��

!�
�� �

	

where

 ��  � � 
�� � �  � �  � � �"�  � �� � � �  �����  	 �� � � �  ����	

Then����� �� and������� are the unit circle and outside of the unit circle, respectively. Note that������� is
the half plane above (��� � � �) or below (��� � � �) the straight line passing through the points!
�� and!
�� .
It then follows that

�������� � � !

� � # � 
�� �# �  ���# �  �� � � �

which is the frequency interval � � # �  �.
For clarity of exposition, we shall restrict our attention to the single-objective nominal control problem rep-

resented by (4) in the main body of our theoretical developments. However, we will later discuss extensions to a
more general problem where there are pole constraints and multiple FDI constraints of the above form, as well as
some uncertainty in the plant model.

Throughout the paper, we shall impose the following for tractability and practicality:
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Assumption 1

(a) The lower right �
 � �
 block matrix of 
 is positive semidefinite (
�� � �).

(b) The pair (���) is chosen so that the set ������ is not empty, nor a single point, nor the entire complex
plane.

Item (a) ensures that the feasible set for the closed-loop transfer function���� is convex, and does not exclude
such important specifications as the small gain and passivity. Item (b) excludes the trivial cases and ensures that
������ is one of the following: (i) straight line or circle, (ii) half plane, or inside or outside of a circle, (iii)
intersection of (i) and (ii). See [5] for the details and a precise characterization of����� satisfying (b).

2.2 Problem formulation via a dual GKYP lemma

Consider the transfer function���� specified by (3). The following result provides a dual version of the GKYP
lemma in [13] that characterizes an FDI in a (semi)finite frequency range in terms of LMIs.

Theorem 1 Let ��� � �, 
 � ������ , and���� in (3) be given and consider������ defined by (5).
Suppose Assumption 1 holds. The following statements are equivalent.

(i) ������ � A� 	� � and�������
� � � hold for all� � �������.

(ii) There exist� � �� and$ � $� � � such that

%�% � � �� % ��

�
� A � B
� C � D

	
� � ��

�
�� � ���$ �

� 


	
	 (6)

Proof. Define

����� �� ������ � B���� � A����C� � D�	

Note that�������
� � � holds for all� � ������ if and only if &������� '��� � �
�
'��
� ���� � � holds
for all � � 	� such that&��� '��� ���'��� ��� � � and&��� '��� ���'��� ��� � �, where

&����� ��

�
�
�

	�
�

�
�
�

	
� '���(� ��

�
� ��
�� �

	
	

The result then follows from Theorem 3 and its remark in [14].

With the result of Theorem 1, the synthesis problem can be formulated as the search for the parameters$ � �,
� , and���� satisfying (6) where the state space matrices are defined by���� � ���� � C��� � A���B� D.
The resulting condition is not convex due to the product terms between� , $, and the controller parameters. We
shall develop a multiplier method to re-parametrize the condition so that the problem becomes convex.

3 Output feedback synthesis

3.1 Multiplier expansion

The following result provides an alternative condition to (6) by introducing a multiplier through the projection
lemma.
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Lemma 1 Let matrices � � ��������� and ) � 	� ���������, and the state space realization of ���� in (3)
be given. Define % by (6) and

%� ��

�
�� A
��

C

�
�� � %� ��

�
�� B
�
D

�
�� 	

The following statements are equivalent.

(i) The following conditions hold:

%�% � � �

)��
�
� %�

�
�
�
� %�

��
)� � �	 (7)

(ii) There exists * � 	� ��� such that�
� %�

�
�
�
� %�

��
� %�*)� �%�*)��	 (8)

Proof. Note that% in (6) can be written as

% �

�
� A �
� C �

	 ��� � � � B
� � � �
� � � D

�
�� � %���

�
� %�

�
	

Then the result simply follows from the projection lemma [8], [15].

The multiplier-expanded equation (8) will be used as a basis for synthesis. In particular, the equation will be
equivalently converted to an LMI synthesis condition in the next section. Hence, conservatism associated with
(8) needs to be carefully analyzed. For an arbitrary), (8) gives a sufficient condition for (6). On the other hand,
(6) and (8) become equivalent if) is chosen to satisfy (7). Thus, condition (7) precisely captures the gap or
conservatism between the synthesis condition (8) and the original design objective.

