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Abstract

A jump system is a set of integer points with an exchange property, which is a generalization
of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submod-
ular system). Recently, the concept of M-convex functions on constant-parity jump systems
is introduced by Murota as a class of discrete convex functions that admit a local criterion
for global minimality. M-convex functions on constant-parity jump systems generalize valuated
matroids, valuated delta-matroids, and M-convex functions on base polyhedra.

This paper reveals that the class of M-convex functions on constant-parity jump systems
is closed under a number of natural operations such as splitting, aggregation, convolution,
composition, and transformation by networks. The present results generalize hitherto-known
similar constructions for matroids, delta-matroids, valuated matroids, valuated delta-matroids,
and M-convex functions on base polyhedra.

1 Introduction

A jump system [6] is a set of integer points with an exchange property (to be described later);
see also [16], [17]. It is a generalization of a matroid [8], a delta-matroid [4], [7], [9], and a base
polyhedron of an integral polymatroid (or a submodular system) [14].

Study of nonseparable nonlinear functions on matroidal structures was started with valuated
matroids [10], [12], which have come to be accepted as discrete concave functions; see [19], [21]. This
concept has been generalized to M-convex functions on base polyhedra [20], which play a central
role in discrete convex analysis [22]. Valuated delta-matroids [11] afford another generalization of
valuated matroids. As a common generalization of valuated delta-matroids and M-convex functions
on base polyhedra, the concept of M-convex functions on constant-parity jump systems is introduced
in [24]. To distinguish between M-convex functions on base polyhedra and those on constant-parity
jump systems, we sometimes refer to the former as MB-convex functions and the latter as MJ-convex
functions. A separable convex function in the degree sequences of a graph is a typical example of
MJ-convex functions. In all these generalizations global optimality is equivalent to local optimality
defined in an appropriate manner. In addition, discrete duality theorems such as discrete separation
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Table 1: Sum of discrete structures.

Matroids Rado (1942) [26] (see [27])
(explicitly by Edmonds (1968) [13])

Base polyhedra McDiarmid (1975) [18]
Delta-matroids Bouchet (1989) [5]
(Constant-parity) Jump systems Bouchet and Cunningham (1995) [6]

Table 2: Convolution of discrete functions.

Valuated matroids Murota (1996) [20] (see also [21])
MB-convex functions Murota (1996) [20]
Valuated delta-matroids
MJ-convex functions This paper

and min-max formula hold for valuated matroids and MB-convex functions, whereas they fail for
valuated delta-matroids and MJ-convex functions.

A number of operations can be defined on matroidal structures and functions.
For example, union (or sum) can be defined for two matroids to yield another matroid. When

translated in terms of incidence vectors, union can be understood as Minkowski sum, followed
by truncation by the vector 1 = (1, 1, . . . , 1). Sum can also be defined for delta-matroids, base
polyhedra, and (constant-parity) jump systems (see Table 1).

Convolution (or infimum convolution) of functions is a quantitative extension of sum, and
the first result of the present paper (Theorem 12) is that MJ-convex functions are closed under
convolution. This generalizes the known facts that valuated matroids and MB-convex functions are
closed under convolution (see Table 2).

Aggregation is another fundamental operation. For instance, it is known that any polymatroid
can be obtained as an aggregation of a matroid [14] and that any jump system can be obtained
as an aggregation of a delta-matroid [16]. The second result of the present paper (Theorem 11)
is that MJ-convex functions are closed under aggregation. It is mentioned that the first result on
convolution can be derived from this. A kind of converse of aggregation operation is splitting, which
divides variables into several copies and generates a new function on a higher dimensional space.
We show that splitting of MJ-convex functions is again MJ-convex.

Transformation (or induction) by graphs or networks is one of the most general operations. The
fundamental fact in this direction is that a matroid can be transformed to another matroid through
matchings in a bipartite graph. This construction works also delta-matroids [4]. As for functions,
valuated matroids are closed under transformation by bipartite graphs defined in an appropriate
manner [20], [21], and MB-convex functions are closed under transformation by networks [20]. The
third result of the present paper (Theorem 14) is that this construction extends to MJ-convex
functions, that is, transformation of MJ-convex functions by networks, to be defined precisely in
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Section 6, preserves MJ-convexity. Aggregation, convolution and splitting may be obtained as
special cases of this construction, whereas our proof for the network transformation is based on the
combination of aggregation, splitting, and other basic operations.

Here is a remark on the proof technique of the present paper. Our proofs consist of repeated
applications of the defining exchange axiom of MJ-convex functions. This is particularly true of the
proof given in Section 7. For MB-convex functions, on the other hand, an alternative “geometric”
or “polyhedral” approach is possible on the basis of the convex extension of the functions. To be
specific, such “polyhedral” proofs are known for convolution and network transformation of MB-
convex functions (see [14], [20], [23]). MJ-convex functions, however, seem to deny such “polyhedral”
approach, because jump systems can have “holes” within the convex hull, and accordingly, jump
systems are not determined by their convex hulls. It is also noted that MJ-convex functions are
not necessarily extensible to ordinary convex functions, although they possess a number of nice
properties that justify the name of “convex functions.”

2 Definitions and Exchange Axioms

Let V be a finite set. For x = (x(v)), y = (y(v)) ∈ ZV define

x(V ) =
∑
v∈V

x(v),

||x||1 =
∑
v∈V

|x(v)|,

[x, y] = {z ∈ ZV | min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)),∀v ∈ V }.

We denote by 0 the zero vector of an appropriate dimension. For u ∈ V we denote by χu the
characteristic vector of u, with χu(u) = 1 and χu(v) = 0 for v 6= u. A vector s ∈ ZV is called an
(x, y)-increment if s = χu or s = −χu for some u ∈ V and x + s ∈ [x, y]. An (x, y)-increment pair
will mean a pair of vectors (s, t) such that s is an (x, y)-increment and t is an (x + s, y)-increment.

A nonempty set J ⊆ ZV is said to be a jump system if it satisfies an exchange axiom, called
the 2-step axiom: for any x, y ∈ J and for any (x, y)-increment s with x + s 6∈ J , there exists an
(x+s, y)-increment t such that x+s+t ∈ J . A set J ⊆ ZV is a constant-sum system if x(V ) = y(V )
for any x, y ∈ J , and a constant-parity system if x(V ) − y(V ) is even for any x, y ∈ J .

For constant-parity jump systems, Geelen [15] introduced a stronger exchange axiom:

(J-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t

such that x + s + t ∈ J and y − s − t ∈ J .

This property characterizes a constant-parity jump system, a fact communicated to one of the
authors by J. Geelen (see [24] for a proof).

Theorem 1 ([15]). A nonempty set J is a constant-parity jump system if and only if it satisfies
(J-EXC).
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Next we turn to functions defined on integer points J . We call f : J → R an MJ -convex
function if it satisfies the following exchange axiom:

(MJ-EXC) For any x, y ∈ J and for any (x, y)-increment s, there exists an (x + s, y)-increment t

such that x + s + t ∈ J , y − s − t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

It follows from (MJ-EXC) that J satisfies (J-EXC), and hence is a constant-parity jump system.
We adopt the convention that f(x) = +∞ for x 6∈ J . For a function f : ZV → R ∪ {+∞} we

denote the effective domain of f by

domf = {x ∈ ZV | f(x) < +∞}.

Then, it can be seen that if f : ZV → R ∪ {+∞} satisfies (MJ-EXC) then its effective domain J

satisfies (J-EXC).
It is known that if J satisfies (J-EXC), the exchange axiom (MJ-EXC) is equivalent to a local

exchange axiom:

(MJ-EXCloc) For any x, y ∈ J with ||x − y||1 = 4 there exists an (x, y)-increment pair (s, t) such
that x + s + t ∈ J , y − s − t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

Theorem 2 ([24]). A function f : J → R defined on a constant-parity jump system J satisfies
(MJ-EXC) if and only if it satisfies (MJ-EXCloc).

In what follows, we refer to MJ-convexity simply as M-convexity; in particular, when we talk
about an M-convex function it is presumed that its effective domain is a constant-parity jump
system.

The definition of an M-convex function is consistent with the previously considered special cases
where (i) J is a constant-sum jump system, and (ii) J is a constant-parity jump system contained
in {0, 1}V . Case (i) is equivalent to J being the set of integer points in the base polyhedron of
an integral submodular system [14], and then M-convex function is the same as the MB-convex
function investigated in [20], [22]. Case (ii) is equivalent to J being an even delta-matroid [29],
[30], and then f is M-convex if and only if −f is a valuated delta-matroid in the sense of [11].

