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A Region-Dividing Approach to Robust Semidefinite

Programming and Its Error Bound∗

Yasuaki Oishi†

A new asymptotically exact approach is presented for robust semidefinite programming,
where coefficient matrices polynomially depend on uncertain parameters. The parame-
ter region is divided into subregions to make an approximate problem for a given robust
semidefinite programming problem. The optimal value of the approximate problem con-
verges to that of the original problem as the resolution of the division becomes finer. An
advantage of this approach is that an upper bound on the approximation error is available
before solving the approximate problem. This bound shows how the approximation error
depends on the resolution of the division. Furthermore, it leads to the construction of an
efficient division that attains small approximation error with low computational complex-
ity. Numerical examples show usefulness of the present approach. In particular, an exact
optimal value is often found with a division of finite resolution. Some useful properties
related to polynomial optimization are also presented.

Keywords: robust semidefinite programming, polynomial optimization, linear matrix
inequalities, approximation, conservatism, computational complexity.

1. Introduction

Robust semidefinite programming (robust SDP in short) is the optimization of a linear objective

function subject to linear matrix inequalities (LMIs in short) whose coefficients depend on

uncertain parameters. Its research in the framework of mathematical programming started in

the independent works of Ben-Tal–Nemirovski [3] and El Ghaoui–Oustry–Lebret [18] though

essentially the same problem had been considered in robust control [8]. Surveys are found

in [2, 17, 4, 6]. Robust SDP has many applications such as robust control, robust design of

antenna arrays, and robust truss design. Furthermore, polynomial optimization [23, 29], which

attracts the interest of many researchers, is reduced to robust SDP.

A robust SDP problem is difficult to solve in general due to its semi-infinite nature, that is,

this problem essentially has infinitely many LMI constraints corresponding to different values of

the parameters. Hence, an approximate approach has been taken: A solvable SDP problem is

constructed such that its feasible region is included in that of the original robust SDP problem.

This approach is conservative in that there is usually a gap between the optimal values of
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the approximate problem and the original problem. Ben-Tal–Nemirovski [3, 5, 6] proposed an

approximation scheme in the case of affine parameter dependence and gave an upper bound on

the approximation error. They also showed that the original robust SDP problem is NP-hard

even in this special case. El Ghaoui–Oustry–Lebret [18] proposed a different approximation

scheme in the case of rational parameter dependence.

Recently, asymptotically exact approaches were proposed in the case that parameter depen-

dence is polynomial. In particular, Ohara–Sasaki [28] and Bliman [7] proposed an approach

based on the Kalman–Yakubovich–Popov lemma, Scherer [31] an approach based on Pólya’s

theorem, and Scherer–Hol [32] an approach based on sum of squares (SOS). See also the works

of Lasserre [23] and Parrilo [29] for the SOS technique. The approximate problems considered

in these approaches are related to the existence of some polynomial in the parameters. As the

assumed degree of the polynomial increases, the optimal value of the approximate problem con-

verges to that of the original robust SDP problem. More interestingly, it is reported in the SOS

approach that the optimal value of the original problem is often obtained with a polynomial of

finite degree. See [31] for a general theory on this type of approximations and on verification

of exactness.

Although these approaches are quite attractive, they have some issues to be settled. (i) How

the approximation error depends on the assumed degree of a polynomial is not well understood

quantitatively. Indeed, this dependence is really non-intuitive [23, 29]. (ii) It is not clear how

one should increase the degree of a polynomial. When one is not satisfied with the quality of the

obtained approximation, he is to increase the degree of the polynomial. This introduces many

new terms into the polynomial especially when the parameter dimension is high. If possible,

one would like to introduce only necessary terms to suppress the computational complexity. It

is not clear, however, how to do it.

The objective of this paper is to investigate another approach proposed by Emoto–Oishi [19]

with particular focus on the above mentioned issues. This approach provides an asymptotically

exact sequence of approximate problems just as the existing approaches. A difference is that

it is based on a division of the parameter region and improves the quality of approximation by

refining the division. An advantage of this approach is that an upper bound on the approx-

imation error is available before solving the approximate problem. Although this bound can

be conservative as in Section 6, it reveals a quantitative property of the asymptotic exactness.

In particular, this bound shows how the approximation error depends on the resolution of the

division. Moreover, it enables us to make a good division, which attains a small approximation

error with small computational load.

The approach to be discussed is a generalization of two techniques. Both of them are
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developed for less conservative approximation of a special class of robust SDP problems in the

context of robust control. The first technique was proposed by Masubuchi–Shimemura [26]

using descriptor forms. Its application to robust and gain-scheduled control is found in [25, 22].

A closely related approach is presented in [11]. The second technique is matrix dilation, which

was proposed by de Oliveira–Bernussou–Geromel [12] and was extended in many directions

[14, 1, 33, 34, 13, 15, 16]. It is notable that division of the parameter region was considered in

the context of matrix dilation [27] though its scope was still limited to a special class of robust

SDP problems. Based on these results, Emoto–Oishi [19] proposed an approach to general

robust SDP problems with a proof of its asymptotic exactness. The mentioned results on an

error bound are new contribution of the present paper. They seem to be new even in the special

class discussed before.

This paper is constructed as follows. Section 2 introduces robust SDP with some examples.

Section 3 gives the region-dividing approach, which is to be investigated. Section 4 is the main

section of this paper and gives an upper bound on the approximation error. An efficient division

is discussed in Section 5 while numerical examples are provided in Section 6. Section 7 focuses

on a special robust SDP problem related to polynomial optimization and presents some useful

properties. Section 8 concludes the paper.