For synthesis, it is desired that matrix) be chosen to satisfy (7). Note that condition (7) involves the yet
unknown controller parameters and hence has to be properly interpreted to give a condition useful for synthesis:

Condition 1 Condition (7) holds for some ��$ � ��, and matrices (��� ��� �����) satisfying $ � � and (6),
where �A�B�C�D� are defined by (3).

This condition is independent of the unknown parameters��$ and (��� ��� ��� ��), and thus can be used to fix
) before the control design. With) satisfying Condition 1, there exists a controller that meets the specification
(4) if and only if there exist matrices��$ � ��, * � 	� ���, and���� ��� ��� ��� such that$ � � and (8)
hold. We will show how to solve the synthesis problem (8) in the next section. How to choose an appropriate)
will be addressed in the section that follows.

Finally, we give a remark on the relation between the multiplier expansion described in this section and the
one used in our prior work on the static gain synthesis [16]. In particular, the former can be considered as a partial
expansion, and a further expansion of the quadratic term of%� in (8) via the Schur complement would yield the
full multiplier expansion in [16] that avoids direct product of%� and
. More specifically, it can be shown that
(8) is equivalent to�

�� � ���$ �
� 


	
� ��

�
%� %�
� ��

	 �
*) �

�
��'��� ��� �
��

	
�

provided
�� � �. This condition shows that a certain structure can be imposed on the multiplier in [16] without
loss of generality if the specification is convex, i.e.,
�� � �.
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3.2 Reduction to LMIs

The synthesis problem described by (8) is nonconvex due to the product term between the multiplier* and the
controller parameters. Below, we show that the change of variable introduced by de Oliveiraet al. [11] works
perfectly to convert the problem to an LMI problem, provided) satisfies an additional structural constraint.

Let+�,�- and. be defined by

* �

�
+ �
- �

	
� *�� �

�
, .
� �

	�
	

Note that, given any+�,�-� . � 	� ����� with - and. invertible, the blanks “�” can be filled to satisfy the
above two equalities for some* . In particular, we have�

+ �� �+, ��. ��

- �-, �. ��

	 �
, � �� � , �+�-��

. � �. �+-��

	
� �	

Let us define the new variables�
� �
� /

	
��

�
, �+ �
� �

	
�

�
. , ��

� �

	 �
�� ��

�� ��

	 �
- �

��+ �

	
� (9)

� �� %�% �� � �� %$% �� 0 �� , + � . -	 (10)

Then, by the congruence transformation

1 ��

�
� �
, .

	
� � �� �����1� 1� ����� (11)

we have

�
� �

�
��

�
� %�*1 � � %�

�
�

�
������

�+ ���� ����/�� �� ���/���

� ,����� , �� �����

�+ �� �
�0 �, �

��+ ����� �� ����/�� ��� ����/���

�
������ � (12)

which is affine in the new variables. Now, suppose) in (8) has been chosen to satisfy the following (we will
discuss how to choose such) later):

Condition 2 There exists a fixed matrix � � 	� ��������� satisfying )� � � 1 �� for all matrices ,� . �
	� ����� , where 1 and � are defined in (11).

Then, through the congruence transformation of (8) by� , we obtain the following result.

Lemma 2 Consider the plant ���� in (1) and the controller ���� in (2) with �� � ��, and let ��$ � ��,
) � 	� ���������, ��� � ��, and 
 � ������ be given where � �� ���. Suppose ) satisfies Condition 2.
Then the following statements are equivalent.

(i) There exist matrices ��$ � ��, a multiplier * � 	� ��� and a controller ���� ��� ������ such that (8)
is satisfied, where (A�B�C�D) are defined in (3).
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(ii) There exist matrices +�,�0�������/, and ��� � �� satisfying

�
� �

� � ��� ���� �
� 


	 �
�
��

	
� ��� ����� (13)

where � and � are defined by (12).

Moreover, the parameters (��$���� ��� ������* ) and (����������/�+� ,� 0) are related through the
bijective mapping defined by (9) and (10).

As a direct consequence of Theorem 1 and Lemmas 1 and 2, we have the following result.

Theorem 2 Consider the plant ���� of order �� in (1). Let ) � 	� ���������, ��� � ��, and 
 � ������

be given where � �� ���. Suppose Assumption 1 holds and ) satisfies Conditions 1 and 2. Then the following
statements are equivalent.