For an M-convex function, it is known that global optimality (minimality) is guaranteed by
local optimality in the neighborhood of `1-distance two, which generalizes the optimality criterion
in [1] for separable convex function minimization over a jump system. The efficient algorithm for
the minimization problem of M-convex functions follows from the optimality criterion [24], [25].

Theorem 3 ([24]). Let f : J → R be an M-convex function on a constant-parity jump system
J , and let x ∈ J . Then f(x) ≤ f(y) for all y ∈ J if and only if f(x) ≤ f(y) for all y ∈ J with
||x − y||1 ≤ 2.
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It is also known that global optimality (minimality) for constrained minimization on a hy-
perplane of a constant component sum is guaranteed by local optimality in the neighborhood of
`1-distance four.

Theorem 4 ([24]). Let f : J → R be an M-convex function on a constant-parity jump system
J ⊆ ZV , let Jk = {x ∈ J | x(V ) = k}, and let x ∈ Jk. Then f(x) ≤ f(y) for all y ∈ Jk if and only
if f(x) ≤ f(y) for all y ∈ Jk with ||x − y||1 ≤ 4.

This optimality criterion for M-convex functions helps us deepen our understanding of the
result of Apollonio and Sebő [2], [3]. They provided a polynomial algorithm for the minconvex
factor problem, which is, given an undirected graph possibly containing loops and parallel edges
and a separable convex function on the degree sequences, to find a subgraph with a specified number
of edges that minimizes the function. The key observation in [2], [3] is that global optimality is
guaranteed by local optimality in the neighborhood of `1-distance at most four in the space of degree
sequences. Since a separable convex function on the degree sequences of a graph is an M-convex
function, this result can be seen as a special case of Theorem 4.

3 Basic Operations

Let f : ZV → R ∪ {+∞} be an M-convex function. We introduce some basic operations on f that
preserve M-convexity. Though too simple to be interesting in their own right, these operations are
stated explicitly in view of their use in our proofs.

For subsets U ⊆ V and W ⊇ V , we define the coordinate inversion f−
U : ZV → R ∪ {+∞} of

U , the restriction fU : ZU → R ∪ {+∞} to U , and the 0-augmentation fW : ZW → R ∪ {+∞} to
W by

f−
U (y, z) = f(−y, z) (y ∈ ZU , z ∈ ZV \U ),

fU (y) = f(y,0) (y ∈ ZU ,0 ∈ ZV \U ),

fW (y, z) =

{
f(y) if z = 0
+∞ otherwise

(y ∈ ZV , z ∈ ZW\V ),

respectively. For a linear function p : ZV → R, we define f [p] : ZV → R ∪ {+∞} by

f [p](x) = f(x) + p(x).

It is obvious that they are M-convex.
We say that φ : ZV → R ∪ {+∞} is a separable convex function if it is represented as

φ(x) =
∑
u∈V

φu(x(u)),

where for each u ∈ V , φu : Z → R ∪ {+∞} is a convex function, that is, for any integers ξ < η

φu(ξ) + φu(η) ≥ φu(ξ + 1) + φu(η − 1).
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Note that this condition is equivalent to the following: for any integer ξ

φu(ξ − 1) + φu(ξ + 1) ≥ 2φu(ξ).

For a separable convex function φ, we define f + φ : ZV → R ∪ {+∞} by

(f + φ)(x) = f(x) + φ(x).

Theorem 5. If f is M-convex and φ is a separable convex function, then f + φ is M-convex.

Proof. It suffices to show that for a one-dimensional convex function φu with a particular u ∈ V

the function g(x) = f(x) + φu(x(u)) is M-convex. Suppose that x = (x(v)) ∈ ZV , y = (y(v)) ∈ ZV

and s is an (x, y)-increment. By M-convexity of f , there exists an (x + s, y)-increment t such that

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t),

and it holds that

φu(x(u)) + φu(y(u)) ≥ φu(x(u) + s(u) + t(u)) + φu(y(u) − s(u) − t(u))

by convexity of φu. Thus we have

g(x) + g(y) ≥ g(x + s + t) + g(y − s − t),

which completes the proof.

4 Splitting

Splitting is an operation which generates a new function by dividing some variables. The objective
of this section is to show that if a given function is M-convex, then the function obtained by splitting
is also M-convex (Theorem 7 below). Although splitting is a simple operation, it plays an important
role when we deal with transformation by networks in Section 6.

First we introduce an elementary operation, called elementary splitting, which divides one
variable into two variables. Elementary splitting preserves M-convexity, from which we can show
that splitting preserves M-convexity.

For a function f : ZV → R ∪ {+∞}, the elementary splitting of f at v ∈ V is a function
f ′ : ZV ′ → R ∪ {+∞} defined by

f ′(x0;x(v′), x(v′′)) = f(x0; x(v′) + x(v′′)),

where V ′ = (V \ {v}) ∪ {v′, v′′} and x0 ∈ ZV \{v}.

Lemma 6. If f is M-convex, then its elementary splitting f ′ is M-convex.
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Proof. For a concise description, let V = {1, 2, . . . , n} and V ′ = {1, 2, . . . , n − 1, a, b}. We show
that if f is M-convex then its elementary splitting f ′ at n defined by

f ′(x0; xa, xb) = f(x0;xa + xb)

is M-convex. For u ∈ V ′ we denote by χ′
u the characteristic vector of u in V ′. It suffices to show

that f ′ satisfies (MJ-EXC), that is, for any two vectors x′ = (x0; xa, xb) ∈ domf ′, y′ = (y0; ya, yb) ∈
domf ′, and for any (x′, y′)-increment s′, there exists an (x′ + s′, y′)-increment t′ such that

f ′(x′) + f ′(y′) ≥ f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

We put ξ = xa + xb and η = ya + yb. We also put x = (x0; ξ) and y = (y0; η).

Case 1. Suppose that s′ = ±χ′
k is an (x′, y′)-increment, where 1 ≤ k ≤ n − 1. We denote ±χk

by s. Since f is M-convex and s is an (x, y)-increment, there exists an (x + s, y)-increment t such
that

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

If t = ±χl with 1 ≤ l ≤ n − 1, then t′ = ±χ′
l is an (x′ + s′, y′)-increment and

f ′(x′) + f ′(y′) ≥ f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

Otherwise we have l = n. Without loss of generality, we may assume that ξ < η and t = χn. Since
ξ < η implies that at least one of xa < ya and xb < yb holds, at least one of χ′

a and χ′
b, say t′, is an

(x′ + s′, y′)-increment and it holds that

f ′(x′) + f ′(y′) = f(x) + f(y) ≥ f(x + s + t) + f(y − s − t) = f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

Case 2. Suppose that s′ = ±χ′
a or ±χ′

b is an (x′, y′)-increment. In this case, without loss of
generality, we may assume that s′ = χ′

b and xb < yb.
If xa > ya then t′ = −χ′

a is an (x′ + s′, y′)-increment and

f ′(x′) + f ′(y′) = f(x) + f(y) = f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

Suppose that xa ≤ ya. Then we have ξ < η and χn is an (x, y)-increment. Since f is M-convex,
by applying (MJ-EXC) with s = χn, there exists an (x + s, y)-increment t such that

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

If t = ±χk with 1 ≤ k ≤ n − 1, then t′ = ±χ′
k is an (x′ + s′, y′)-increment and

f ′(x′) + f ′(y′) = f(x) + f(y) ≥ f(x + s + t) + f(y − s − t) = f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

Otherwise, we have t = χn and ξ + 2 ≤ η. Thus at least one of xb + 2 ≤ yb and xa + 1 ≤ ya holds,
and hence at least one of χ′

b and χ′
a, say t′, is an (x′ + s′, y′)-increment. We then have

f ′(x′) + f ′(y′) = f(x) + f(y) ≥ f(x + s + t) + f(y − s − t) = f ′(x′ + s′ + t′) + f ′(y′ − s′ − t′).

This shows the existence of t′ in Case 2.
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Suppose that we are given a finite set V = {v1, v2 . . . , vn} and a family of nonempty disjoint
sets {Uv | v ∈ V } indexed by v ∈ V . Let U =

∪
v∈V Uv. For a function f : ZV → R ∪ {+∞}, we

define the splitting of f to U as a function f ′ : ZU → R ∪ {+∞} given by

f ′(x̃v1 , x̃v2 , . . . , x̃vn) = f(ξv1 , ξv2 , . . . , ξvn),

where x̃v ∈ ZUv and ξv = x̃v(Uv) for v ∈ V . We now have the following theorem.