The symbol Rn stands for the set of n-dimensional real vectors. The symbol T denotes the

transpose of a matrix or a vector. We let On×m and In designate the n×m zero matrix and the

n×n identity matrix, respectively. The sizes of these matrices are omitted when they are clear

from the context. The maximum singular value of a matrix A is written as σ(A). For a real

symmetric matrix A, the inequality A º O means that A is positive semidefinite, that is, xTAx

is nonnegative for any real vector x. Similarly, A Â O expresses that A is positive definite. For

two real symmetric matrices A and B, the inequalities A º B and A Â B mean A−B º O and

A− B Â O, respectively. The Kronecker product of two (not necessarily symmetric) matrices

A = (aij) and B is defined as

A⊗B :=




a11B · · · a1mB
...

...

an1B · · · anmB


 .

2. Robust Semidefinite Programming

A robust SDP problem considered in this paper is written as follows:

P : minimize cTx

subject to E(x) º O, F (x, θ) º O (∀θ ∈ Θ).
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Here, c ∈ Rn is a given nonzero vector; x = [x1 x2 · · · xn]T ∈ Rn is an optimization variable;

θ = [θ1 θ2 · · · θp]
T ∈ Θ is an uncertain parameter; its domain Θ is a polytope, i.e., a bounded

polyhedron, in Rp with a nonempty interior; E(x) is a function affine in x, whose value is an

`× ` real symmetric matrix; F (x, θ) is a function affine in x and polynomial in θ, whose value

is an m×m real symmetric matrix. We denote by di the maximum degree of F (x, θ) in θi for

i = 1, 2, . . . , p. We write D :=
∏p

i=1(di + 1).

Here are two examples for robust SDP problems.

Example 1 (Robust stability analysis [8]). We analyze robust stability of the system

(d/dt)ξ(t) = A(θ(t))ξ(t). Here, A(θ(t)) is a matrix whose elements are rational functions

of θ(t); θ(t) is a time-varying parameter that continuously moves in a polytope Θ, which is

often a multi-dimensional interval
∏p

i=1[θi, θi]. This system is asymptotically stable for any

time variation of θ(t) if and only if the following problem has a negative minimum value:

minimize y

subject to X − I º O, yI −XA(θ)− A(θ)TX º O (∀θ ∈ Θ).

This problem can be written in the form of P . Recall that the elements of A(θ) are rational

functions of θ. If we consider the least common multiplier of their denominators and multiply

its square to both sides of the second constraint of the problem, then this constraint involves

only polynomials of θ. In this case, the optimization variable x in P consists of y and the

independent elements of X. ¤

Example 2 (Polynomial optimization [23, 29]). Consider the maximization problem:

maximize f(θ)

subject to θ ∈ Θ,

where f(θ) is a scalar polynomial in θ. It is easy to see that the maximum value of this problem

is equal to the minimum value of the problem:

minimize x

subject to x− f(θ) ≥ 0 (∀θ ∈ Θ),

which is in the form of P . ¤

The robust SDP problem P is difficult to solve. Hence, an approximate approach is taken

usually: to replace the constraint F (x, θ) º O (∀θ ∈ Θ) by a stronger constraint expressed by a

usual parameter-independent LMI. The approximate problem constructed by this replacement
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is a usual SDP problem, which is solvable by a standard method. Since the feasible region of

the approximate problem is a subset of the original feasible region, the minimum value of the

approximate problem is greater than or equal to the minimum value of the original problem P .

Recently, asymptotically exact approaches are proposed [28, 7, 31, 32], in which the minimum

value of the approximate problem converges to the minimum value of P as the degree of an

assumed polynomial increases. The SOS approach, in particular, can deal with a problem

more general than P . That is, the parameter region Θ can be any set implicitly described by

polynomial inequalities. In the succeeding sections, we investigate yet another asymptotically

exact approach and show that it has good properties not possessed by the existing approaches.

Although this approach cannot deal with a general parameter region like the SOS approach,

many important problems are formulated in the form of P as is seen in the examples.

Before proceeding, we mention an approach, lying opposite to those discussed so far. They

consider the problem:

P (θ(1), . . . , θ(Q)) : minimize cTx

subject to E(x) º O, F (x, θ(q)) º O (∀q = 1, 2, . . . , Q)

with {θ(q)} being points sampled from Θ. Note that the feasible region of this problem is

a superset of that of the original problem P . Hence, the minimum value of this problem is

smaller than or equal to that of P . Calafiore–Campi [9, 10] considered the case that the points

{θ(q)} are chosen randomly and quantified the discrepancy between the two feasible regions in

a probabilistic sense. See [35] for related randomized techniques.

3. A Region-Dividing Approach

3.1. Preliminary results

We will present the region-dividing approach to the robust SDP problem P , which was proposed

by Emoto–Oishi [19]. We begin by presenting preliminary results.

Proposition 3. Let G be a real symmetric matrix. Let [M H] be a real nonsingular matrix

of the same size as G satisfying MTH = O. The following three statements are equivalent:

(a) MTGM Â O;

(b) There exists a positive number a such that G + aHHT Â O;

(c) There exists a real matrix W such that G + HWT + WHT Â O.

5



Proof. From (b), the statement (c) follows with W := (a/2)H. Since M is of full-column

rank, premultiplication of MT and postmultiplication of M to the inequality in (c) gives the

statement (a).

It remains to derive (b) from (a). Since [M H] is nonsingular, it suffices to show the positive

definiteness of
[
MT

HT

]
(G + aHHT)[M H] =

[
MTGM MTGH

HTGM HTGH

]
+ a

[
O

HTH

]
[O HTH].

Here, we used MTH = O. Since MTGM Â O by (a), it suffices to show the positive definiteness

of its Schur complement

HTGH + a(HTH)2 −HTGM(MTGM)−1MTGH.