(i) There exists a dynamic output feedback controller ���� in (2) with �� � �� satisfying the specification in
(4).

(ii) There exist matrices +�,�0�������/, and ��� � �� satisfying � � � and (13) where � and � are
defined by (12).

Moreover, (ii) implies (i) for any choice of). If statement (ii) is true, the parameters (��� ��� �����) of controller
���� in statement (i) can be calculated by solving (9) and (10).

Since
�� � �, the condition in (13) can be made linear in� via the Schur complement. The resulting
equation is an LMI in terms of variables+�,�0�������/��� and�. Once we solve the LMI with the
additional condition� � �, the controller parameters can be recovered as follows. First let- and. be any
factor such that. - � 0�,+ where nonsingularity of0 �,+ can be assumed without loss of generality due
to the strictness of the LMIs. The controller parameters can then be obtained by solving (9) for���� ��� ������.

4 Nonconservative/reasonable choices of �

In this section, we would like to choose) such that feasibility of (13) and� � � is necessary and sufficient for
the existence of a controller (2) that meets the specification (4).

4.1 A general approach

In view of Theorem 2, such) can be characterized by Conditions 1 and 2. It can readily be verified that)
satisfies Condition 2 if and only if it has the following structure:

) �

�
2�� � 2�� � �
� 2�� � 2�� �

	
� 	� ������������ (14)

where2�� 2� � 	� and� � 	� ����� . In this case, we have� � ). On the other hand, the set of) satisfying
Condition 1 does not seem to have a simple parametrization, and it turns out to be difficult in general to find)
satisfying both conditions exactly.

However, one can find such) for some special cases, and the conditions can be used to find reasonable (but
potentially conservative) choices of) for other cases. We will show in the next subsection how to choose)
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satisfying Conditions 1 and 2 for the case where the frequency range is not restricted and closed-loop stability
is required, i.e.,������ is either the closed right half plane or outside of the unit circle. The subsection that
follows will suggest reasonable choices of) for the general restricted frequency case. Below, we shall describe
our idea that leads to such results.

We would like to find)with the structure (14) satisfying Condition 1. For tractability, we consider a condition
that guarantees Condition 1:

Condition 3 Inequality (7) is satisfied for all ��, ��, and ��$ ��� such that $ � �.

This condition appears to be much stronger than Condition 1 and there may be no) satisfying the condition.
However, we may find a reasonable choice for) by trying to meet Condition 3.

We first claim the following.

Lemma 3 Let ) be given by (14) and suppose it satisfies Condition 3 and �2��� � �2��� 	� �. Then � � �.

Proof. Note that the null space of) is given by

)� �

�
�� 2�� �2��
�2�� �2��
� �2	�

�
��

where2	 �� �2��
� � �2��

�. Also note that Condition 3 implies that the term associated with� and$ on the left
hand side of (7) is negative (semi)definite for all Hermitian� and$ � �. Hence we have

�����3�3��� � � �3�3���$��� � �� �� ��

�
� �
� �

	
� 3 ��

�
�2� ��2�
2� 2�

	
(15)

for all � and$ � �. We now claim that� 	� � implies that� � � and� � �. First note that3 is nonsingular
because����3� � 2	 � �. If � 	� �, then there exist vectors� and4 such that

5 �� ���3�3��� 	� �� � �� �4� ��� � �	

When� � �6�5��, we have


������3�3��� � ���
 � ���3�3���� ������ � 6� 
 ��

�
���
��4

	
	

Hence if6 � � is sufficiently large, then (15) is violated and therefore� must be zero. Similarly, if� has a
strictly positive eigenvalue, then there exist vectors� and4 such that

5 �� ���3�3��� � �� � �� �4� ��� � �	

When$ � �6�5��, we have


������3�3���$���
 � ���3�3���� ���$�� � 6� 
 ��

�
���
��4

	
	

Again, (15) is violated for sufficiently large6 � � and we conclude that� � �. Thus the set of frequency
variables������ is a single point or empty, violating Assumption 1.

