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Abstract

We consider strong law of large numbers (SLLN) in the framework of game-
theoretic probability of Shafer and Vovk (2001). We prove several versions of SLLN
for the case that Reality’s moves are unbounded. Our game-theoretic versions of
SLLN largely correspond to standard measure-theoretic results. However game-
theoretic proofs are different from measure-theoretic ones in the explicit consid-
eration of various hedges. In measure-theoretic proofs existence of moments are
assumed, whereas in our game-theoretic proofs we assume availability of various
hedges to Skeptic for finite prices.

Keywords and phrases: Borel-Cantelli lemma, call option, Doob’s upcrossing lemma,
Kronecker’s lemma, Marcinkiewicz-Zygmund strong law, martingale convergence theorem.

1 Introduction

In the framework of game-theoretic probability, proof of SLLN is simple if Reality’s moves
are bounded. In [4] we showed that a single simple strategy based on past averages of Re-
ality’s moves forces SLLN for the case of bounded Reality’s moves. For the special case of
the coin-tossing game path behavior and convergence rate of SLLN can be very explicitly



stated ([5],[8]). However when Reality’s moves are not bounded, the proof becomes more
complicated due to consideration of availability of hedges to Skeptic. Under the require-
ment of the collateral duty that Skeptic has to keep his capital always nonnegative, he has
to use some form of hedge at each round. In Chapter 4 of Shafer and Vovk (2001), Kol-
mogorov’s SLLN is proved under the availability of the variance hedge (quadratic hedge).
Shafer and Vovk consider the case that the price of the variance hedge is announced by
Forecaster for each round, but for simplicity in this paper we omit Forecaster from the
protocol and consider the case that hedges carry constant prices throughout the game.
Availability of the quadratic hedge is natural and convenient. However the purpose of
this paper is to investigate SLLN under other types of hedges.

In measure-theoretic probability, the usual and most elegant form of SLLN is stated
for the sample average z,, = (1/n)(z1 + - - - + x,,) of i.i.d. random variables, where only
the existence of the measure-theoretic expected value Fl|x,| < oo is assumed. However
Kolmogorov’s SLLN proved in Chapter 4 of Shafer and Vovk (2001) does not correspond to
this version and a question remains whether a corresponding game-theoretic result holds or
not. Some considerations of this problem are given in Chapter 4 of [9]. The usual measure-
theoretic result depends strongly on the assumption of identical distribution of the random
variables. On the other hand the basic feature of the game-theoretic probability is that the
game is a martingale and there is a question of how to impose identical behavior to Reality
at each round. In this paper we argue that the assumption of the identical distribution
in measure-theoretic framework can be replaced by the availability of countable number
of weak hedges.

For the most part we follow the standard proofs of SLLN in measure-theoretic proba-
bility. For example we use truncation and Kronecker’s lemma. However our proofs differ
from standard measure-theoretic proofs in explicit construction of Skeptic’s strategy which
requires Skeptic to observe his collateral duty. In addition our proof is more an extension
of the proof for the bounded case of Chapter 3 of Shafer and Vovk (2001), rather than an
extension of their proof in Chapter 4 using the quadratic hedge.

The organization of this paper is as follows. In Section 2 we set up notations and give
some preliminary results. In Section 3 we prove a version of SLLN under the assumption
of availability of a single hedge. In Section 4 we prove a game-theoretic version of SLLN
for i.i.d. variables under the assumption of availability of countable hedges. We extend
it to a Marcinkiewicz-Zygmund strong law in Section 5. Finally in Section 6 we discuss
various aspects of our proofs and the assumption of availability of infinite number of
hedges.

2 Notation and preliminaries

In this section we summarize our notations and some preliminary results. We follow the
notation of Shafer and Vovk (2001). & = x;x9... denotes an infinite path of Reality’s
moves and £" = x7...x, denotes the partial path up to round n. For a strategy P of
Skeptic, K7 (£) = KP(£") denotes the capital process. Starting with a positive initial



capital of Iy = 0 > 0, Skeptic observes his collateral duty by using P if
KP(€) >0, Ve, (1)

We also say that P satisfies the collateral duty with the initial capital . Note that P
satisfies the collateral duty with initial capital ¢ if and only if P/§ satisfies the duty with
the initial capital 1. In view of this fact, we simply say that P satisfies the collateral duty
if P satisfies the duty with some initial capital § > 0. When P satisfies the collateral
duty, the capital process K7 is called a (game-theoretic) non-negative martingale.