But this is true for a sufficiently large a due to the positive definiteness of HTH. ¤

In the control community, the equivalence between (a) and (b) is known as Finsler’s lemma

while the equivalence between (b) and (c) as a special case of the elimination lemma.

Our approach to the robust SDP problem P is to express 2F (x, θ) = M(θ)TG(x)M(θ)

and to use the condition (c) with some H(θ) affine in θ. The matrix W has to be found for

each θ. We construct an approximation by requiring W to be constant in some polytope and

considering the inequality only at the vertices.

In order to define G(x) and M(θ), we expand F (x, θ) as a polynomial in θ:

F (x, θ) = F00···0(x) + F10···0(x)θ1 + · · ·+ Fd1d2···dp(x)θd1
1 θd2

2 · · · θdp
p .

Although the terms can be arranged in any order, we consider here an inversely lexicographic

order, that is, the term θα1
1 θα2

2 · · · θαp
p precedes the term θβ1

1 θβ2

2 · · · θβp
p if

{
αp < βp or

αq < βq, αq+1 = βq+1, . . . , αp = βp for some q = 1, 2, . . . , p− 1.

With this order, we define

F∗(x) = [F10···0(x) F20···0(x) · · · Fd1d2···dp(x)],

M(θ) = [Im θ1Im θ2Im · · · θd1
1 θd2

2 · · · θdp
p Im]T

so that F (x, θ) = [F00···0(x) F∗(x)]M(θ). These matrices look as in (1) and (2) below in the

case of p = 2 and d1 = d2 = 2. Define also

G(x) :=

[
2F00···0(x) F∗(x)

F∗(x)T O

]
.

6



It is easy to see that M(θ)TG(x)M(θ) = 2F (x, θ). With D =
∏p

i=1(di + 1), the matrix M(θ) is

Dm×m while G(x) is Dm×Dm.

We next define the matrix H(θ) such that [M(θ) H(θ)] is nonsingular, M(θ)TH(θ) = O

holds, and H(θ) is affine in θ. In the case of p = 2 and d1 = d2 = 2, this is possible with

F∗(x) = [ F10(x) F20(x) F01(x) F11(x) F21(x) F02(x) F12(x) F22(x) ], (1)

M(θ) =




Im

θ1Im

θ2
1Im

θ2Im

θ1θ2Im

θ2
1θ2Im

θ2
2Im

θ1θ
2
2Im

θ2
1θ

2
2Im




, H(θ) =




−θ1Im −θ2Im

Im −θ1Im −θ2Im

Im −θ2Im

Im −θ2Im

Im −θ2Im

Im −θ2Im

Im

Im

Im




.

(2)

For a formal definition of H(θ), we introduce q × q matrices Jq and Kq defined as

(Jq)ij :=

{
1 if i + 1 = j,

0 otherwise;
(Kq)ij :=

{
1 if i = j = 1,

0 otherwise,

and set

H(θ) :=
(− θ1Kdp+1 ⊗ · · · ⊗Kd3+1 ⊗Kd2+1 ⊗ Jd1+1 ⊗ Im

− θ2Kdp+1 ⊗ · · · ⊗Kd3+1 ⊗ Jd2+1 ⊗ Id1+1 ⊗ Im − · · ·

− θpJdp+1 ⊗ Idp−1+1 ⊗ · · · ⊗ Id1+1 ⊗ Im + IDm

)×
[
Om×(Dm−m)

IDm−m

]
,

which is a Dm× (Dm−m) matrix.

We first fix x and θ and consider the following condition: There exists W = W (x, θ) such

that G(x)+H(θ)WT +WH(θ)T º O. This condition implies F (x, θ) º O by premultiplication

of M(θ)T and postmultiplication of M(θ). The converse implication is not true in general. By

Proposition 3, however, it is true if the inequality is replaced by a strict one. In this sense, the

considered condition is almost equivalent to F (x, θ) º O.

Next, we consider this condition for varying θ. Although we can choose W for each θ, we

impose a stronger condition that W be constant in a polytope in Θ. On one hand, this restricts

the choice of W . On the other hand, this restriction enables us to conclude F (x, θ) º O for

all θ in that polytope by checking G(x) + H(θ)WT + WH(θ)T º O only at the vertices of the

polytope. This is a consequence of affinity of H(θ). This observation is formally stated below.

7



Proposition 4. Let x be any point in Rn and θ(1), . . . , θ(Q) be any points in Θ. Then, F (x, θ) º
O holds for all θ in the convex hull of {θ(1), . . . , θ(Q)}, if there exists W satisfying

G(x) + H(θ(q))WT + WH(θ(q))T º O (3)

for q = 1, 2, . . . , Q.

Proof. Consider θ in the convex hull of {θ(1), . . . , θ(Q)} and represent it as a convex

combination. Convex combination of the Q inequalities (3) with the same coefficients gives

G(x) + H(θ)WT + WH(θ)T º O for the considered θ. This implies F (x, θ) º O. ¤

This proposition gives an idea of the region-dividing approach to be presented. That is,

we divide the parameter region Θ to convex polytopes and consider the condition (3) for each

polytope. Since the condition (3) is affine in x and W , minimization of cTx with this condition

is tractable as a standard SDP problem. This problem is an approximation of the original

problem because the considered condition is only sufficient for F (x, θ) º O (∀θ ∈ Θ). The

quality of the approximation is, however, improved as the resolution of the division becomes

higher.

We present the approach more formally in the next subsection. We conclude this subsection

by preparing terminology.

A division of Θ is a finite family {Θ[j]}J
j=1 such that Θ =

⋃J
j=1 Θ[j] holds and Θ[j] ∩ Θ[k]

has no interior point for j 6= k. Each element Θ[j] of a division {Θ[j]} is called a subregion.