Theorem 7. If f is M-convex then its splitting f ′ is M-convex.

Proof. We can obtain splitting f ′ by applying elementary splittings
∑

v∈V (|Uv| − 1) times. Hence,
by Lemma 6, f ′ is M-convex.

Theorem 7 implies that if domf is a constant-parity jump system, then domf ′ is also a constant-
parity jump system.

5 Aggregation and Convolution

Minkowski sum is a fundamental operation on matroid structures, and jump systems are closed
under Minkowski sum. In this section, we deal with an operation for functions, called convolution,
which is a quantitative extension of sum, and also a related operation, called aggregation. The
objective of this section is to show that M-convexity is preserved under these operations. As with
splitting, aggregation plays an important role when we deal with transformations by networks in
Section 6.

For two jump systems J1 ⊆ ZV and J2 ⊆ ZV , their sum J1 + J2 ⊆ ZV is defined by

J1 + J2 = {x1 + x2 | x1 ∈ J1, x2 ∈ J2},

which is known to be a jump system.

Theorem 8 ([6]). The sum of two jump systems is a jump system.

While this theorem is shown directly in [6], Kabadi and Sridhar [16] gave an alternative proof by
showing that a related elementary operation preserves M-convexity. They showed that if J ⊆ ZV

is a jump system then its elementary aggregation J̃ ⊆ ZṼ at v1 ∈ V and v2 ∈ V defined by

J̃ = {(x0, x(v1) + x(v2)) | (x0, x(v1), x(v2)) ∈ J}

is also a jump system, where Ṽ = (V \ {v1, v2}) ∪ {v} and x0 ∈ ZV \{v1,v2}. Theorem 8 can be
derived from the following fact.

Lemma 9 ([16]). An elementary aggregation of a jump system is a jump system.

Convolution is a quantitative extension of sum. For two functions f1 : ZV → R∪{+∞} and f2 :
ZV → R∪{+∞}, we define their (infimum) convolution as a function f1¤f2 : ZV → R∪{+∞,−∞}
given by

(f1¤f2)(x) = inf{f1(x1) + f2(x2) | x1 + x2 = x, x1 ∈ ZV , x2 ∈ ZV }.
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To show that convolution preserves M-convexity (Theorem 12 below), we introduce a quantitative
extension of elementary aggregation.

For a function f : ZV → R∪ {+∞}, the elementary aggregation of f at v1 ∈ V and v2 ∈ V is a
function f̃ : ZṼ → R ∪ {+∞,−∞} defined by

f̃(x0; ξ) = inf{f(x0; x(v1), x(v2)) | ξ = x(v1) + x(v2)},

where Ṽ = (V \ {v1, v2}) ∪ {v} and x0 ∈ ZV \{v1,v2}. Then we can show that if f is M-convex then
f̃ is M-convex; the proof is given in Section 7.

Lemma 10. If f is M-convex then its elementary aggregation f̃ is M-convex, provided f̃ > −∞.

A general aggregation is defined as the result of repeated applications of elementary aggrega-
tions. More formally, let V be a finite set and π be its partition V = V1 ∪V2 ∪ · · · ∪Vn into disjoint
subsets. For a function f : ZV → R ∪ {+∞}, we define the aggregation of f with respect to π as a
function f̃ : Zn → R ∪ {+∞,−∞} given by

f̃(ξ1, ξ2, . . . , ξn) = inf
{
f(x1, x2, . . . , xn) | xi ∈ ZVi , xi(Vi) = ξi

}
.

Then we have the following theorem.

Theorem 11. If f is M-convex then its aggregation f̃ is M-convex, provided f̃ > −∞.

Proof. By applying elementary aggregations |V | − n times, we can obtain f̃ , which is M-convex by
Lemma 10.

We are now ready to show that convolution preserves M-convexity.

Theorem 12. If f1 and f2 are M-convex functions then their convolution f1¤f2 is M-convex,
provided f1¤f2 > −∞.

Proof. First we make the direct sum f : ZV × ZV → R ∪ {+∞} of f1 and f2 defined by

f(x1, x2) = f1(x1) + f2(x2),

where x1, x2 ∈ ZV . Then f is M-convex because f1 and f2 are M-convex. Let π be the partition
consisting of pairs of the corresponding elements. Then the aggregation of f coincides with f1¤f2.
Hence, by Theorem 11, f1¤f2 is M-convex.

Finally, we consider another operation, called composition. Let f1 : ZS1 → R ∪ {+∞} and
f2 : ZS2 → R ∪ {+∞} be M-convex functions. Put V0 = S1 ∩ S2, V1 = S1 \ V0, and V2 = S2 \ V0.
We define the composition of f1 and f2 to be a function f : ZV1∪V2 → R ∪ {+∞,−∞} given by

f(x1, x2) = inf{f1(x1, y1) + f2(x2, y2) | y1 = y2 ∈ ZV0} (x1 ∈ ZV1 , x2 ∈ ZV2).

Theorem 13. The composition of two M-convex functions is M-convex, provided it does not take
the value −∞.
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Proof. Consider M-convex functions f̃1 and f̃2 defined by

f̃1(x1, y1,0) = f1(x1, y1) (x1 ∈ ZV1 , y1 ∈ ZV0 ,0 ∈ ZV2),

f̃2(0, (−y2), x2) = f2(x2, y2) (0 ∈ ZV1 , (−y2) ∈ ZV0 , x2 ∈ ZV2).

Their convolution f̃1¤f̃2 is M-convex by Theorem 12, and the restriction of f̃1¤f̃2 to V1 ∪ V2

coincides with the composition.

Note that the composition of M-convex functions is a generalization of the composition of
(constant-parity) jump systems. It is known that the composition of two jump systems is a jump
system [6], and Theorem 13 generalizes this fact.

6 Transformation by Networks

In this section, we consider the transformation of an M-convex function through a network. We
show that it preserves M-convexity on the basis of splitting, aggregation, and other basic operations
discussed above.

Let G = (V,A; S, T ) be a directed graph with vertex set V , arc set A, entrance set S, and exit
set T , where S and T are disjoint subsets of V . For each a ∈ A, the cost of integer-flow in a is
represented by a function φa : Z → R ∪ {+∞}, which is assumed to be convex.

Given a function f : ZS → R ∪ {+∞} associated with the entrance set S of the network, we
define a function f̃ : ZT → R ∪ {+∞,−∞} on the exit set T by

f̃(y) = inf
ξ,x

{
f(x) +

∑
a∈A

φa(ξ(a)) | ∂ξ = (x,−y,0),

ξ ∈ ZA, (x,−y,0) ∈ ZS × ZT × ZV \(S∪T )
}

(y ∈ ZT ),

where ∂ξ ∈ ZV is the vector given by

∂ξ(v) =
∑

a:a leaves v

ξ(a) −
∑

a:a enters v

ξ(a) (v ∈ V ).

If such (ξ, x) does not exist, we define f̃(y) = +∞. We may think of f̃(y) as the minimum cost to
meet a demand specification y at the exit, where the cost consists of two parts, the cost f(x) of
supply or production of x at the entrance and the cost

∑
a∈A φa(ξ(a)) of transportation through

arcs; the sum of these is to be minimized over varying supply x and flow ξ subject to the flow
conservation constraint ∂ξ = (x,−y,0). We regard f̃ as a result of transformation (or induction)
of f by the network.

Theorem 14. Assume that f is M-convex and φa is convex for each a ∈ A. Then the function f̃

induced by a network G = (V,A; S, T ) is M-convex, provided f̃ > −∞.

To prove this theorem, we first show that transformations by some simple bipartite networks
preserve M-convexity. When V = S ∪ T , we denote the graph G simply by G = (S, T ;A). It is
noted that some arcs are directed from S to T and the others are from T to S.
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S T

Figure 1: Splitting.
S T

Figure 2: Aggregation.
S T

Figure 3: Addition.

Lemma 15. Let G = (S, T ; A) be a bipartite network, where each vertex in T has exactly one
incident arc (see Fig. 1). If f is M-convex and φa = 0 for each a ∈ A, the function f̃ induced by
G is M-convex.

Proof. We can obtain f̃ from f by restriction and splitting. Hence, if f is M-convex then f̃ is
M-convex by Theorem 7.

Lemma 16. Let G = (S, T ;A) be a bipartite network, where each vertex in S has exactly one
incident arc (see Fig. 2). If f is M-convex and φa = 0 for each a ∈ A, the function f̃ induced by
G is M-convex, provided f̃ > −∞.

Proof. We can obtain f̃ from f by aggregation and 0-augmentation. Hence, if f is M-convex then
f̃ is M-convex by Theorem 11.