We call a function h(z) of Reality’s move x a hedge if it is non-negative (h(z) > 0,Vz €
R) and has a finite price 0 < v < co. Skeptic is allowed to buy arbitrary amount of h(x)
with the unit price v. In Chapter 4 of Shafer and Vovk (2001), they consider the variance
hedge h(x) = z%. In view of the unbounded forecasting game in Chapter 4 of Shafer and
Vovk (2001), we first consider the following protocol with a single hedge.

THE UNBOUNDED FORECASTING GAME WITH A SINGLE HEDGE
Protocol:
IC() = 1.
FORn=1,2,...:
Skeptic announces M, € R, V,, > 0.
Reality announces z,, € R.
K= K1 + Mz, + Vi (h(z,) — V)
END FOR

Availability of the variance hedge h(z) = x? is very convenient, because Skeptic can
then construct a martingale which is a quadratic form of Reality’s moves. This fact is used
by Shafer and Vovk in their proof. However SLLN can be proved under other hedges. In
Section 3 we will prove that SLLN is forced if the absolute moment hedge of order 1 + ¢,
€ >0,

h(z) = |z]'*

is available to Skeptic. Naturally we are tempted to consider the absolute moment hedge
h(zx) = ||

in the above protocol, corresponding to the measure-theoretic SLLN of i.i.d. random
variables with finite expectation. However it is essential to point out that SLLN is not
forced under the availability of h(z) = |z| alone. Since this fact is important, we state it as
a proposition. The following proposition is stated in view of the Marcinkiewicz-Zygmund
strong law in Section 5.

Proposition 2.1. Consider the unbounded forecasting game with a single hedge h(x) =
|z|", r > 0. There exists no strateqy P of Skeptic satisfying the collateral duty, such that
lim, K¥ = oo whenever (zy + - - + x,)/n*/" 4 0.

Proof of this proposition, following Section 4.3 of Shafer and Vovk (2001), is given in
Appendix A. Unfortunately it requires a measure-theoretic argument.
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Figure 1: Symmetric call option type hedge

Because of Proposition 2.1 with » = 1, we need to assume that more hedges in addition
to h(z) = |z| are available to Skeptic in order to prove SLLN corresponding to the sample
average of i.i.d. random variables with finite measure-theoretic expected value E|z,| < co.
Let

H=A{hr| A€ A}

denote a set of hedges available to Skeptic in each round. For example in Section 4 we
consider the set of symmetric call option type hedges (“strangle hedges”, Chapter 10 of

3])
H={(|z] = k), | k=0,1,2,...},

where ;. = max(0,x). (|z| — k) is depicted in Figure 1. We assume that h, is available
to Skeptic with a constant finite positive price vy, . Skeptic is allowed to buy any amount
of countable number of hedges hq, hs,... from H. If Skeptic buys V; € R units of h,,
i=1,2,..., then he is required that the sum Y ;-, Vju,, converges to a finite value. Note
that here for a set of hedges we are allowing Skeptic to sell a hedge (V; < 0), whereas in
the case of a single hedge Skeptic can obviously only buy the hedge. By allowing Skeptic
to sell hedges, he can combine various hedges to construct a variety of hedges (Chapter 10
of [3], Section 9.3 of [1]). Based on these considerations we set up the following protocol.

THE UNBOUNDED FORECASTING (GAME WITH A SET OF HEDGES
Protocol:
Ko:=1.
FORn=1,2,...:
Skeptic announces M, € R, h,1, hpo, - € H, Vi1, Via, - €R
s.t. >, Vaiup,, converges to a finite value.
Reality announces z,, € R.
K = Kno1 + Myzy, + ), Vai(hani(2) — vp,).
END FOR

In our proofs we combine Skeptic’s strategies to force intersection of events. From
Section 3.2 of Shafer and Vovk (2001), a strategy P weakly forces an event F if it satisfies
the collateral duty and limsup, Y. K7 (§) = oo for every & ¢ F. In this case we also
say that F/ happens almost surely. If limsup,, is replaced by lim,,, then P forces E. Now
consider two events F; and Ey;. We say that a strategy P weakly forces Fy conditional
on FE if it satisfies the collateral duty and

lim sup L2 (&) = oo, V¢ € By NEY.

4



Now we state the following lemma, which is slightly stronger than Lemma 3.2 of Shafer
and Vovk (2001).