We require each subregion to be a convex polytope with a nonempty interior. Since Θ is a

polytope with a nonempty interior, such a division always exists. The radius of a subregion Θ[j]

is defined as rad Θ[j] := minθ∈Θ[j] maxθ′∈Θ[j] maxi |θi − θ′i|. A point θ that attains the minimum

is called a center of Θ[j]. For example, when Θ[j] is a multi-dimensional interval
∏p

i=1[θi, θi],

its radius is maxi(θi − θi)/2 and its center is [(θ1 + θ1)/2 (θ2 + θ2)/2 · · · (θp + θp)/2]T. The

maximum radius of a division {Θ[j]} is defined as rad {Θ[j]} := maxj rad Θ[j]. Finally, a division

{Θ̃[k]} is called a subdivision of another division {Θ[j]}, if any subregion Θ[j] is expressed as a

union
⋃

k Θ̃[k] of some subfamily of {Θ̃[k]}.

3.2. A region-dividing approach

For a given robust SDP problem P , we consider a division {Θ[j]}J
j=1 of the parameter region

Θ. For each subregion Θ[j], we consider the condition (3) with θ(1), . . . , θ(Q) being the vertices

of Θ[j] and write the set of all (x,W ) satisfying this condition as S(Θ[j]). We allow the matrix

W to have different values in different subregions. Hence, we have the following approximate
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problem:

P ({Θ[j]}) : minimize cTx

subject to E(x) º O, (x,W [j]) ∈ S(Θ[j]) (∀j = 1, 2, . . . , J).

The feasible region of P ({Θ[j]}) is in the space of (x, {W [j]}J
j=1). We consider its projection to

the space of x and call it the projected feasible region. By Proposition 4, the projected feasible

region of P ({Θ[j]}) is included in the feasible region of P . This implies min P ≤ min P ({Θ[j]}).
Subdivision of {Θ[j]} improves the quality of approximation. Indeed, if {Θ̃[k]} is a subdi-

vision of {Θ[j]}, the projected feasible region of P ({Θ̃[k]}) includes that of P ({Θ[j]}), which

implies min P ≤ min P ({Θ̃[k]}) ≤ min P ({Θ[j]}). Thus, we obtain a sequence of approxima-

tions for the problem P . Qualitative reasoning shows that the approximation becomes exact

as the maximum radius rad {Θ[j]} goes to zero [19]. However, in this paper, we would like

to make more quantitative discussion. We obtain in the next section an upper bound on the

approximation error minP ({Θ[j]})−min P as a function of the maximum radius.

We would like to mention here the relationship to the branch-and-bound approach for

optimization. When the region-dividing approach is used for polynomial optimization, it looks

similar to the branch-and-bound approach. A difference is that the present approach can be

used for a more general class of robust SDP problems. Moreover, an upper bound on the

approximation error is not available in the branch-and-bound approach in general.

4. An Upper Bound on the Approximation Error

4.1. An upper bound

This is the main section of this paper. It gives an upper bound on the approximation error

min P ({Θ[j]})−min P for a given division {Θ[j]}.
Our upper bound is a priori in the sense that one can obtain it before solving P ({Θ[j]}).

We would like to mention that an a posteriori upper bound is easily obtained. Indeed, the

problem P (θ(1), . . . , θ(Q)) in Section 2 satisfies min P (θ(1), . . . , θ(Q)) ≤ min P ≤ min P ({Θ[j]}).
The discrepancy min P ({Θ[j]})−min P (θ(1), . . . , θ(Q)) is computable and forms an upper bound

on min P ({Θ[j]})−min P .

We use the following auxiliary problem to derive an upper bound:

Pε : minimize cTx

subject to E(x) º O, F (x, θ) º εI (∀θ ∈ Θ),
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where ε is a nonnegative number. Obviously, the feasible region of Pε is included in that of P

and, thus, min P ≤ min Pε. We choose ε so that

min P ≤ min P ({Θ[j]}) ≤ min Pε. (4)

We evaluate min Pε−min P using convexity of min Pε and obtain an upper bound on minP ({Θ[j]})−
min P .

For precise discussion, we make the following assumption in the rest of this paper.

Assumption 5.

(a) The robust SDP problem P is strictly feasible, that is, there exists x ∈ Rn such that

E(x) Â O, F (x, θ) Â O (∀θ ∈ Θ).

(b) For any v, the level set

{
x ∈ Rn | cTx ≤ v, E(x) º O, F (x, θ) º O (∀θ ∈ Θ)

}

is bounded. ¤

We first focus on one subregion Θ[j] in a division {Θ[j]}. Aiming at the inequality (4), we

will choose ε so that F (x, θc) º εI implies the existence of W such that (x,W ) ∈ S(Θ[j]), where

θc is a center of this subregion.

It is convenient to expand F (x, θ) around θc. With θc = [θc
1 θc

2 · · · θc
p]

T, let us write

F (x, θ) = F θc

00···0(x) + F θc

10···0(x)(θ1 − θc
1) + · · ·+ F θc

d1d2···dp
(x)(θ1 − θc

1)
d1(θ2 − θc

2)
d2 · · · (θp − θc

p)
dp .

Arranging the terms in the inversely lexicographic order, define

F θc

∗ (x) = [F θc

10···0(x) F θc

20···0(x) · · · F θc

d1d2···dp
(x)], (5)

Gθc

(x) =

[
2F θc

00···0(x) F θc

∗ (x)

F θc

∗ (x)T O

]
.