Lemma 17. Let G = (S, T ;A) be a bipartite network, as in Fig. 3, where S = {s1, . . . , sn},
T = {t1, . . . , tn}, and A = {a1, . . . , an} with ai = (si, ti) or ai = (ti, si) for i = 1, . . . , n. If f is
M-convex and φa is convex for each a ∈ A, the function f̃ induced by G is M-convex.

Proof. We may assume that

S+ = {s1, . . . , sm}, S− = {sm+1, . . . , sn},

T+ = {t1, . . . , tm}, T− = {tm+1, . . . , tn},

A+ = {(si, ti) | i = 1, . . . ,m}, A− = {(ti, si) | i = m + 1, . . . , n},

and A = A+ ∪ A−. Then, for x = (xi) ∈ Zn, f̃ is expressed as

f̃(x) = f(x) +
m∑

i=1

φa(xi) +
n∑

i=m+1

φa(−xi),

and if φa(x) is convex then φa(−x) is convex for a ∈ A−. Thus we can obtain f̃ by adding a
separable convex function to f . Hence, if f is M-convex then f̃ is M-convex by Theorem 5.

Using above lemmas, we see that transformation by bipartite networks preserves M-convexity.

Theorem 18. Assume that f is M-convex, φa is convex for each a ∈ A, and G = (S, T ; A) is a
bipartite network. Then the function f̃ induced by G is M-convex, provided f̃ > −∞.

11
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Figure 4: Transformation of a bipartite network.

S T S

U W

T

Figure 5: Transformation of a general network.

Proof. We construct a new network that represents the same transformation as the original network.
The new network is obtained by subdividing each arc of G into three arcs, as illustrated in Fig. 4.
For each arc a ∈ A we consider two new vertices ua and wa; if a is directed from S to T , i.e., a = (s, t)
with s ∈ S and t ∈ T , we will have three arcs a1 = (s, ua), a2 = (ua, wa) and a3 = (wa, t); and if
a = (t, s) with t ∈ T and s ∈ S, we will have a3 = (t, wa), a2 = (wa, ua) and a1 = (ua, s). The cost φa

is associated with arc a2, whereas the arcs a1 and a3 are given 0 as the cost. Thus the new network
consists of three bipartite graphs connected in series, G1 = (S,U ; A1), G2 = (U,W ; A2), and
G3 = (W,T ; A3), where U = {ua | a ∈ A}, W = {wa | a ∈ A}, and Ai = {ai | a ∈ A} (i = 1, 2, 3).

The given M-convex function f on S is transformed through G1 to a function f1 : ZU →
R ∪ {+∞}, which is M-convex by Lemma 15. Then f1 is transformed through G2 to a function
f2 : ZW → R ∪ {+∞}, which is M-convex by Lemma 17. Finally, f2 is transformed through G3 to
a function f3 : ZT → R ∪ {+∞,−∞}, which is M-convex by Lemma 16. The resulting function f3

coincides with the function f̃ induced from f by G.

We are now ready to show Theorem 14.

Proof of Theorem 14. We construct a new network that represents the same transformation as the
original network. The new network is obtained by subdividing each arc of G into some arcs, as
illustrated in Fig. 5. We may assume, by subdividing arcs, that no arcs exist between the two
vertices in S ∪ T . Let U = V \ (S ∪ T ), let AUT be the set of arcs connecting U and T , and
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define ASU and AUU similarly. For each arc a ∈ AUT , we consider a new vertex wa; if a is directed
from U to T , i.e., a = (u, t) with u ∈ U and t ∈ T , we will have two arcs a1 = (u,wa), a2 =
(wa, t); and if a = (t, u) with t ∈ T and u ∈ U , we will have a2 = (t, wa), a1 = (wa, u). For
each arc a = (u1, u2) ∈ AUU with u1, u2 ∈ U , we consider a new vertex wa, and have two arcs
a1 = (u1, wa), a2 = (wa, u2). Thus the new network consists of three bipartite graphs connected in
series, G1 = (S,U ; A1), G2 = (U,W ; A2), and G3 = (W,T ;A3), where W = {wa | a ∈ AUT ∪AUU},
A1 = ASU , A2 = {a1 | a ∈ AUT } ∪ {a1 | a ∈ AUU} ∪ {a2 | a ∈ AUU}, and A3 = {a2 | a ∈ AUT }.

By Theorem 18, transformations by the networks G1, G2, and G3 preserve M-convexity. Since
the transformation by G can be represented as a combination of the above three transformations,
the function f̃ transformed from f by G is M-convex.

As we mentioned in Section 1, transformations by networks also preserve MB-convexity. Two
kinds of proofs for this fact are known (see [20], [21], [28]), one uses a dual variable and the other
is a complicated algorithmic proof. We can see that our proof of Theorem 14 also works for MB-
convex functions, that is, by proving that splitting, aggregation, and other basic operations preserve
MB-convexity, we can show that transformations by networks preserve MB-convexity.

7 Proof of Lemma 10 for Elementary Aggregation

In this section, we give a proof of Lemma 10. For a concise description, we denote V = {1, 2, . . . , n−
1, n} and Ṽ = {1, 2, . . . , n − 2, a}. We show that if f is M-convex then f̃ defined by

f̃(x0; ξ) = inf{f(x0; xn−1, xn) | ξ = xn−1 + xn}

is M-convex. For u ∈ Ṽ , we denote by χ̃u the characteristic vector of u in Ṽ .
We first deal with case where the effective domain of f is bounded, whereas the general case is

treated in Section 7.4.

7.1 Case of bounded effective domain

Lemma 19. If f is M-convex and domf is bounded then its elementary aggregation f̃ is M-convex.

Proof. Let J and J̃ be the effective domains of f and f̃ , respectively. If f is M-convex then J is
a constant-parity jump system, which implies by Lemma 9 that J̃ is also a constant-parity jump
system. Hence, by Theorem 2, it is enough to show that f̃ satisfies (MJ-EXCloc), that is, for any
x̃ = (x0; ξ), ỹ = (y0; η) ∈ J̃ with ||x̃− ỹ||1 = ||x0−y0||1 + |ξ−η| = 4, there exists an (x̃, ỹ)-increment
pair (s, t) such that

f̃(x̃) + f̃(ỹ) ≥ f̃(x̃ + s + t) + f̃(ỹ − s − t). (∗)

Without loss of generality, we may assume that ξ ≥ η. Take xn−1, xn, yn−1, yn with the minimum
value of |xn−1 − yn−1| + |xn − yn| such that

f̃(x0; ξ) = f(x0; xn−1, xn) ((x0; xn−1, xn) ∈ J, ξ = xn−1 + xn),

f̃(y0; η) = f(y0; xn−1, yn) ((y0; yn−1, yn) ∈ J, η = yn−1 + yn).
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Note that such xn−1, xn, yn−1, yn exist, because J is finite and (x0; ξ), (y0; η) ∈ J̃ .
If xn−1 = yn−1 or xn = yn then it is obvious by (MJ-EXC) for f that there exists an (x̃, ỹ)-

increment pair (s, t) satisfying (∗). Since xn−1 ≥ yn−1 or xn ≥ yn holds by the assumption ξ ≥ η,
we may assume that xn−1 > yn−1 and xn 6= yn.

Case 1. Suppose that ξ ≥ η + 2. By (MJ-EXC) for f with s = −χn−1, we have

f(x0; xn−1, xn) + f(y0; yn−1, yn) ≥ min


f(x0;xn−1 − 1, xn ± 1) + f(y0; yn−1 + 1, yn ∓ 1),

f(x0; xn−1 − 2, xn) + f(y0; yn−1 + 2, yn),
f(x0 + t0; xn−1 − 1, xn) + f(y0 − t0; yn−1 + 1, yn)

 , (1)

where t0 ∈ Zn−2 is an (x0, y0)-increment. Note that the signs in (1) are determined by the relations
of components, and the second term exists only if xn−1 − yn−1 ≥ 2. If the second term or the third
term achieves the minimum, then (s, t) = (−χ̃a,−χ̃a) or (−χ̃a, t̃), where t̃ = (t0, 0) ∈ ZṼ , is an
(x̃, ỹ)-increment pair satisfying (∗). Otherwise, we have

f(x0; xn−1, xn) + f(y0; yn−1, yn) ≥ f(x0; xn−1 − 1, xn + 1) + f(y0; yn−1 + 1, yn − 1),

or f(x0; xn−1, xn) + f(y0; yn−1, yn) ≥ f(x0; xn−1 − 1, xn − 1) + f(y0; yn−1 + 1, yn + 1).