When) is given by (14) with� � �, condition (7) reduces to�
�7��7�� � �7��7�$ �

� �

	
�

�
� �7�B
� D

	



�
� �7�B
� D

	�
� � (16)
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where7 � � �7� �7� �� is a vector such that� 2� 2� �7 � �, e.g.,7 � � �2� � �2� �
�. We would like to choose) (or

equivalently7) so that this inequality holds for all� and$ � �. There may be no such choice, and we take the
following heuristic approach; choose7 to be the solution of the following optimization problem:

 ��
�

7��7 subject to 7��7 � �� �7�� � �	 (17)

Since we have no information regarding the inertia of� , we impose the constraint7��7 � � to minimize the
worst-case effect of� . Since feasible$ is positive definite, we try to minimize its coefficient7��7 so that (16)
is more likely to be satisfied. The second constraint�7�� � � is imposed so that the first term in (16) becomes as
negative as possible while keeping the magnitude of the second term small. Clearly, the direction of the optimizer
(and hence)) is independent of the value of�, and we set� � �. We shall solve the optimization problem and
determine) for specific cases in the subsections below.

4.2 Case 1: The entire frequency range

We consider the case� � � and� � �� or�� so that������ is the instability region on the complex plane for
the continuous-time or discrete-time setting. In this case, the specification in (4) requires the closed-loop stability
in addition to the frequency domain inequality on the entire frequency range. The variable� then disappears from
equations (6) and (7), and the former becomes a standard LMI that arises in the classical KYP lemma (e.g. [2]).

For the discrete-time case with the entire frequency range, we have

� � �� � �

�
�� �
� �

	
� �� � ���$ �

�
�$ �
� $

	
	

and the optimization problem in (17) becomes

 ��
�

�7��
� � �7��

� subject to �7�� � �	

It can readily be verified that a solution to this problem is given by7 � � � � ��. All the other solutions are scalar
multiple of this vector and hence leads to the same):

) ��
�
� � �

�
� 
����������	

It turns out that this) satisfies Condition 1. To see this, fix a solution to (6) and note that

!� ��

�
�$ �
� �

	
�" �

�
� A
� C

	 �
�$ �
� $

	 �
� A
� C

	�
�" �� !�

which holds due to$ � �, where

" ��

�
� B
� D

	



�
� B
� D

	�
	

Inequality (6) is described by!� � � and hence we have!� � � which is exactly the condition in (7). Hence (6)
implies (7), indicating satisfaction of Condition 1. Thus the above choice of) gives a nonconservative synthesis
condition. The resulting LMI can be shown to be equivalent to the result by de Oliveiraet al. [11].

For the continuous-time case with the entire frequency range, we have

� � �� � �

�
� �
� �

	
� �� � ���$ �

�
� $
$ �
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and the optimization problem in (17) becomes

 ��
�

7��7� � �7�7� subject to �7�� � �	

Clearly, the optimal value is unbounded and not attained. A suboptimal solution which yields an arbitrarily small
objective function value is given by7 � � � � ��8 �� with sufficiently small8 � �. Hence a reasonable choice
of ) is

) ��
�
� 8� �

�
� 
����������	

Again, it turns out that this) satisfies Condition 1. First note that (7) becomes�
����8�$ �
� �

	
�" � �	

This condition holds for sufficiently small8 if and only if &�D�
� � �, which is implied by the lower right block
of (6). Thus (6) implies (7), rendering the condition (13) nonconservative.

The results in this section can be summarized in Table 1 where8 � � is a sufficiently small number.

Table 1: Nonconservative choices of) (entire frequency range)
������ � � � 	� � �� �� � � � � 
 � 	� � �
� � � �

) � � 8� � � � � � � �

4.3 Case 2: The restricted frequency range

Consider the discrete-time case with a restricted frequency range where� and� are given by

�� �

�
�� �
� �

	
� �� �

�
�� ��� 	 !
��

!�
�� �

	
	

To solve the optimization problem in (17), first note that7���7 � � if and only if �7�� � �7��. Due to As-
sumption 1,�� must have a negative eigenvalue. Hence the optimal solution of (17) is strictly negative, and the
optimizer7 is nonzero. This implies that7� and7� are both nonzero. In this case, we can assume without loss of
generality that the optimizer is given by7� � � and7� � !
� for some real9. Note that

7���7 �

�
�
!
�

	� �
�� ��� 	 !
��

!�
�� �

	 �
�
!
�

	
� ������ � � 9�� ��� 	�	

Hence7���7 is minimum when � � 9 � ". Thus we have7� � � and7� � �!�
��, leading to

) �
�
� !
��� �

�
	

Next we consider the continuous-time case where� and� are given by

�� �

�
� �
� �

	
� �� � �

�
����� ���

���� ��

	
	

The following lemma is useful.