Lemma 2.1. Suppose that Skeptic can weakly force Ei and furthermore he can weakly
force Ey conditional on Ey. Then he can weakly force Ey N Es.

Proof. Let P; denote a strategy weakly forcing F; and let P, denote a strategy weakly
forcing Fs conditional on F;. Let P = (1/2)(P; + P2). Note that

(E\NEy)° =EYU (B, NEY).

For £ € Ef limsup,, K (£) = oo since lim sup,, K7' (€) = co. Similarly for For £ € E;NEY
lim sup,, K (€) = oo since lim sup,, K72 (€) = oo. O

It is clear that Lemma 2.1 can be generalized to the sequence of events Ey, E, ...,
such that E; is weakly forced conditional on E; N---N E;_;.

Finally we state and discuss the game-theoretic martingale convergence theorem given
in Lemma 4.5 of Shafer and Vovk (2001).

Lemma 2.2. A non-negative martingale K* converges to a non-negative finite value
almost surely.

As seen from the proof of Lemma 4.5 of Shafer and Vovk (2001) this theorem is based
on Doob’s upcrossing lemma in the game-theoretic setting. We use this lemma in our
proofs in an essential way. As discussed at the beginning of this section, when we say
that K7 is a non-negative martingale, it means that Skeptic observes his collateral duty
(1) with the strategy P starting with a positive initial capital Ky > 0. In this case he
can construct another strategy Q satisfying the collateral duty starting with an arbitrary
small initial capital 6 > 0 such that

liyrln K2(€) = oo

whenever K7 does not converge. As in Section 4.2 of Shafer and Vovk (2001) or Chapter
12 of Williams (1991) we use Lemma 2.2 in conjunction with Kronecker’s lemma.

3 SLLN with a single hedge

In this section we give sufficient conditions for SLLN in the unbounded forecasting game
with a single hedge. For simplicity we only consider symmetric hedge h(z) = h(|z|)
depending only on |z|. We assume several conditions for h(|z|) > 0.



(A1) For some ¢ > 0, h(|z|) > |z| for |z| > c. (2)
(A2) For some ¢ > 0 and for all & > 1

h
% is monotone increasing or decreasing for |z| > c. (3)
€T (e
— 1
(A3) For some ¢ > 0, Z ) < 00. (4)

n>c

In our proof the condition (A3) is essential for SLLN with a single hedge, as shown
in Proposition 3.1 below. On the other hand (A2) and the symmetry of h are assumed
for convenience for our proofs. ¢ > 0 in the conditions can be easily handled and for
simplicity we assume ¢ = 0 in our proofs below. By (A2), there exists some g > 0 such
that h(|z|) is monotone increasing in |z| for & > a and monotone decreasing in |z| for
a < ap.

Now we state the following theorem.

Theorem 3.1. Suppose that a single hedge h(x) satisfying (A1)—(A3) is available to
Skeptic. Then in the unbounded forecasting game with the single hedge h(x), Skeptic can
force x, — 0.

Take h(z) = |z[**¢, € > 0, then (A1)-(A3) hold and SLLN is forced. SLLN is forced
even for

h(z) = |z|(log )",

However as shown in Proposition 2.1, SLLN is not forced for h(x) = |z|.
Before starting the proof of Theorem 3.1 we show that the condition (A3) is also
necessary for the existence of a strategy weakly forcing SLLN.

Proposition 3.1. Consider h(z) > 0 with h(0) = 0 and >, 1/h(n) = co. Then in
the unbounded forecasting game with this single hedge h(x), there exists no strategy P of

Skeptic satisfying the collateral duty, such that lim, K = oo whenever (x1+---+m,)/n
0.

Proof of this proposition is given in Appendix A.

The rest of this section is devoted to a proof of Theorem 3.1 in a series of lemmas.
By Lemma 3.1 of Shafer and Vovk (2001) we only need to show that Skeptic can weakly
force z,, — 0.

Lemma 3.1. Let

Bi= (61X ) <oc).

Under the conditions (A1)-(A3) Skeptic can force E;.



Proof. By (A3) let C =) 1/h(n) < co. Consider the following strategy P

1

M, = = .
n=0, Va Cvh(n)

where 0 < v < oo is the price of the hedge h. For this strategy, starting with the initial
capital of Iy = 1, the capital process K, is written as

- 1
1 — 1 1 —
21—52 hi C_Zl

1

Therefore P satisfies the collateral duty and on EY K, diverges to +oo. Therefore P
forces Fj. O

Note that the same argument with C' =Y 1/n? shows that Skeptic can force

B = e Y M ooy )

Furthermore Lemma 3.1 implies the following Borel-Cantelli type result.
Lemma 3.2. Let
Ey = {¢| |x,| > n for only finite number of n}. (6)

Under the conditions (A1)-(A3) Skeptic can force Es.