If xn > yn then we have f(x0; xn−1, xn)+f(y0; yn−1, yn) ≥ f(x0; xn−1−1, xn−1)+f(y0; yn−1 +
1, yn + 1), and so f̃(x0; ξ) + f̃(y0; η) ≥ f̃(x0; ξ − 2) + f̃(y0; η + 2). Thus (s, t) = (−χ̃a,−χ̃a) is an
(x̃, ỹ)-increment pair satisfying (∗).

If xn < yn then we have f(x0; xn−1, xn)+f(y0; yn−1, yn) ≥ f(x0; xn−1−1, xn +1)+f(y0; yn−1 +
1, yn−1). By the definition of xn−1, xn, yn−1, yn, we have f(x0; xn−1, xn) = f(x0; xn−1−1, xn+1) and
f(y0; yn−1, yn) = f(y0; yn−1+1, yn−1). This contradicts the minimality of |xn−1−yn−1|+ |xn−yn|.

Case 2. Suppose that ξ = η. It suffices to show that if ỹ = 0 and x̃ = (1, 1, 1, 1; 0), (2, 1, 1; 0),
(3, 1; 0), (2, 2; 0), or (4; 0), there exists an (x̃, ỹ)-increment pair (s, t) satisfying (∗). This is shown
in Section 7.2.

Case 3. Suppose that ξ = η + 1. It suffices to show that if ỹ = 0 and x̃ = (1, 1, 1; 1), (2, 1; 1),
or (3; 1), there exists an (x̃, ỹ)-increment pair (s, t) satisfying (∗). This is shown in Section 7.3.

7.2 Case 2 in the proof of Lemma 19

In this section, we deal with Case 2 in the proof of Lemma 19. First we show the essential case when
x̃ = (1, 1, 1, 1; 0), whereas the other cases can be derived from this using the splitting technique
discussed in Section 4.

7.2.1 The main lemma

Let f : Z6 → R ∪ {+∞} be an M-convex function with a bounded effective domain, and define

f̃(x1, x2, x3, x4; ξ) = inf {f(x1, x2, x3, x4;x5, x6) | x5 + x6 = ξ} .
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We now show that if ỹ = 0 ∈ J̃ and x̃ = (1, 1, 1, 1; 0) ∈ J̃ then there exists an (x̃, ỹ)-increment
pair (s, t) satisfying (∗). We may assume that f̃(0, 0, 0, 0; 0) = f(0, 0, 0, 0; 0, 0) and f̃(1, 1, 1, 1; 0) =
f(1, 1, 1, 1; k,−k) with k > 0. We denote 0 = (0, 0, 0, 0; 0, 0), 1k = (1, 1, 1, 1; k,−k), and χ1234 =
χ1 + χ2 + χ3 + χ4.

Lemma 20. Suppose that f̃(0, 0, 0, 0; 0) = f(0) and f̃(1, 1, 1, 1; 0) = f(1k) with k > 0. Then we
have

f(0) + f(1k) ≥ min


f̃(1, 1, 0, 0; 0) + f̃(0, 0, 1, 1; 0),
f̃(1, 0, 1, 0; 0) + f̃(0, 1, 0, 1; 0),
f̃(1, 0, 0, 1; 0) + f̃(0, 1, 1, 0; 0)

 . (2)

Proof. First, by (MJ-EXC) for f with s = χ1, we have

f(0) + f(1k) ≥ min


f(1, 1, 0, 0; 0, 0) + f(0, 0, 1, 1; k,−k),
f(1, 0, 1, 0; 0, 0) + f(0, 1, 0, 1; k,−k),
f(1, 0, 0, 1; 0, 0) + f(0, 1, 1, 0; k,−k),

f(1, 0, 0, 0; 1, 0) + f(0, 1, 1, 1; k − 1,−k),
f(1, 0, 0, 0; 0,−1) + f(0, 1, 1, 1; k,−k + 1)

 .

If one of the first three terms achieves the minimum, the desired inequality holds. Otherwise, we
have

f(0) + f(1k) ≥ min
{

f(1, 0, 0, 0; 1, 0) + f(0, 1, 1, 1; k − 1,−k),
f(1, 0, 0, 0; 0,−1) + f(0, 1, 1, 1; k,−k + 1)

}
. (3)

We consider the following bipartite digraph G = (UG, VG;AG). The vertex sets UG and VG are
defined by

UG = {u(p,i) | 1 ≤ p ≤ k, 1 ≤ i ≤ 4, f(χ1234 − χi + pχ5 − (p − 1)χ6) < +∞},

VG = {v(r,j) | 1 ≤ r ≤ k, 1 ≤ j ≤ 4, f(χj + rχ5 − (r − 1)χ6) < +∞}.

The arc set AG is defined as follows. For u(p,i) ∈ UG an arc exists from u(p,i) to v(r,j) with
r ∈ {1, . . . , k} and j ∈ {1, 2, 3, 4} \ {i} if there exists q such that 0 ≤ q ≤ k and

f(0) + f(χ1234 − χi + pχ5 − (p− 1)χ6) ≥ f(χj + rχ5 − (r − 1)χ6) + f(χ1234 − χi − χj + qχ5 − qχ6).

Note that this inequality guarantees v(r,j) ∈ VG. Similarly, for v(r,j) ∈ VG an arc exists from v(r,j)

to u(p,i) with p ∈ {1, . . . , k} and i ∈ {1, 2, 3, 4} \ {j} if there exists q such that 0 ≤ q ≤ k and

f(1k) + f(χj + rχ5 − (r − 1)χ6) ≥ f(χ1234 − χi + pχ5 − (p − 1)χ6) + f(χi + χj + qχ5 − qχ6).

Note that this inequality guarantees u(p,i) ∈ UG.
Then the following lemma holds, which we prove in Section 7.2.2.

Lemma 21. The out-degree of each vertex in G is at least one.

We mention here that UG 6= ∅ and VG 6= ∅. For, it follows from the inequality (3) that u(k,1) ∈ UG

or v(1,1) ∈ VG. Then Lemma 21 implies that UG 6= ∅ and VG 6= ∅.
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By Lemma 21, G has a directed cycle C = (u(p1,i1), v(p2,i2), u(p3,i3), v(p4,i4), . . . , u(p2m−1,i2m−1), v(p2m,i2m)).
This means, by the definition of AG, that there exist q1, q2, . . . , q2m such that

f(0) + f(χ1234 − χi1 + p1χ5 − (p1 − 1)χ6)

≥ f(χi2 + p2χ5 − (p2 − 1)χ6) + f(χ1234 − χi1 − χi2 + q1χ5 − q1χ6),

f(1k) + f(χi2 + p2χ5 − (p2 − 1)χ6)

≥ f(χ1234 − χi3 + p3χ5 − (p3 − 1)χ6) + f(χi3 + χi2 + q2χ5 − q2χ6),

f(0) + f(χ1234 − χi3 + p3χ5 − (p3 − 1)χ6)

≥ f(χi4 + p4χ5 − (p4 − 1)χ6) + f(χ1234 − χi3 − χi4 + q3χ5 − q3χ6),

f(1k) + f(χi4 + p4χ5 − (p4 − 1)χ6)

≥ f(χ1234 − χi5 + p5χ5 − (p5 − 1)χ6) + f(χi5 + χi4 + q4χ5 − q4χ6),

. . .

f(0) + f(χ1234 − χi2m−1 + p2m−1χ5 − (p2m−1 − 1)χ6)

≥ f(χi2m + p2mχ5 − (p2m − 1)χ6) + f(χ1234 − χi2m−1 − χi2m + q2m−1χ5 − q2m−1χ6),

f(1k) + f(χi2m + p2mχ5 − (p2m − 1)χ6)

≥ f(χ1234 − χi1 + p1χ5 − (p1 − 1)χ6) + f(χi1 + χi2m + q2mχ5 − q2mχ6).

By adding these inequalities, we obtain

m(f(0) + f(1k)) ≥ f(χ1234 − χi1 − χi2 + q1χ5 − q1χ6)

+ f(χi3 + χi2 + q2χ5 − q2χ6)

+ f(χ1234 − χi3 − χi4 + q3χ5 − q3χ6)

+ f(χi5 + χi4 + q4χ5 − q4χ6)

+ · · ·

+ f(χ1234 − χi2m−1 − χi2m + q2m−1χ5 − q2m−1χ6)

+ f(χi1 + χi2m + q2mχ5 − q2mχ6).