Lemma 4 Let �� � � 	� be given. The following statements are equivalent.
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(i) ��� � ��� � �

(ii) There exist :� ; � 
� and 
 � 	� such that � � :
 and � � �;
.

Proof.
The fact that (ii) implies (i) can be verified by direct substitution. To show the converse, suppose (i) holds

and let� � �� � ��� with ��� �� � 
� and� � �� � ��� with ��� �� � 
�. Then

��� � ��� � ������ � ����� � ����

�
�� ���
�� ��

	
� �	

This implies the existence of5� < � 
� such that�
�� ���
�� ��

	 �
5
<

	
� ��

�
5
<

	
	� �	

The first equality is equivalent to5� � �<� � �. If 5 � �, then< 	� � and hence� � �. In this case, (ii) holds
with : �� �, ; �� �, and
 �� �. If 5 	� �, then (ii) holds with: �� �<�5, ; �� ��, and
 �� ��. Thus (i)
implies (ii).

Now consider the problem in (17). First note that

7���7 � � � 7 �

�
:
�;

	



by Lemma 4. Then the problem becomes

 �#
�����

�=T ���= subject to �=�� � �� ��� ��

�
���� ��

�� �

	

with = �� �
�� : ; �T. If � � �, we should maximize

=T ���= � =�� � ���=�=� �����=
�
� 	

The maximum is not attained and can be approached by= such that=� is sufficiently large and�=�� � �. In the
limit, = is considered proportional to� � � �T. Thus

7 �

�
�
�

	
� ) �

�
� � �

�
	

If � � �, then we should minimize

=T ���= � �=� ���=��
� � ��� ����

�=���$

subject to�=�� � �. Since�� 	� ��, the solution is given by

= �

�
�

���

	
� 7 �

�
�

����

	
� ) �

�
���� � �

�
	

Table 2 summarizes these cases where������� and� ��  �� are real scalars specifying the frequency ranges and
satisfy�� � �� and� �  � �  � � �", respectively, and�� �� ��� ������ and and � �� � � �  ����.

In the case of the FDI in the entire frequency range, we have seen that the solution of (17) provides)
satisfying Conditions 1 and 2, leading to nonconservative synthesis conditions. Unfortunately, this does not seem
to be the case in general if we consider the FDI in a restricted frequency range. However, for the special case
of the continuous-time frequency range�� � � � ��, the choice of) given above turns out to give an exact
synthesis condition.
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Table 2: Reasonable choices of) (restricted frequency range)
������ � �� � �� � � � �� � � �� � � � �� or �� � � � � !
� �  � � # �  � �

) � � � � � � ���� � � � � � !
��� � �

Proposition 1 Suppose ��� � � and ��� � � hold and let ) �� � � � � �. If the condition in (13) is infeasible,
then there is no controller (2) that meets the specification (4) with �� satisfying ��D�
� � �.

Proof. Suppose such a controller exists. Note that Conditions 1 and 2 hold because (16) becomes
��������$� ��D�
�� � � which is satisfied for the controller. Consequently, feasibility of condition (13) be-
comes necessary and sufficient for the existence of a controller that meets the specification (4). By supposition,
such a controller exists and hence condition (13) must be feasible.

As mentioned before, the proposition captures the case of the frequency range� � � � �� in the
continuous-time setting. Suppose�� has been fixed so that��D�
� � � holds. A typical situation would
be the case where a strictly proper controller is to be designed to meet a small gain requirement for a system with
��� � �. Then, (13) with) �� � � � � � provides anecessary and sufficient condition for the existence of such
controller.

Another observation from (16) is that, if there is no controller high frequency gain�� that makes��D�
�
negative definite, the LMI synthesis condition in Theorem 2 will always be infeasible for the heuristic choices of
) in Table 2 even when a feasible controller exists. A typical and important case is the sensitivity minimization
in the low frequency range. In this case,
 � ��������� ��, ��� � �, and��� or ��� is zero so that the gain
bound� cannot be less than� to ensure��D�
� � �. For this type of designs, we need to choose nonzero�
in (14). However, it is not clear at the moment how to choose an appropriate�. An alternative would be to put
a low pass filter with sufficiently high cut-off frequency in series with the sensitivity transfer function so that
��D�
� � � is automatically satisfied.