Proof. By (A2) h(|z|)/|z| is monotone. If it is monotone decreasing (A3) can not hold.
Therefore h(|x|)/|z| has to be monotone increasing and h(|z|) is itself monotone increasing.

Therefore for z > 0 h2)
z

— > [noo 9

h(n) = An, )(Z)

where I, o) (+) is the indicator function of the interval [n, 00). It follows that £y C E,. [

It should be noted that this lemma is essentially the first part of Borel-Cantelli lemma.
For convenience we state a game-theoretic version of the first part of Borel-Cantelli lemma.
The proof is the same as in Lemma 3.1 and omitted.

Lemma 3.3. (The first part of Borel-Cantelli)  Let Ey, Es, ... be a sequence of events
such that the sum of the upper probabilities is finite P(E,) < co. Then Skeptic can
force

(limsup E,,)¢ = {E, only for finite n}.



The following lemma concerns the evaluation of the variance of truncated variables in
the usual proof of SLLN.

Lemma 3.4. Let

1.2

Es={¢]) o T{jeal<n} < 00} (7)

Under the conditions (A1)-(A3) Skeptic can force Ej.

Proof. First consider the case that h(z)/z? is monotone increasing. Then adjusting some
constants we can assume h(z) > x? for all x without loss of generality. Then

T, zn h(z)
PO LIRS D 2D D

n

and E| C Es, where Ef is given in (5). Therefore Skeptic can force Fj.
Next consider the case that h(z)/z? is monotone decreasing. For 0 < z < n we have

hE) By
22 7 n?
Multiplying both sides by n?/h(z) we have
2 i)
n? — h(n)
Then ) hz)
z? Ty,
P (PRS- hn)
and Iy C Fjs. [

From Lemma 3.2 and Lemma 3.4 Skeptic can force E5 N Es.
Lemma 3.5. Let 0 < ¢ < 1/[2(1 +v/h(1))]. Then for all x
lz|  h(x)—v 1

_ e S
“n e h(n) — 2

Proof. Since h(z)/z is increasing in z > 0, for z > n we have h(n)/n < h(z)/z. Multiply-

ing by z/h(n) we have

h
(2) _z >0, z>n
For 0 < z < n obviously
h(z) =z > 1
h(n) n
Therefore for all z > 0 we have
h(z) —v =z v v
— > _1- >—1—-—
h(n) n h(n) — h(1)
and this proves the lemma. O



Finally the following lemma proves Theorem 3.1 by Kronecker’s lemma.

Lemma 3.6. Let
z
By = == to a finite valuel. 8
4= 1| zn: - converges to a finite value} (8)

Under the conditions (A1)-(A3) Skeptic can weakly force E4 conditional on E;.
Proof. Let 0 < e <1/[2(1+ v/h(1))]. Consider the following strategy P:

1 1
M, =eKp1—, V,=€eK1——.
Fnty -t h(n)
Then by Lemma 3.5
T,  h(z,)—v 1
Kn=Ki1(l+e—+e———F"—) > =K, _
1( +€ n +e€ h(n) ) 5 1

and P satisfies the collateral duty. Similarly the strategy P~ with M,, = —eK,,_1/n, V,, =
elC,—1/h(n) satisfies the collateral duty. By the game-theoretic martingale convergence
theorem (Lemma 2.2) both KP" and KP~ converge to a non-negative finite value almost
surely. Then both log lCZer and log KP~ converge to a finite value or —oo almost surely.

As in Lemma 3.3 of Shafer and Vovk (2001) we use the inequality ¢ > log(1+t) >t —¢2
for all ¢t > —1/2. Then the logarithm of the capital process for P+ starting with Ky = 1
is bounded as

62(%_%) > log K,

On E, each of the following infinite sums is finite.