Then we have

m(f(0) + f(1k)) ≥ f̃(χ̃1234 − χ̃i1 − χ̃i2) + f̃(χ̃i3 + χ̃i2)

+ f̃(χ̃1234 − χ̃i3 − χ̃i4) + f̃(χ̃i5 + χ̃i4)

+ · · ·

+ f̃(χ̃1234 − χ̃i2m−1 − χ̃i2m) + f̃(χ̃i1 + χ̃i2m),

where χ̃1234 = χ̃1 + χ̃2 + χ̃3 + χ̃4.
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Here we note that

mχ̃1234 = (χ̃1234 − χ̃i1 − χ̃i2) + (χ̃i3 + χ̃i2)

+ (χ̃1234 − χ̃i3 − χ̃i4) + (χ̃i5 + χ̃i4)

+ · · ·

+ (χ̃1234 − χ̃i2m−1 − χ̃i2m) + (χ̃i1 + χ̃i2m).

Then the desired inequality (2) follows from Lemma 22 below.

Lemma 22. If
mχ̃1234 =

∑
1≤i<j≤4

mij(χ̃i + χ̃j) (4)

and
m(f(0) + f(1k)) ≥

∑
1≤i<j≤4

mij f̃(χ̃i + χ̃j)

for some nonnegative integers mij and m, then

f(0) + f(1k) ≥ min{f̃(χ̃1 + χ̃2) + f̃(χ̃3 + χ̃4), f̃(χ̃1 + χ̃3) + f̃(χ̃2 + χ̃4), f̃(χ̃1 + χ̃4) + f̃(χ̃2 + χ̃3)}.

Proof. On the right-hand side of (4), the sum of the coefficients of χ̃1 and χ̃2 is 2m12 +m13 +m14 +
m23 + m24. Meanwhile, that of χ̃3 and χ̃4 is 2m34 + m13 + m14 + m23 + m24. Hence m12 = m34.
We can show m13 = m24, m14 = m23 in the same way. Thus we have

m(f(0)+f(1k)) ≥ m12(f̃(χ̃1+χ̃2)+f̃(χ̃3+χ̃4))+m13(f̃(χ̃1+χ̃3)+f̃(χ̃2+χ̃4))+m14(f̃(χ̃1+χ̃4)+f̃(χ̃2+χ̃3))

and
m12 + m13 + m14 = m,

which imply the desired inequality.

7.2.2 Proof of Lemma 21

The out-degree of vertex u(p,i) is nonzero by Lemma 24 below, which relies on the following lemma.

Lemma 23. For any integers p ≤ q and for any i ∈ {1, 2, 3, 4}, (A) or (B) holds.

(A) There exists an integer r such that p ≤ r ≤ q + 1 and

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min


f(χj1 + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6) + f(χj2 + χj3 + rχ5 − rχ6),
f(χj2 + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6) + f(χj3 + χj1 + rχ5 − rχ6),
f(χj3 + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6) + f(χj1 + χj2 + rχ5 − rχ6)

 ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}.
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(B) There exists an integer r such that p + 1 ≤ r ≤ q + 1 and

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ f(rχ5 − rχ6) + f(χ1234 − χi + (p + q + 2 − r)χ5 − (p + q + 1 − r)χ6).

Proof. We show by induction on q − p.
If q − p = 0 then, by (MJ-EXC) with s = −χ6, we have

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min


f(χj1 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj1 − χi + qχ5 − qχ6),
f(χj2 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj2 − χi + qχ5 − qχ6),
f(χj3 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj3 − χi + qχ5 − qχ6),

f((p + 1)χ5 − (p + 1)χ6) + f(χ1234 − χi + (q + 1)χ5 − qχ6)

 ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}. If one of the first three terms achieves the minimum, then (A)
holds with r = q; otherwise (B) holds with r = p + 1.

If q − p = 1 then, by (MJ-EXC) with s = −χ5, we have

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min


f(χj1 + (p + 1)χ5 − pχ6) + f(χ1234 − χj1 − χi + (q + 1)χ5 − (q + 1)χ6),
f(χj2 + (p + 1)χ5 − pχ6) + f(χ1234 − χj2 − χi + (q + 1)χ5 − (q + 1)χ6),
f(χj3 + (p + 1)χ5 − pχ6) + f(χ1234 − χj3 − χi + (q + 1)χ5 − (q + 1)χ6),

f((p + 1)χ5 − (p + 1)χ6) + f(χ1234 − χi + (q + 1)χ5 − qχ6)

 ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}. If one of the first three terms achieves the minimum, then (A)
holds with r = q + 1; otherwise (B) holds with r = p + 1.

Suppose that q − p ≥ 2. By (MJ-EXC) with s = −χ6, we have

f((p + 2)χ5 − pχ6) + f(χ1234 − χi + qχ5 − (q + 1)χ6)

≥ min


f(χj1 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj1 − χi + qχ5 − qχ6),
f(χj2 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj2 − χi + qχ5 − qχ6),
f(χj3 + (p + 2)χ5 − (p + 1)χ6) + f(χ1234 − χj3 − χi + qχ5 − qχ6),

f((p + 3)χ5 − (p + 1)χ6) + f(χ1234 − χi + (q − 1)χ5 − qχ6),
f((p + 2)χ5 − (p + 2)χ6) + f(χ1234 − χi + qχ5 − (q − 1)χ6)

 ,

where {j1, j2, j3} = {1, 2, 3, 4}\{i}. Note that the fourth term exists only if q−p ≥ 3. If one of the
first three terms achieves the minimum, then (A) holds with r = q, and if the last term achieves
the minimum, then (B) holds with r = p + 2 ≤ q. To the fourth term, the induction applies and
yields (A) with p + 1 ≤ r ≤ q or (B) with p + 2 ≤ r ≤ q.

Lemma 24. For any integer 1 ≤ p ≤ k and for any i ∈ {1, 2, 3, 4}, there exist integers q and r

such that 0 ≤ q ≤ k − 1, 1 ≤ r ≤ k, and

f(0)+f(χ1234−χi+pχ5−(p−1)χ6) ≥ min


f(χj1 + rχ5 − (r − 1)χ6) + f(χj2 + χj3 + qχ5 − qχ6),
f(χj2 + rχ5 − (r − 1)χ6) + f(χj3 + χj1 + qχ5 − qχ6),
f(χj3 + rχ5 − (r − 1)χ6) + f(χj1 + χj2 + qχ5 − qχ6)

 ,

where {j1, j2, j3} = {1, 2, 3, 4} \ {i}.
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Proof. It suffices to consider p which minimizes f(χ1234 − χi + pχ5 − (p − 1)χ6). Let p be the
minimum minimizer. By (MJ-EXC) with s = χ5, we have

f(0)+f(χ1234−χi+pχ5−(p−1)χ6) ≥ min


f(χj1 + χ5) + f(χj2 + χj3 + (p − 1)χ5 − (p − 1)χ6),
f(χj2 + χ5) + f(χj3 + χj1 + (p − 1)χ5 − (p − 1)χ6),
f(χj3 + χ5) + f(χj1 + χj2 + (p − 1)χ5 − (p − 1)χ6),
f(χ5 − χ6) + f(χ1234 − χi + (p − 1)χ5 − (p − 2)χ6),

f(2χ5) + f(χ1234 − χi + (p − 2)χ5 − (p − 1)χ6)

 .

Note that the last two terms exist only if p ≥ 2.
If one of the first three terms achieves the minimum, the claim holds with q = p− 1 and r = 1.
To consider the fourth term, suppose that p ≥ 2 and

f(0) + f(χ1234 − χi + pχ5 − (p − 1)χ6) ≥ f(χ5 − χ6) + f(χ1234 − χi + (p − 1)χ5 − (p − 2)χ6).

Then, since f(0) = f̃(0, 0, 0, 0; 0) ≤ f(χ5 − χ6), we have

f(χ1234 − χi + pχ5 − (p − 1)χ6) ≥ f(χ1234 − χi + (p − 1)χ5 − (p − 2)χ6),

which contradicts the definition of p.
To consider the fifth term, suppose that p ≥ 2 and

f(0) + f(χ1234 − χi + pχ5 − (p − 1)χ6) ≥ f(2χ5) + f(χ1234 − χi + (p − 2)χ5 − (p − 1)χ6).

By Lemma 23, at least one of (A) and (B) holds.