5 Extensions

5.1 Multi-objective control

We consider the following control problem: Find���� such that

��������
�� � � 
 � � ��������� (18)

holds for all> � �� where�������
�� defines a frequency domain specification to be achieved for the closed-
loop system���� �� ����� �����. The transfer function����� is given and represents a plant with a selected
disturbance-performance (i.e.,�-
) channel for multi-objective control. In particular,����� is specified by (1)
with different state space matrices��, ��, ���, ���, and��� for different>. The generalized plants����� are
assumed to share the same actuators and sensors so that matrices�, ��, and�� are independent of>.

The following result provides a sufficient condition for feasibility of the above control problem. The result
can be obtained from Theorem 2 in a straightforward manner, and hence its proof is omitted.

Corollary 1 Let )� � 	�
���������, ����� � ��, 
� � ������ , and systems ����� as in (1) be given where

> � ��. Assume that all ����� share the same sensors/actuators and thus matrices �, ��, and �� are common
for all >. Suppose )� satisfies Condition 2 and let �� be the matrix satisfying )� � � 1 �� with ) � )�. Then,
there exists a dynamic feedback controller ���� such that the frequency domain specifications (18) are satisfied
for all > � �� if there exist matrices +�,�0�������/, and ����� � �� such that �� � � and�

� ��
� � �� ��� ����� �

� 
�

	 �
�
���

	
� ���� � ������

� (19)
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holds for all > � ��, where �� and �� are defined as in (12) in terms of the state space vertex matrices of the
plant. In this case, one such controller is given by (2) where the parameters are calculated from (9) and (10).

This result provides a sufficient condition for the existence of a dynamic feedback controller that achieves
the multiple FDI specifications in (18). The condition can be rewritten as LMIs via the Schur complement due to

�� � �, and can be solved numerically. The associated degree of conservatism is dependent upon the choices
of )�, and some reasonable values are given in the previous section. It should be noted that this formulation does
not assume common “Lyapunov matrices” (���) as in the quadratic stability literature [17] or in the more recent
multi-objective control [9], [10], but rather, (���) can be interpreted as “parameter-dependent” as discussed
in [11], [18]–[20]. Thus we can expect reduced conservatism when compared with these existing techniques for
multi-objective robust control. It should be emphasized, however, that the main contribution of this paper is not
the conservatism reduction but the synthesis method to meet FDI specifications in (semi)finite frequency ranges,
which have not been addressed in the literature.

5.2 Regional pole constraints

The design specifications in (18) encompass frequency domain shaping of closed-loop transfer functions. How-
ever, the closed-loop stability has not been captured, and hence one may wish to include a stability constraint,
or more generally, regional pole constraints, as an additional design specification. The following lemma gives a
basic result for an eigenvalue characterization.

Lemma 5 Let � � 	� ��� and � � � be given. Suppose ������ � �. Then the following statements are
equivalent.

(i) Each eigenvalue � of � satisfies ������ � �.

(ii) There exists � � �� � � such that ������ � � � �.

(iii) There exist * and � � �� � � such that

�� � � ��

�
�
��

	
*

�
�?� @�

�

where 2 �� � @ ? �T � 	� � is an arbitrary fixed vector satisfying 2��2 � �.

Proof. The equivalence (i)� (ii) has been shown in [21], [22]. The equivalence (ii)� (iii) follows from the
projection lemma.

The condition in (iii) can be used to give additional constraints in the design equations discussed in the previ-
ous sections. In particular, we replace� with the closed-loop matrixA in (3), apply a congruence transformation
by �����1� 1 �, and use the change of variables in (12). As a result, we add the following constraint to the design:

��� � ���'�A�� ' ��
�
��� �

�
� A ��

�
�?� @�

�
	 (20)

In the multiobjective control,� depends on> in general but'� will always be independent of>, justifying the
omission of the subscript>. On the other hand, multiple inequalities of the same form, but with different� and
A, can be added to enforce regional pole constraints expressed as the intersection of half planes and circles.
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6 Design example

The main objective of this section is to illustrate the design procedure proposed in this paper. In particular, we
will design a controller using statement (ii) of Theorem 2 with the heuristic choices of) described in Table 2.
The design method is potentially conservative and another aim of this example is to show that the degree of
conservatism can be small enough for some applications to allow for direct design of controllers to meet multiple
specifications in different frequency ranges.