With this Gθc
(x), we consider the inequality

Gθc

(x) + H(θ(q) − θc)(W θc

)T + W θc

H(θ(q) − θc)T º O (6)

for each vertex θ(q) of the subregion Θ[j]. This forms a counterpart of the inequality (3) around

θ = θc. Let us write as Sθc
(Θ[j]) the set of all (x,W θc

) satisfying the inequality (6) for all

vertices of Θ[j]. Then, we see in the next lemma that the condition with Sθc
(Θ[j]) is equivalent

to the previous condition with S(Θ[j]).
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Lemma 6. Let x be any point in Rn. There exists a matrix W satisfying (x,W ) ∈ S(Θ[j]) if

and only if there exists a matrix W θc
satisfying (x,W θc

) ∈ Sθc
(Θ[j]).

Proof. We prove the “if” part only. The proof of the “only if” part is similar.

By the definition of M(θ), there exists a constant matrix T such that M(θ − θc) = TM(θ)

is an identity in θ. Since we have M(θ)TTTH(θ − θc) = M(θ − θc)TH(θ − θc) = O and the

columns of H(θ) constitute the basis of the space {h ∈ RDm |M(θ)Th = 0}, there has to exist

T̃ such that TTH(θ − θc) = H(θ)T̃ . This T̃ does not depend on θ because the left-hand side

matrix is of order one in θ.

Now, premultiply TT and postmultiply T to both sides of (6). Then, TTGθc
(x)T = G(x)

because F (x, θ) = [F θc

00···0(x) F θc

∗ (x)]M(θ − θc) = [F θc

00···0(x) F θc

∗ (x)]TM(θ). Moreover, we have

TTH(θ(q) − θc)(W θc
)TT = H(θ(q))T̃ (W θc

)TT . Hence, WT := T̃ (W θc
)TT gives the desired

matrix. ¤

The following lemma gives ε such that the desired implication holds.

Lemma 7. Let x be any point in Rn and suppose rad Θ[j] ≤ 1/(p + 1). If ε ≥ ({σ[F θc

∗ (x)] +
√

pm}2/2
)
rad Θ[j], then the inequality F (x, θc) º εI implies the existence of W satisfying

(x,W ) ∈ S(Θ[j]).

Proof. We will show that the choice W θc
= (1/rad Θ[j])[O(Dm−m)×m IDm−m]T satisfies

(x,W θc
) ∈ Sθc

(Θ[j]). Then, application of Lemma 6 gives Lemma 7.

To show (x,W θc
) ∈ Sθc

(Θ[j]), we pick a vertex θ(q) of Θ[j] and derive the inequality (6). The

second term on the left-hand side, H(θ(q) − θc)(W θc
)T, has the structure

[
Om×m H1

O(Dm−m)×m H2

]
.

By the construction of W θc
and H(θ(q) − θc) (see (2)), each row of H1 contains at most p

nonzero elements, each of which has the form −(θ
(q)
i − θc

i )/rad Θ[j], i = 1, 2, . . . , p. Note that

the magnitude of these nonzero elements is less than or equal to unity. We have, hence,

σ(H1) ≤ √
pm. On the other hand, the matrix H2 has the diagonal elements all equal to

1/rad Θ[j]. Each of its rows has at most p nonzero non-diagonal elements whose magnitude is

less than or equal to unity. Each of its columns has at most one nonzero non-diagonal element

whose magnitude is again less than or equal to unity. These facts imply that

H2 + HT
2 º

( 2

rad Θ[j]
− p− 1

)
I.
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Now, the left-hand side of (6) has the upper-left m×m block equal to

2F θc

00···0(x) = 2F (x, θc) º 2εI.

Its Schur complement is

H2 + HT
2 − [F θc

∗ (x) + H1]
T[2F θc

00···0(x)]−1[F θc

∗ (x) + H1]

º
( 2

rad Θ[j]
− p− 1

)
I − {

σ[F θc

∗ (x)] +
√

pm
}2 1

2ε
I.

The right-hand side matrix is positive semidefinite by the assumptions of the lemma. Hence,

we have (6) and complete the proof. ¤

We next apply this lemma to each subregion in {Θ[j]} to obtain the desired inequality

min P ≤ min P ({Θ[j]}) ≤ min Pε. With Assumption 5, there exists ε0 > 0 such that, for any

0 ≤ ε ≤ ε0, the auxiliary problem Pε is strictly feasible. Let v0 be a number with min Pε0 ≤ v0

and define the level set

X =
{
x ∈ Rn | cTx ≤ v0, E(x) º O, F (x, θ) º O (∀θ ∈ Θ)

}
,

which is nonempty and bounded. Then, for each 0 ≤ ε ≤ ε0, the minimum of Pε is attained in

X and only in X. Let U be a number such that

max
x∈X

max
θ∈Θ

σ[F θ
∗ (x)] ≤ U, (7)

where F θ
∗ (x) is defined from the expansion of F (x, θ) around θ as in (5).

Lemma 8. Suppose that a given division {Θ[j]} satisfies

rad {Θ[j]} ≤ min
{ 2ε0

(U +
√

pm)2
,

1

p + 1

}
.

Then, we have min P ≤ min P ({Θ[j]}) ≤ min Pε for ε = [(U +
√

pm)2/2]rad {Θ[j]}.

Proof. It suffices to show min P ({Θ[j]}) ≤ min Pε. By the assumption, 0 ≤ ε ≤ ε0 holds

and, thus, any minimizer of Pε belongs to X. Let x be such a minimizer. Then, due to (7),

Lemma 7 can be applied to each subregion in {Θ[j]}. Hence, x belongs to the projected feasible

region of P ({Θ[j]}), which gives min P ({Θ[j]}) ≤ min Pε. ¤

We now take the final step. By Lemma 8, the discrepancy min Pε − min P bounds from

above the approximation error minP ({Θ[j]}) −min P . Note that min Pε is a convex function

in ε. Using this fact, we evaluate min Pε −min P .
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Theorem 9. Suppose that Assumption 5 holds. Let ε0 be a number such that the auxiliary

problem Pε is strictly feasible for any 0 ≤ ε ≤ ε0. Let U be a number in (7). For some

0 < ε1 < ε0, let g be an upper bound on the left derivative of min Pε at ε = ε1. Finally, suppose

that a given division {Θ[j]} satisfies

rad {Θ[j]} ≤ min
{ 2ε1

(U +
√

pm)2
,

1

p + 1

}
.