Man) 5~ v g i) 4
; h(n)’ ;h(n)’ ;nQ’ ; h(n)?’ Zh(n)”

n

By the inequality
(ay + - +ap)? <mad+---+d2)

on E; the second term on the right-hand side of (9) converges to a finite value:
. T h(xn) — V2
Y ARG Il Ep
—~n h(n)

Therefore conditional on E; P* weakly forces

lim su i Tc o

" g i=1 ‘ '

9



Similarly conditional on F; P~ weakly forces
liminf » = < —oo.
im in ; - 00

It follows that the case lim log ICZTr = —o0 is eliminated and log ICZL)Jr converges to a finite
value almost surely.
Now consider (9) for the interval n < i < n'/. Then

62:(E__ﬂ£l:£)Zkgmﬁ*—bgﬁﬁl

i h(7)
L h(z;) — v 5 L h(z;) — v\ 2
> S G VA AN
—Ei;(z h(3) ) E;(z h(i) )
Now by Cauchy criterion we see that ) x,/n converges almost surely. O

4 SLLN with countable hedges

In this section we prove a version of game-theoretic SLLN which corresponds to the
usual measure-theoretic SLLN for the sample average of i.i.d. random variables with finite
expectation. As shown in Proposition 2.1, the availability of a single h(x) = |z| is not
sufficient. It seems that an essential ingredient of measure-theoretic proofs of SLLN
for this case is that the expected values of truncation are uniformly bounded by the
assumption of identical distribution. Hence we consider that countable number of hedges
are available with constant prices at each round of the game. We assume that the prices
are given in such a way that the game is coherent, i.e. the game does not present an
arbitrage opportunity to Skeptic (see Section 7.1 of [7] or [8]).

As mentioned in Section 2, for our game-theoretic version of SLLN we assume that
the set of symmetric call option type hedges with integral exercise prices k = 0,1,2,...

H = {ho(z) = (2| — k)4 | k=0,1,2,...} (10)

are available to Skeptic. In particular |x| = (Jz| — 0) is available to Skeptic. Let v
denote the price of hy(z) = (Jz| — k)+. We also assume that Skeptic is allowed to sell
hedges and combine them, as long as he observes his collateral duty. For example he can
create a new hedge

0, lz] <k
(1ol = k) — (ol — b= )5 = o] —k, k< Ja < k+1
1, |z| >k + 1.

This new hedge carries the price of v, — vp11 > 0. We may call this hedge “symmetric
bull spread” (c.f. Chapter 10 of [3]).

10



For truncation arguments below we also consider “symmetric trapezoidal hedge”. For
k > 1 define

Ti(z) = (|| = (k = 1)+ = (2] = k)4 — ((2] = (k + 1)+ = (|2] = (k +2))4)

(

0, lz] <k—1
lz] —(k—=1), k—1<|z| <k
=41, kE<l|z|<k+1
E+2—lz[, k+1<|z|<k+2
0, k+2 < |x|
> Ik (|2])

with the price ji, = Vg2 — Vg1 — Vg + g1 For k=0, To(z) = 1—((|z[ = 1)y — (|| =2)1),
which is a single trapezoid. Symmetric bull spread and the positive side of symmetric
trapezoidal hedge are depicted in Figure 2 and Figure 3, respectively.

k-1 —k kok+1

Figure 2: Symmetric bull spread

k—1 k k+1 k+2

Figure 3: Symmetric trapezoidal hedge (positive side only)

Now we state the following theorem.

Theorem 4.1. Suppose that the set of hedges H = {hi(z) = (|z| — k)+ | k=0,1,2,...}
are available to Skeptic. Then in the unbounded forecasting game with H Skeptic can force
T, — 0.

The rest of this section is devoted to a proof of this theorem. As in the previous
section we prove it by a series of lemmas.

Lemma 4.1. Under the condition of Theorem 4.1 Skeptic can force FEy in (6).
Proof. For k> 1, (Jz| =k + 1)+ — (Jz| — k)3 > I00)(|z|) and

o0

((za] =0+ 1) = (2] = 2)4) = D Tinoo)(|2al)-

n=1

11



The left-hand side can be bought with the total finite price of 1. The rest of the proof is
the same as in Lemma 3.1. O

Lemma 4.2. Under the condition of Theorem 4.1 Skeptic can force Es in (7).

Proof. At round n Skeptic is to buy (k + 1)? units of the symmetric trapezoidal hedge Tj,
for each k =0,1,...,n — 1. We note

n—1

D (k+1)*Ti(wn) > 22112, 1<n)
k=0

Dividing the above by n? and summing up over all rounds n = 1,2, ..., we have

k —l—
( Tk (zn) 2 Z I{|xn|<n}

Now we evaluate the total price of the left-hand side. Since T}, is available at each round,
the price is the same if we replace x,, by z; in T}. Then

oon—l(k+1)2 o) 1
;kz:o 2 Tkxl Z ZlTllxl ZlTllxl ;ﬁ

< QZZTZA(%&) < 6|z1].