We consider the control of an active magnetic bearing (AMB). With a constant biasing, the normalized dy-
namics of an AMB, from the voltage input to the displacement output, can be described by

� ��� �
�

�� � B�� � B

whereB ranges between about�	% and% for physically reasonable AMB designs [23]. Below, we takeB � �	&.
In this case,� ��� has an unstable real pole at� � �	'&( and an oscillatory mode at natural frequency� � �	)(�
with dampingC � �	'''%.

The problem is to design a stabilizing controller���� to meet the following specifications:

�� ����A����� � �	 
 ��� � �	

������A����� � �� 
 ��� � �� (21)

������� ����A����� � �� 
 ��� � ��

whereA �� �������� is the sensitivity function. These three specifications address position regulation against
input-port disturbance, sensitivity of the control input to the sensor noise, and robustness against the multiplicative
plant uncertainty.

We set the parameter values

�	 � �	&� �� � %� �� � �	)� �� � $� �� � ��

and minimize�	 subject to the above constraints over a set of stabilizing full order controllers using Theorem 2
and (20) with@ � �? � �. The optimal value is found to be�	 � $	$& and the controller is

���� � �
�	���(�� � &	*(&���� � �	�%$� � �	*%%$�

��� %	%'*���� � �	�%&� � $	$*��
	

The resulting close-loop frequency responses are plotted in Fig. 1, where the specification bound for the solid
curve is indicated by the shaded region with a solid boundary, and similarly for the dashed and dash-dotted curves.
We see that the bounds on��A� and��A� are fairly tight, suggesting effectiveness of the design method.

On the other hand, the bound on���A� is not very tight, indicating a possible drawback (conservatism). The
design would be difficult if the resulting frequency response is insensitive to the change in the bound specification.
If the result is sensitive, however, frequency shaping can still be done even when the bound is conservative, by
iteratively revising the design specification. To illustrate this point, let us consider the case where the specification
on ���A� is relaxed to�� � �. In this case, the optimal value of�	 � �	*( is achieved by

���� � �
�	'(*%�� � �	*������ � �	���� � �	*(%)�

��� �	(�&���� � �	��$� � $	�$��
	

The resulting frequency responses are plotted in Fig. 2. We see that the slight change introduced to the speci-
fication yielded a significant change in the closed-loop responses. Due to this high sensitivity, we can tune the
specification to meet the original goal. For example, if we want to minimize�	 subject to (21), we may adjust
�� between�	) and� so that the constraint on���A� in (21) becomes tight. In fact, choosing�� � �	*�% gives
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the peak value���A�� � *	*( at � � �	)�&, while achieving�	 � %	&'. Figure 3 shows how the optimal
performance bound�	 and the peak value of���A� change as�� is adjusted. As expected,�	 is monotonically
decreasing with respect to��. The peak value increases when�� varies around the natural frequency� � �	)(�
and then reaches a plateau as�� becomes sufficiently large. When�� becomes smaller than the natural fre-
quency, the frequency at which the peak value occurs becomes smaller than and moves away from the natural
frequency.
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Figure 1: Design result (Case 1:�� � �	))
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Figure 2: Design result (Case 2:�� � �)
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Figure 3: Optimal bound�	 and the peak value of���A� as functions of��

7 Conclusion

We have developed a method for synthesizing dynamic output feedback controllers to achieve multiple FDI
specifications in (semi)finite frequency ranges. A sufficient condition for existence of feasible controllers are
given in terms of LMIs, and some special cases, where the condition becomes also necessary, are discussed. An
example of the active magnetic bearing illustrated the proposed design method and demonstrated its effectiveness.

15



Acknowledgments: This research is supported in part by The Ministry of Education, Science, Sport and Culture,
Japan, under Grant 17360195, and by the 21st Century COE Program on Information Science and Technology
Strategic Core.

References

[1] B.D.O. Anderson. A system theory criterion for positive real matrices.SIAM J. Contr., 5(2):171–182, 1967.