(A) There exists an integer r′ such that 0 ≤ r′ ≤ p − 1 and

f(2χ5) + f(χ1234 − χi + (p − 2)χ5 − (p − 1)χ6)

≥ min


f(χj1 + (p − r′)χ5 − (p − r′ − 1)χ6) + f(χj2 + χj3 + r′χ5 − r′χ6),
f(χj2 + (p − r′)χ5 − (p − r′ − 1)χ6) + f(χj3 + χj1 + r′χ5 − r′χ6),
f(χj3 + (p − r′)χ5 − (p − r′ − 1)χ6) + f(χj1 + χj2 + r′χ5 − r′χ6)

 .

(B) There exists an integer r′ such that 1 ≤ r′ ≤ p − 1 and

f(2χ5) + f(χ1234 − χi + (p − 2)χ5 − (p − 1)χ6)

≥ f(r′χ5 − r′χ6) + f(χ1234 − χi + (p − r′)χ5 − (p − r′ − 1)χ6).

In case of (A) we have

f(0) + f(χ1234 − χi + pχ5 − (p − 1)χ6)

≥ min


f(χj1 + (p − r′)χ5 − (p − r′ − 1)χ6) + f(χj2 + χj3 + r′χ5 − r′χ6),
f(χj2 + (p − r′)χ5 − (p − r′ − 1)χ6) + f(χj3 + χj1 + r′χ5 − r′χ6),
f(χj3 + (p − r′)χ5 − (p − r′ − 1)χ6) + f(χj1 + χj2 + r′χ5 − r′χ6)

 ,

which implies the desired claim with q = r′ and r = p − r′.
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In case of (B) we have 1 ≤ r′ ≤ p − 1 and

f(0)+ f(χ1234 −χi + pχ5 − (p− 1)χ6) ≥ f(r′χ5 − r′χ6)+ f(χ1234 −χi +(p− r′)χ5 − (p− r′− 1)χ6).

Since f(0) = f̃(0, 0, 0, 0; 0) ≤ f(r′χ5 − r′χ6), we have

f(χ1234 − χi + pχ5 − (p − 1)χ6) ≥ f(χ1234 − χi + (p − r′)χ5 − (p − r′ − 1)χ6),

which contradicts the definition of p.

In the same way as Lemma 24, we have the following lemma, which means that the out degree
of vertex v(r,j) is nonzero.

Lemma 25. For any integer 1 ≤ r ≤ k and for any j ∈ {1, 2, 3, 4}, there exist integers p and q

such that 1 ≤ p ≤ k, 1 ≤ q ≤ k, and

f(1k)+f(χj+rχ5−(r−1)χ6) ≥ min


f(χ1234 − χi1 + pχ5 − (p − 1)χ6) + f(χi1 + χj + qχ5 − qχ6),
f(χ1234 − χi2 + pχ5 − (p − 1)χ6) + f(χi2 + χj + qχ5 − qχ6),
f(χ1234 − χi3 + pχ5 − (p − 1)χ6) + f(χi3 + χj + qχ5 − qχ6)

 ,

where {i1, i2, i3} = {1, 2, 3, 4} \ {j}.

Proof. We consider the coordinate transformation from (x1, x2, x3, x4; x5, x6) to (1−x1, 1−x2, 1−
x3, 1−x4; k +x6,−k +x5). Applying Lemma 24 in the new coordinate system, we see the following
fact:

For any integer 1 ≤ p′ ≤ k and for any j ∈ {1, 2, 3, 4}, there exist integers q′ and r′

such that 0 ≤ q′ ≤ k − 1, 1 ≤ r′ ≤ k and

f(1k) + f(χj + (k − p′ + 1)χ5 − (k − p′)χ6)

≥ min


f(χ1234 − χi1 + (k − r′ + 1)χ5 − (k − r′)χ6) + f(χi1 + χj + (k − q′)χ5 − (k − q′)χ6),
f(χ1234 − χi2 + (k − r′ + 1)χ5 − (k − r′)χ6) + f(χi2 + χj + (k − q′)χ5 − (k − q′)χ6),
f(χ1234 − χi3 + (k − r′ + 1)χ5 − (k − r′)χ6) + f(χi3 + χj + (k − q′)χ5 − (k − q′)χ6)

 ,

where {i1, i2, i3} = {1, 2, 3, 4} \ {j}.

By setting p = k − r′ + 1, r = k − p′ + 1, and q = k − q′, we obtain the claim.

Lemma 21 immediately follows from Lemmas 24 and 25.

7.2.3 Other cases in Case 2

The other cases in Case 2 are treated here with the aid of the splitting technique.

Lemma 26. If ỹ = 0 and x̃ = (1, 1, 1, 1; 0), (2, 1, 1; 0), (3, 1; 0), (2, 2; 0), or (4; 0), then there exists
an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥ f̃(x̃ + s + t) + f̃(ỹ − s − t).
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Proof. If x̃ = (1, 1, 1, 1; 0) then the claim follows from Lemma 20.
Suppose that x̃ = (2, 1, 1; 0). In this case, we may assume f̃(0, 0, 0; 0) = f(0, 0, 0; 0, 0) and

f̃(2, 1, 1; 0) = f(2, 1, 1; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4; x5, x6) = f(x1 +
x2, x3, x4; x5, x6), and f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf
{
f ′(x1, x2, x3, x4; x5, x6) | x5 + x6 = ξ

}
.

Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2, x3, x4; 0). Since f ′ is a splitting of f , it is M-convex by
Theorem 7. By Lemma 20, we have

f(0, 0, 0; 0, 0) + f(2, 1, 1; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min


f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),
f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),
f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)


= min


f̃(2, 0, 0; 0) + f̃(0, 1, 1; 0),
f̃(1, 1, 0; 0) + f̃(1, 0, 1; 0),
f̃(1, 0, 1; 0) + f̃(1, 1, 0; 0)

 ,

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+ s+ t)+
f̃(ỹ − s − t).

Suppose that x̃ = (3, 1; 0). In this case, we may assume f̃(0, 0; 0) = f(0, 0; 0, 0) and f̃(3, 1; 0) =
f(3, 1; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4; x5, x6) = f(x1 + x2 + x3, x4; x5, x6), and
f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf
{
f ′(x1, x2, x3, x4; x5, x6) | x5 + x6 = ξ

}
.

Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2 + x3, x4; 0). Since f ′ is a splitting of f , it is M-convex by
Theorem 7. By Lemma 20, we have

f(0, 0; 0, 0) + f(3, 1; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min


f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),
f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),
f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)


= min


f̃(2, 0; 0) + f̃(1, 1; 0),
f̃(2, 0; 0) + f̃(1, 1; 0),
f̃(1, 1; 0) + f̃(2, 0; 0)


= f̃(2, 0; 0) + f̃(1, 1; 0),

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+ s+ t)+
f̃(ỹ − s − t).

Suppose that x̃ = (2, 2; 0). In this case, we may assume f̃(0, 0; 0) = f(0, 0; 0, 0) and f̃(2, 2; 0) =
f(2, 2; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4; x5, x6) = f(x1 + x2, x3 + x4; x5, x6), and
f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf
{
f ′(x1, x2, x3, x4; x5, x6) | x5 + x6 = ξ

}
.
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Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2, x3 + x4; 0). Since f ′ is a splitting of f , it is M-convex by
Theorem 7. By Lemma 20, we have

f(0, 0; 0, 0) + f(2, 2; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min


f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),
f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),
f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)


= min


f̃(2, 0; 0) + f̃(0, 2; 0),
f̃(1, 1; 0) + f̃(1, 1; 0),
f̃(1, 1; 0) + f̃(1, 1; 0)

 ,

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+ s+ t)+
f̃(ỹ − s − t).

Suppose that x̃ = (4; 0). In this case, we may assume f̃(0; 0) = f(0; 0, 0) and f̃(4; 0) =
f(4; k,−k) with k > 0. We define f ′ as f ′(x1, x2, x3, x4; x5, x6) = f(x1 + x2 + x3 + x4; x5, x6),
and f̃ ′ as

f̃ ′(x1, x2, x3, x4; ξ) = inf
{
f ′(x1, x2, x3, x4; x5, x6) | x5 + x6 = ξ

}
.

Then f̃ ′(x1, x2, x3, x4; 0) = f̃(x1 + x2 + x3 + x4; 0). Since f ′ is a splitting of f , it is M-convex by
Theorem 7. By Lemma 20, we have

f(0; 0, 0) + f(4; k,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 1; k,−k)

≥ min


f̃ ′(1, 1, 0, 0; 0) + f̃ ′(0, 0, 1, 1; 0),
f̃ ′(1, 0, 1, 0; 0) + f̃ ′(0, 1, 0, 1; 0),
f̃ ′(1, 0, 0, 1; 0) + f̃ ′(0, 1, 1, 0; 0)


= f̃(2; 0) + f̃(2; 0),

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+ s+ t)+
f̃(ỹ − s − t).