=1

As noted above |z;] is available to Skeptic with finite price vp, so that the left-hand side
is also available to him with the total finite price

oo n—1
Z Mk < 6.
n=1 k=0
The rest of the proof is the same as in Lemma 3.1. n

In the following z,, hedged by (|z,,| — n)+ is denoted as

-n, Ty, < —n,
Tnn = Tp + (’xn’ - n)Jr = T, -n S Tn S n,
2x, —n, x,>n.
This has the price v,,. Similarly we denote Z,,,, = —x,, + (|z,| —n)4+ which is —z,, hedged

by (|x,| — n)+. Note that
Tn,n 2 —-n, jn,n 2 —n.

On Ej, x,, and 2,1y, |<py differ only for finite number of n. Therefore conditional on
FE5, Skeptic can force

~2
<o}, B =Y x;; < o). (11)

12



Lemma 4.3. Under the condition of Theorem /.1 and conditional on Es, Skeptic can
force

By = (e | Y0 ) o)

Proof. Since (&, — vn)? < 227, + 20,

X — U, Y 1% € ™
I DL JET) g Y L
n n n n 6

n=1 n=1 n=1 n=1

By (11), conditional on Ej,, Skeptic can force Y > a2  /n* < co. Therefore conditional
on Fs, he can force Ej O

Similarly Skeptic can force E5 with z,,, replaced by Z, .
Finally the following lemma proves Theorem 4.1 in conjunction with Kronecker’s
lemma.

Lemma 4.4. Under the condition of Theorem 4.1 Skeptic can weakly force

E,={¢| Z % converges to a finite value}
n

conditional on Ey N EY.

Proof. We take € as

O<e< —,
2(1+V0)

and consider Skeptic’s strategy betting ekC,,_1 /n on x,, ,, — v, at round n. Then his capital
at the end of round n is

€ - €
,Cn = lCn_l(l + E(anm — Vn)) = ICO H(l + ;(x%l — VZ))

i=1
By the choice of € and |z;,/i| < 1,

€ 1
~(Tig—vi) 2 —3,
j @ —m) 2 =3
so that from log(1 +t) >t — t* for t > —1/2, his log capital is bounded from below as

log IC,, > log Ko + 62": Lig 7 Vi _ 622": —(.r” — i)

gAn = 108 o - i -~ 72 .

In the right-hand side the third term is bounded on Ej. By considering this inequality
for the interval n < i <n’, we have

/ /

n RS " )2
log Ky — log Ky > ¢ 3 TV 2y~ (aa — )
2 [

i=n i=n

13



As in the proof of Lemma 3.6, considering both z,,,, and z,,,, log IC,, converges to a finite
limit almost surely, and thus by Cauchy criterion we see that

n

)

i=1
converges almost surely. O

As proved in Appendix B, v, — 0 as n — oco. Then by Kronecker’s lemma we have

n

n n
1 1 1
—g(ﬁm»—ui):—g xm——g v, — 0 asn — oo.
n n n <

1= 1=

=1

In the above, (1/n)Y " ,v; — 0 so that >, x;;/n also converges to 0. Since z, and
Zn,n differ only for finite number of n on Ej, it is concluded that Z,, converges to 0 almost
surely. This completes the proof of Theorem 4.1.

5 Marcinkiewicz-Zygmund strong law

In this section we consider a remarkable generalization by Marcinkiewicz and Zygmund
(See [2], [6]) of Kolmogorov’s measure-theoretic SLLN for i.i.d. random variables with
finite expected value E|x,| < oo. Marcinkiewicz-Zygmund strong law asserts that for
i.i.d. random variables xi, z,... with F|z,|” < oo for 0 < r < 2 and Ez, = 0 when
1 <r <2, the following measure-theoretic SLLN holds

)

: —0 asn— o0 a.s.
nt/r

Considering the meaning of the hedge |z|" for z in betting games, we treat the case
1 < r < 2 and for this case establish a game-theoretic version of Marcinkiewicz-Zygmund
SLLN. As noted in Proposition 2.1, the availability of a single h(x) = |z|" is again not
sufficient. Hence here, for the game-theoretic Marcinkiewicz-Zygmund SLLN we assume
that the following set of hedges are available to Skeptic.