Then, we have

min P ({Θ[j]})−min P ≤ g(U +
√

pm)2

2
rad {Θ[j]}. (8)

Proof. By ε1 < ε0, we can apply Lemma 8 to have min P ≤ min P ({Θ[j]}) ≤ min Pε for

ε = [(U +
√

pm)2/2]rad {Θ[j]}. This ε satisfies 0 ≤ ε ≤ ε1 by the assumption.

Due to convexity of min Pε, the upper bound g is greater than or equal to the left derivative

of min Pε at this ε. Hence, we have min P ≥ min Pε − gε, which gives min Pε − min P ≤ gε.

Substitution of the concrete form of ε completes the proof. ¤

An immediate consequence of this result is the asymptotic exactness of the present approach,

that is, the approximation error minP ({Θ[j]})−min P converges to zero as the maximum radius

of the division goes to zero. Moreover, the rate of the convergence is at least the first order of

the maximum radius. Computation of the right-hand side of (8) is possible as we will see in

the next subsection. Note that the corresponding result has not been obtained for the existing

asymptotically exact approaches [28, 7, 31, 32].

Theorem 9 claims that we need to decrease rad {Θ[j]} in order to make the approximation

error small. This is not easy when the parameter dimension p is high. Indeed, the number of

LMIs in the approximate problem P ({Θ[j]}) is at least proportional to the number of subregions,

which is in the order of (rad {Θ[j]})−p. Hence, decrease of rad {Θ[j]} leads to rapid increase

of the size of the approximate problem. This difficulty may be inevitable because the original

problem P is NP-hard. It would be nice, however, if we could suppress the rapid increase of

the number of subregions. We will discuss this issue in Section 5.

4.2. Computation of the upper bound

The upper bound (8) is computable. For its computation, we need three numbers v0, U , and

g. We will discuss computation of each in order.

We begin by computation of v0. Let ε0 be a number such that the auxiliary problem Pε is

strictly feasible for 0 ≤ ε ≤ ε0. Since Pε0 is itself a robust SDP problem, we can construct an

approximate problem for it. The minimum value of the constructed problem is larger than or

equal to min Pε0 . Hence, this number can be used as v0.

13



Next, we compute an upper bound U defined in (7). For this purpose, we first obtain an

n-dimensional interval
∏n

i=1[xi, xi] that contains the level set X. In order to compute x1, for

example, we consider the problem:

minimize x1

subject to cTx ≤ v0, E(x) º O, F (x, θ) º O (∀θ ∈ Θ).

A lower bound on the minimum value is easily computed by sampling θ’s as in P (θ(1), . . . , θ(Q)).

Other ends of the intervals can be computed in a similar way. After obtaining this n-dimensional

interval, we consider the problem:

minimize y

subject to

[
yI F θ

∗ (x)

F θ
∗ (x)T yI

]
º O

(
∀x ∈

n∏
i=1

[xi, xi], ∀θ ∈ Θ
)
,

with the optimization variable y. This problem is in the form of the robust SDP problem

P and, thus, an upper bound on its minimum value can be computed by construction of an

approximation. The computed upper bound can be used as U .

Finally, we discuss computation of g, which is an upper bound on the left derivative of min Pε

at ε = ε1. It is easy to compute a lower bound v1 on min Pε1 again by sampling θ’s. On the other

hand, v0 is an upper bound on min Pε0 . With these numbers, we can put g := (v0−v1)/(ε0−ε1)

because

g =
v0 − v1

ε0 − ε1

≥ min Pε0 −min Pε1

ε0 − ε1

≥ (the left derivative at ε1).

The last inequality follows from convexity of minPε.

5. Adaptive Division

We consider in this section how to make a good division that attains a small approximation

error with a small number of subregions. To this end, we improve the error bound in Theorem 9.

For a given division {Θ[j]}, consider a minimizer (x, {W [j]}) of the problem P ({Θ[j]}). With

this minimizer, some constraints are active while others are not. Here, the constraint (3) is said

to be active if the left-hand side matrix has a zero eigenvalue. If a subregion Θ[j] has a vertex

whose corresponding constraint is active, we say that this subregion is active. Since an active

subregion is an important subregion, it is reasonable to define a new index for the resolution

of the division:

a-rad {Θ[j]} := max
j

rad Θ[j],
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where the maximum is taken over all j such that the subregion Θ[j] becomes active at a min-

imum. When there are multiple minimizers, we define a-rad {Θ[j]} by taking the minimum of

all possible values. In this case, a-rad {Θ[j]} is not easy to compute. However, its upper bound

is always computable by solving P ({Θ[j]}). We call this index the maximum active radius.

Obviously, a-rad {Θ[j]} ≤ rad {Θ[j]}. The next theorem says that the approximation error can

be bounded with the maximum active radius.

Theorem 10. With the same assumptions and symbols as in Theorem 9, we have

min P ({Θ[j]})−min P ≤ g(U +
√

pm)2

2
a-rad {Θ[j]}.