[2] A. Rantzer. On the Kalman-Yakubovich-Popov lemma.Sys. Contr. Lett., 28(1):7–10, 1996.

[3] T. Iwasaki, G. Meinsma, and M. Fu. GeneralizedA-procedure and finite frequency KYP lemma.Math-
ematical Problems in Engineering, 6:305–320, 2000. http://www.hindawi.com/journals/mpe/volume-
6/S1024123X00001368.html.

[4] T. Iwasaki, S. Hara, and H. Yamauchi. Dynamical system design from a control perspective: Finite fre-
quency positive-realness approach.IEEE Trans. Auto. Contr., 48(8):1337–1354, August 2003.

[5] T. Iwasaki and S. Hara. Generalized KYP lemma: Unified frequency domain inequalities with design
applications.IEEE Trans. Auto. Contr., 50(1):41–59, January 2005.

[6] S. Hara, T. Iwasaki, and D. Shiokata. Robust PID control using generalized pid synthesis.IEEE Control
Systems Magazine, 26(1), 2006.

[7] J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis. State-space solutions to standard�� and��
control problems.IEEE Trans. Auto. Contr., 34(8):831–847, August 1989.

[8] T. Iwasaki and R.E. Skelton. All controllers for the general�� control problem: LMI existence conditions
and state space formulas.Automatica, 30(8):1307–1317, 1994.

[9] C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI optimization.IEEE
Trans. Auto. Contr., 42(7):896–911, 1997.

[10] I. Masubuchi, A. Ohara, and N. Suda. LMI-based controller synthesis: a unified formulations and solution.
Int. J. Robust and Nonlinear Contr., 8:669–686, 1998.

[11] M.C. de Oliveira, J.C. Geromel, and J. Bernussou. Extended�� and�� characterizations and controller
parametrizations for discrete-time systems.Int. J. Contr., 75(9):666–679, 2002.

[12] M.C. de Oliveira, J. Bernussou, and J.C. Geromel. A new discrete-time robust stability condition.Sys.
Contr. Lett., 37:261–265, 1999.

[13] T. Iwasaki and S. Hara. Generalization of Kalman-Yakubovic-Popov lemma for restricted frequency in-
equalities.Proc. American Contr. Conf., 2003.

[14] T. Iwasaki and S. Hara. Generalized KYP lemma: Unified characterization of frequency domain inequalities
with applications to system design.Technical Report of The Univ. Tokyo, METR2003-27, August 2003.
http://www.keisu.t.u-tokyo.ac.jp/Research/techrep.0.html.

[15] P. Gahinet and P. Apkarian. A linear matrix inequality approach to�� control. Int. J. Robust Nonlin.
Contr., 4:421–448, 1994.

16



[16] T. Iwasaki and S. Hara. Robust control synthesis with general frequency domain specifications: static gain
feedback case.Proc. American Contr. Conf., 5:4613–4618, 2004.

[17] B.R. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an uncertain linear system.
J. Optimiz. Theory Appl., 46(4), 1985.

[18] J. Daafouz and J. Bernussou. Parameter dependent Lyapunov functions for discrete time systems with time
varying parametric uncertainties.Sys. Contr. Lett., 43:355–359, 2001.

[19] J.C. Geromel, M.C. de Oliveira, and J. Bernussou. Robust filtering of discrete-time linear systems with
parameter dependent Lyapunov functions.SIAM J. Contr. Optim., 41(3):700–711, 2002.

[20] P. Apkarian, H.D. Tuan, and J. Bernussou. Continuous-time analysis, eigenstructure assignment, andD� syn-
thesis with enhanced linear matrix inequalities characterizations.IEEE Trans. Auto. Contr., 46(12):1941–
1946, 2001.

[21] D. Henrion and G. Meinsma. Rank-one LMIs and Lyapunov’s inequality.IEEE Trans. Auto. Contr.,
46(8):1285–1288, 2001.

[22] D. Peaucelle and D. Arzelier. Robust performance analysis with LMI-based methods for real parametric
uncertainty via parameter-dependent Lyapunov functions.IEEE Trans. Auto. Contr., 46(4):624–630, 2001.

[23] E. Maslen, D. Montie, and T. Iwasaki. Robustness limitations in self-sensing magnetic bearing.ASME
Dynamic Systems, Measurement and Control, 2004. (Provisionally accepted).

17