Hyr = {hir(2) = (ol — k)5 [ =0,1,2,...}

X (12)
Mo = {hpuye (2) = (J2] — kV7)s |k =0,1,2,...}

H, = Hi, UHs,., where {

Let v, denote the price of hy,.(z) = (|z|” — k) and let v;1,- denote the price of hyi/(x) =
(|z| — k¥7),. Also assuming that Skeptic is allowed to sell and combine these hedges
within his collateral duty, we state the following theorem.

Theorem 5.1. Let 1 < r < 2. Suppose that the set of hedges H, in (12) is available to
Skeptic. Then in the unbounded forecasting game with H, Skeptic can force (x; + -+ +
z,) /" — 0.
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Remark 5.1. In this theorem H, consists of two sets of hedges Hi,. and Ho.. Hap is
included in H just for convenience. Each hy(x) can be superreplicated and underrepli-
cated by an infinite combination of hedges from Hy,. and the theorem holds without Ha,..
Since this makes the proof considerably messier, we include Ha, in the set of hedges. We
give more discussion on this point in Section 6.

The proof of Theorem 5.1 proceeds almost in the same way as that of Theorem 4.1.
However we have to make different uses of hedges from H;, and from H,,.. At first we
enumerate relevant events.

Ey. = {£ | |z,|" > n for only finite number of n}.

2
‘Tn
Es. = {¢| E —n2/T1{|xn|T§n} < oo}

Lemma 5.1. Under the condition of Theorem 5.1 Skeptic can force Es,.

Proof. For k> 1, (|z|" — (k= 1))+ — (|z|" = k)+ > 00y (|2]") and

o0

((zal” = (0 = D)5 = (|2al” = 1)1) = D Tinoo)(|al").

n=1

The left-hand side can be bought with the total finite price of v,.. The rest of the proof
is the same as in Lemma 3.1. O

Lemma 5.2. Under the condition of Theorem 5.1 Skeptic can force Es,.

Proof. Consider the following trapezoidal hedge

Tir(z) = (|2]" = (k = 1))3 = (|2]" = k)5 = ((J2]" = (K +1)5 — (J2]" = (k +2))+)

(0, lz|" <k -1
af = (k—1), k—1<]|z[" <k

= {1, k<lz" <k+1
k42— |z, k4+1<|z) <k+2
0, k2 <lzf

> Iy (|2]")

with the price pg, = Viyor — Vi1 — Vi + Vk—1,0-
At round n Skeptic is to buy (k+1)? units of the hedge T}, for each k =0,1,...,n—1.
We note

—_

3

(k) + 1)2Tkr($n) Z xij{\xn\Tgn}
0

=
Il

15



2/r

Dividing the above by n“/" and summing up over all rounds n = 1,2, ..., we have

As in the previous section, for the consideration of the total price, we can replace Ty, (x,,)
by Ty-(z1). Then the left-hand side can be evaluated as

co n—1

>0 knj;/i Tir (1 :Z z/rlel 1r(21) ZlTl 1r(21) Zn;/r

n=1 k=0 n=l

2(2/r) 1
=@m-1 Z gt T )

2(2/T) 1 1/r\2—rjr
= <2/r>—1zzz/r EOT T (o)

2(2/r) 3 2(2/7‘)

Since |z1|" is available to Skeptic with finite price vy, the left-hand side is also available
to him with the total finite price

i"zl (k+1)? ~_3.20071

n=1 k=0

]

So far we have used hedges from H;, for forcing various events. In the following x,
will be hedged by elements from H,,. We hedge x,, by A,/ (7,) = (|Jzn| — n'/7) . Write

Tpnyr = Tn + (|«7;n| - nl/T)Jr.

This has the price v,1/r. On Ey,., Ty, and z, 1, |r<n) differ only for finite number of n.
Therefore conditional on Es,., Skeptic can force

B, — €| Z o). (13
Lemma 5.3. Under the condition of Theorem 5.1 and conditional on Es,., Skeptic can

force
—{mz P —Uoit)” o),

n2/r

16



Proof.

(Trny — an/r)2 xazmr V2l/'r
) < ) n

Both terms are finite on E,. O
Now we use the e-strategy as before.

Lemma 5.4. Under the condition of Theorem 5.1 Skeptic can weakly force

x — VUV, 1/r

/ nn,r n .

E, = {¢| E — oy converges to a finite value}
n

conditional on Es. N EY, .