Proof. Let ε = [(U +
√

pm)2/2]rad {Θ[j]}. Since 0 ≤ ε ≤ ε1 < ε0, the problem Pε has a

strictly feasible solution x ∈ Rn, with which E(x) Â O and F (x, θ) Â εI (∀θ ∈ Θ). Using this

x and constructing W [j] as in the proof of Lemma 7, we can have a strictly feasible solution

of P ({Θ[j]}). Note also that min P ({Θ[j]}) is bounded below. By these facts and the duality

theorem on SDP (Theorem 2.4.1 of [4]), the dual problem of P ({Θ[j]}) has an optimal solution

that attains min P ({Θ[j]}). The optimal solution consists of positive semidefinite matrices Y [j](q)

corresponding to all the subregions Θ[j] and their vertices θ(q). In particular, the matrices Y [j](q)

are equal to zero for inactive subregions Θ[j].

Now, let us subdivide each inactive subregion, if necessary, so that each of the created

subregion has the radius smaller than or equal to a-rad {Θ[j]}. Then, the resulting new division

{Θ̃[k]} has rad {Θ̃[k]} = a-rad {Θ[j]}. Note also that min P ({Θ̃[k]}) ≤ min P ({Θ[j]}). We then

consider the SDP dual of P ({Θ̃[k]}) and construct its solution. In particular, if a subregion Θ̃[k]

is a newly created subregion, assign zero matrices to the dual variables corresponding to this

subregion; If a subregion Θ̃[k] coincides with one subregion in {Θ[j]}, assign the same values

as before, i.e., Y [j](q). With these assigned values, the dual objective function takes the same

value as before, i.e., min P ({Θ[j]}). By weak duality, we have min P ({Θ[j]}) ≤ min P ({Θ̃[k]}) ≤
min P ({Θ[j]}), which shows

min P ({Θ[j]})−min P = min P ({Θ̃[k]})−min P

≤ g(U +
√

pm)2

2
rad {Θ̃[k]} =

g(U +
√

pm)2

2
a-rad {Θ[j]}.

¤

This theorem motivates us to consider the following procedure: Start with a coarse division;

Repeat dividing an active subregion until the estimated application error becomes small enough.

For estimation of the approximation error, both a priori and a posteriori bounds can be used
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though the latter is more recommendable for its tightness. Details of the procedure are given

below. See Figure 1 for an example.

Algorithm 11.

0. Consider a coarse division {Θ[j]}.

1. Solve P ({Θ[j]}) for the current division.

2. Estimate the approximation error with the a priori or the a posteriori error bound and stop

if it is small enough.

3. Find an active subregion of the maximum radius.

4. Divide that subregion into two subregions so that they have small radii. Go back to Step 1.

¤

Recall that subdivision never increases the approximate error. Hence, with this algorithm,

the approximation error is monotonically non-increasing though the estimated value may in-

crease.

There is no guarantee that the computational complexity is reduced by this algorithm.

Indeed, in the worst case, the maximum active radius a-rad {Θ[j]} is equal to the maximum

radius rad {Θ[j]}. This means that the number of subregions is in the order of (a-rad {Θ[j]})−p.

In many cases, however, more efficient division can be expected. See the examples in Section 6.

6. Examples

We applied our approach to two problems, both of which are polynomial optimization over a

two-dimensional interval. See Example 2 in Section 2 for polynomial optimization. The result

is satisfactory and shows some interesting aspects of the approach. We have n = 1, p = 2, ` = 0,

and m = 1 for the considered problems. All the computation was performed on YALMIP [24]

with SDPA-M [20] as an SDP solver.

In the first example, we maximize

f(θ) = −375θ4
1 + 800θ3

1 − 570θ2
1 + 144θ1 − 375θ4

2 + 800θ3
2 − 570θ2

2 + 144θ2

over the interval Θ = [0, 1]2. This function has four local maxima, in particular, f(0.2, 0.2) =

23.6, f(0.2, 0.8) = f(0.8, 0.2) = 18.2, and f(0.8, 0.8) = 12.8. Hence, when we formulate this

problem in the robust SDP problem P , its minimum min P is equal to 23.6.
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Figure 1. Divisions generated for maximization of (9). A filled circle means that the corre-

sponding constraint is active while a hollow circle inactive. Approximate minimum values as

well as estimated approximation errors are also presented.

With the coarsest division {Θ}, we constructed an approximation P ({Θ}) and solved it.

The obtained minimum value was 23.6, which is apparently equal to the exact value minP . In

fact, the proposed approach often gives an apparently exact result with a coarse division. This

phenomenon is interesting because the SOS approach has a similar property.

Next, we maximize

f(θ) = −5θ2
1θ2 − 5θ1θ

2
2 + 9θ1θ2 (9)

over Θ = [0, 1]2. It has a unique local maximum f(0.6, 0.6) = 1.08 and, hence, the global

maximum.

The corresponding robust SDP problem P has min P = 1.08. With the coarsest division,

our approximation gave minP ({Θ}) = 1.090017, which is larger than minP = 1.08. In order

to improve the approximation, we repeated subdivision with Algorithm 11. The result is

summarized in Figure 1. In the figure, a filled circle means that the corresponding constraint

is active while a hollow circle inactive. We can see that the division becomes finer around

θ = [0.6 0.6]T, which maximizes f(θ). This is reasonable because accurate computation may

be necessary around this point. We obtained a satisfactory approximation with the fourth

division.

When rad {Θ[j]} ≤ 1/3, the a priori error bound can be computed. The result is presented

in Figure 1. We can see that the computed bound is much larger than the actual approximation

error. On the other hand, the a posteriori error bound gives a tight estimation. It is computed

from 1000 θ’s randomly sampled in Θ. We should notice, however, that the a posteriori error

bound can be computed only after the corresponding approximate problem is solved.
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7. Computation of an Optimal Point in Polynomial Op-

timization

We saw in Sections 2 and 6 that the maximum value of a polynomial f(θ) over θ ∈ Θ can be

computed by the region-dividing approach. It was not clear, however, how to compute θ that

attains the maximum value. We consider this issue in this section. The corresponding result is

known in the SOS approach [23].