7.3 Case 3 in the proof of Lemma 19

In this section, we deal with Case 3 in the proof of Lemma 19. First we focus on the case of
x̃ = (1, 1, 1; 1), whereas the other cases are treated later using the splitting technique discussed in
Section 4.

Let f : Z5 → R ∪ {+∞} be an M-convex function, and put

f̃(x1, x2, x3; ξ) = inf {f(x1, x2, x3; x4, x5) | x4 + x5 = ξ} .

We now show that if ỹ = 0 ∈ J̃ and x̃ = (1, 1, 1; 1) ∈ J̃ then there exists an (x̃, ỹ)-increment pair
(s, t) satisfying (∗). We may assume f̃(0, 0, 0; 0) = f(0, 0, 0; 0, 0) and f̃(1, 1, 1; 1) = f(1, 1, 1; k +
1,−k) with k > 0.
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Lemma 27. Suppose that f̃(0, 0, 0; 0) = f(0, 0, 0; 0, 0) and f̃(1, 1, 1; 1) = f(1, 1, 1; k + 1,−k) with
k > 0. Then we have

f(0, 0, 0; 0, 0) + f(1, 1, 1; k + 1,−k) ≥ min


f̃(1, 1, 0; 0) + f̃(0, 0, 1; 1),
f̃(1, 0, 1; 0) + f̃(0, 1, 0; 1),
f̃(0, 1, 1; 0) + f̃(1, 0, 0; 1)

 .

Proof. We define f ′ : Z6 → R ∪ {+∞} as

f ′(x1, x2, x3, x4;x5, x6) =

{
f(x1, x2, x3; x5, x6) if x4 = 0
+∞ otherwise.

Since f is M-convex, f ′ is also M-convex. By Lemma 24 applied to f ′ with i = 4, we have the
following fact:

For any integer 1 ≤ p ≤ k′, there exist integers q and r such that 0 ≤ q ≤ k′ − 1,
1 ≤ r ≤ k′, and

f ′(0, 0, 0, 0; 0, 0)+f ′(1, 1, 1, 0; p,−(p−1)) ≥ min


f ′(1, 0, 0, 0; r,−(r − 1)) + f ′(0, 1, 1, 0; q,−q),
f ′(0, 1, 0, 0; r,−(r − 1)) + f ′(1, 0, 1, 0; q,−q),
f ′(0, 0, 1, 0; r,−(r − 1)) + f ′(1, 1, 0, 0; q,−q)

 .

By taking k′ ≥ k + 1 and p = k + 1 in the above, we have

f(0, 0, 0; 0, 0) + f(1, 1, 1; k + 1,−k) = f ′(0, 0, 0, 0; 0, 0) + f ′(1, 1, 1, 0; k + 1,−k)

≥ min


f ′(1, 0, 0, 0; r,−(r − 1)) + f ′(0, 1, 1, 0; q,−q),
f ′(0, 1, 0, 0; r,−(r − 1)) + f ′(1, 0, 1, 0; q,−q),
f ′(0, 0, 1, 0; r,−(r − 1)) + f ′(1, 1, 0, 0; q,−q)


= min


f(1, 0, 0; r,−(r − 1)) + f(0, 1, 1; q,−q),
f(0, 1, 0; r,−(r − 1)) + f(1, 0, 1; q,−q),
f(0, 0, 1; r,−(r − 1)) + f(1, 1, 0; q,−q)


≥ min


f̃(1, 0, 0; 1) + f̃(0, 1, 1; 0),
f̃(0, 1, 0; 1) + f̃(1, 0, 1; 0),
f̃(0, 0, 1; 1) + f̃(1, 1, 0; 0)

 ,

which implies the lemma.

Lemma 28. If ỹ = 0 and x̃ = (1, 1, 1; 1), (2, 1; 1), or (3; 1), then there exists an (x̃, ỹ)-increment
pair (s, t) satisfying f̃(x̃) + f̃(ỹ) ≥ f̃(x̃ + s + t) + f̃(ỹ − s − t).

Proof. If x̃ = (1, 1, 1; 1) then the claim follows from Lemma 27.
Suppose that x̃ = (2, 1; 1). In this case, we may assume f̃(0, 0; 0) = f(0, 0; 0, 0) and f̃(2, 1; 1) =

f(2, 1; k +1,−k) with k > 0. We define f ′ as f ′(x1, x2, x3; x4, x5) = f(x1 +x2, x3;x4, x5), and f̃ ′ as

f̃ ′(x1, x2, x3; ξ) = inf
{
f ′(x1, x2, x3; x4, x5) | x4 + x5 = ξ

}
.
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Then f̃ ′(x1, x2, x3; ξ) = f̃(x1 + x2, x3; ξ). Since f ′ is a splitting of f , it is M-convex by Theorem 7.
By Lemma 27, we have

f(0, 0; 0, 0) + f(2, 1; k + 1,−k) = f ′(0, 0, 0; 0, 0) + f ′(1, 1, 1; k + 1,−k)

≥ min


f̃ ′(1, 0, 0; 1) + f̃ ′(0, 1, 1; 0),
f̃ ′(0, 1, 0; 1) + f̃ ′(1, 0, 1; 0),
f̃ ′(0, 0, 1; 1) + f̃ ′(1, 1, 0; 0)


= min


f̃(1, 0; 1) + f̃(1, 1; 0),
f̃(1, 0; 1) + f̃(1, 1; 0),
f̃(0, 1; 1) + f̃(2, 0; 0)

 ,

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+ s+ t)+
f̃(ỹ − s − t).

Suppose that x̃ = (3; 1). In this case, we may assume f̃(0; 0) = f(0; 0, 0) and f̃(3; 1) = f(3; k +
1,−k). We define f ′ as f ′(x1, x2, x3; x4, x5) = f(x1 + x2 + x3; x4, x5), and f̃ ′ as

f̃ ′(x1, x2, x3; ξ) = inf
{
f ′(x1, x2, x3; x4, x5) | x4 + x5 = ξ

}
.

Then f̃ ′(x1, x2, x3; ξ) = f̃(x1 + x2 + x3; ξ). Since f ′ is a splitting of f , it is M-convex by Theorem
7. By Lemma 27, we have

f(0; 0, 0) + f(3; k + 1,−k) = f ′(0, 0, 0; 0, 0) + f ′(1, 1, 1; k + 1,−k)

≥ min


f̃ ′(1, 0, 0; 1) + f̃ ′(0, 1, 1; 0),
f̃ ′(0, 1, 0; 1) + f̃ ′(1, 0, 1; 0),
f̃ ′(0, 0, 1; 1) + f̃ ′(1, 1, 0; 0)


= f̃(1; 1) + f̃(2; 0),

which means that there exists an (x̃, ỹ)-increment pair (s, t) satisfying f̃(x̃)+ f̃(ỹ) ≥ f̃(x̃+ s+ t)+
f̃(ỹ − s − t).

7.4 Case of unbounded effective domain

We now deal with the general case of Lemma 10 without boundness assumption on the effective
domain.

Proof of Lemma 10. For R = 1, 2, . . ., we define f (R) : Zn → R ∪ {+∞} by

f (R)(x) =

{
f(x) if maxv∈V |x(v)| ≤ R

+∞ otherwise
(x ∈ Zn),

which is an M-convex function with a bounded effective domain, provided that R is large enough
for domf (R) 6= ∅. For each R an elementary aggregation f̃ (R) of f (R) is M-convex by Lemma 19.
Take x, y ∈ domf̃ . There exists R0 = R0(x, y), depending on x and y, such that x, y ∈ domf̃ (R)

for every R ≥ R0. Since f̃ (R) is M-convex, there exists an (x, y)-increment pair (sR, tR) such that

f̃ (R)(x) + f̃ (R)(y) ≥ f̃ (R)(x + sR + tR) + f̃ (R)(y − sR − tR).
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Since the set of all (x, y)-increment pairs is finite, at least one (x, y)-increment pair appears infinitely
many times in the sequence (sR0 , tR0), (sR0+1, tR0+1), . . .. More precisely, there exists an (x, y)-
increment pair (s, t) and an increasing subsequence R1 < R2 < · · · such that (sRi , tRi) = (s, t) for
i = 1, 2, . . .. By letting R → ∞ along this subsequence in the above inequality we obtain

f̃(x) + f̃(y) ≥ f̃(x + s + t) + f̃(y − s − t).

Thus f̃ satisfies (MJ-EXCloc). This completes the proof of Lemma 10.
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