For a given polynomial optimization problem, divide Θ into {Θ[j]} and consider the approx-

imate problem P ({Θ[j]}). The function F (x, θ) is set as a scalar function x−f(θ) here while the

objective function is x. Write as (x̂, {Ŵ [j]}) an optimal solution of this approximate problem.

Then, this x̂ is in general an upper bound on the maximum of f(θ), θ ∈ Θ. A necessary and

sufficient condition for this upper bound to be exact is that F (x̂, θ̂) = 0 holds for some θ̂ ∈ Θ.

In this case, this θ̂ is a maximizer of f(θ). The next theorem gives a necessary and sufficient

condition for F (x̂, θ̂) = 0 to hold and, at the same time, gives a way to compute such θ̂.

Theorem 12. Let {Θ[j]} be a division of Θ and (x̂, {Ŵ [j]}) be an optimal solution of the

problem P ({Θ[j]}). Let θ̂ be a point in Θ and Ŵ be the optimal solution Ŵ [j] for a subregion

Θ[j] containing θ̂. Finally, let {θ̂(1), θ̂(2), . . . , θ̂(Q′)} be a subset of the vertices of the same Θ[j]

such that the relative interior of its convex hull contains θ̂. Then, F (x̂, θ̂) = 0 holds if and only

if

M(θ̂)T[G(x̂) + H(θ̂(q))ŴT + ŴH(θ̂(q))T]M(θ̂) = 0 (10)

holds for all q = 1, 2, . . . , Q′.

Proof. We show the “only if” part. Express θ̂ as a convex combination of {θ̂(1), θ̂(2), . . . , θ̂(Q′)}:
θ̂ = a(1)θ̂(1) + a(2)θ̂(2) + · · ·+ a(Q′)θ̂(Q′). Since θ̂ is in the relative interior of the convex hull, the

coefficients a(q) can be chosen all positive. Here, we have

0 = 2F (x̂, θ̂) =

Q′∑
q=1

a(q)M(θ̂)T[G(x̂) + H(θ̂(q))ŴT + ŴH(θ̂(q))T]M(θ̂)

due to the affinity of H(θ). Since all the terms are nonnegative, they have to be equal to zero.

Division by a(q) shows the claim. The “if” part follows from the reversed reasoning. ¤

Based on Theorem 12, a maximizer θ̂ can be computed as follows: Solve the approximate

problem P ({Θ[j]}); Compute the kernel for each active constraint; Find θ̂ such that the vector

M(θ̂) belongs to that kernel. Note that this theorem can be used also for verification of exactness

of the approximation.

18



The condition (10) in Theorem 12 is nonlinear in θ̂. This can be an obstacle in finding θ̂.

We can obtain a condition affine in θ̂ by following the approach of Scherer [31], who discussed

verification of exactness in a general setting.

Corollary 13. Let the symbols be the same as in Theorem 12. Moreover, let Ŷ (q) be a dual

optimal solution of P ({Θ[j]}) corresponding to the primal constraint at θ̂(q) in the subregion Θ[j],

i.e., G(x)+H(θ̂(q))(W [j])T +W [j]H(θ̂(q))T º O. Then, F (x̂, θ̂) = 0 holds if H(θ̂)TŶ (q) = O and

Ŷ (q) 6= O for all q = 1, 2, . . . , Q′.

Proof. Recall that the kernel of H(θ̂)T is spanned by the column vectors of M(θ̂). Since

H(θ̂)TŶ (q) = O holds and M(θ̂) is a column vector in the present case, each column of Ŷ (q) is

equal to M(θ̂) multiplied by some real number. Here, Ŷ (q) is a nonzero positive semidefinite

matrix. Hence, we can write Ŷ (q) = b(q)M(θ̂)M(θ̂)T with b(q) > 0 for each q = 1, 2, . . . , Q′.

Since Ŷ (q) is a dual optimal solution, it satisfies the complementarity condition

tr [G(x̂) + H(θ̂(q))ŴT + ŴH(θ̂(q))T]Ŷ (q) = 0

for q = 1, 2, . . . , Q′. Substitution of Ŷ (q) = b(q)M(θ̂)M(θ̂)T and Division by b(q) > 0 give the

condition (10) in Theorem 12. ¤

The condition in the corollary is not only affine in θ̂ but also representable as an LMI.

Hence, we can find θ̂ by solving a standard SDP problem. This condition is not necessary for

the exactness because a dual optimal solution is not unique and may not satisfy Ŷ (q) 6= O. A

remedy is to use the primal-dual path-following interior-point method to solve P ({Θ[j]}). Since

this method gives an optimal solution as large as possible [21], Ŷ (q) 6= O can be expected.

We applied Theorem 12 to the two polynomial optimization problems in the previous section.

We successfully obtained the optimal points (0.2, 0.2) and (0.6, 0.6), respectively.

8. Conclusion

An approximate approach to robust SDP is presented. The approximation error can be re-

duced to any degree by subdivision of the parameter region. An a priori upper bound on the

approximation error is available, which is proportional to the maximum radius of the division.

This error bound leads to an algorithm for an efficient division, which attains a small approxi-

mation error with low computational complexity. Numerical examples show that the proposed

approach is promising. In particular, the exact minimum is often found with a coarse division.

In the context of the SOS approach, some techniques for efficient computation have been

proposed [36, 30]. These techniques are quite different from the technique proposed in this

paper. It may be interesting to consider their combination.
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