Proof. We take € as

0<e< ———,
2(1+I/o)

and consider Skeptic’s strategy betting e/C,,_1/n on x,, — v,i/» at round n. Then his
capital at the end of round n is

€ €
Kn=Kp1(1+ ﬁ(xm,, — ) = Ko H(1 + ;(a;i,,r — V).

By the choice of € and |z, /i/"| <1,

€ 1
W(xmr — V) > 3
so that from log(1 +t) >t — t* for t > —1/2, his log capital is bounded from below as

n n

E 2
Ligr — Vs1/r Toii o — Uii/m
IOgICnZIOgICO—i_G % 62 E :(ZZ’TZTT&/)

=1 i=1

In the right-hand side the third term is bounded on Fs,.. By considering this inequality
for the interval n <i <n/,

n’ n’

2
Liir — V;1/r Liir — V;1/r
].Og ICn/ — IOg ’Cn—l Z € E uﬂ,il/r e - 62 E ( - 7:2/70 B ) .

i=n i=n
In the above log IC,, converges to a finite limit almost surely, and thus as before

n

Z Ligr — Vii/r
¢1/r

=1

converges almost surely. O

17



We now need to take care of n™V/" 3" v/

Lemma 5.5.

—_— gy — —
ey E 1 Ve — 0 as n — o00.
1=

Proof. Since r > 1

n'/" n
(1- ] ), < (1- \fcIT)+’ V.

Also for |z| > n'/" we have |z|"~' > n'~/". Therefore

nl/r

(Ja] = /"), — [2](1 - o)
="
S nl— l/r’ ‘( | | )
n!T (|2 = )y

It follows that the prices of (|| — n/"), and (|z|" — n), have to satisfy

1/r—1
Vpiyr S / V-

Therefore .

§ § 1/7’ 1
nl/r Vl/r - 1/r Vir.

i=1

Note that v, — 0 as ¢ — oo by the argument in Appendix B. Then the right-hand side
converges to 0 as n — oo by Cesaro’s lemma (12.6 of [10]). O

Now by an extended form of Kronecker’s lemma (12.7 of [10])

n

1 1 <
nl/r Z(xii,r - V,L-l/r) = _nl/r E Tiir — 1/7“ E Viy/r — 0 asn — oo.
i=1

i=1

so that > @,/ n!/" also converges to 0. Since z,, and z,,,,, differ only for finite number
of non Es,, it follows that (x;+---+x,)/ nt/r converges to 0 almost surely. This completes
the proof of Theorem 5.1.

6 Some discussions

In this paper we proved various game-theoretic versions of SLLN for unbounded variables.
In Section 4 we proved a version corresponding to the sample average of i.i.d. measure-
theoretic random variables. There we assumed availability of countable symmetric call
option type hedges. We chose this set of hedges for convenience and concreteness. Other

18



choices are equally conceivable, as long as the set of hedges is rich enough to produce
step-function type hedges (cf. Figure 2).

We might as well assume that if a hedge h is available to Skeptic, all other hedges
weaker then h are available to him with price no more than that of h. We call a set of
hedges 'H weakly closed if

heH, 0<g(x)<h(z),VreR = geH.

We might argue that this is a reasonable assumption, because if h is available to Skeptic,
he can ask to buy a weaker g with the same price as h and someone should be willing to
sell g to Skeptic with the same price, because it presents an arbitrage opportunity to the
seller. If H is weakly closed, then for each ¢t € R

I—ooq()

has to be available to Skeptic. This shows that if H is weakly closed, then the entire
distribution function of the Reality’s move x is priced in the game. The assumption of
weakly closed ‘H seems to be too strong from game-theoretic viewpoints. However we
should mention that in measure-theoretic proofs the probability distribution is assumed
and truncation is freely used.

The discussion on generality of probability games in Chapter 8 of Shafer and Vovk
(2001) convincingly argues that measure-theoretic martingales can be reduced to game-
theoretic martingales. If we interpret Theorem 3.1 in measure-theoretic terms and just
rewrite our proof in measure-theoretic terms, we obtain the following result.

Proposition 6.1. Let {Y,} be a measure-theoretic martingale adapted to an increasing
family of o-fields {F,}. Let h be a function satisfying (A1)—(A3). If the measure-theoretic
conditional expectation

(Y, — Yo 1) | Fos)

is uniformly bounded, then P(lim, Y,/n =0)=1.

Except for Proposition 2.1 we could avoid measure theory to establish our theorems.
We believe that this again shows effectiveness of game-theoretic proofs as we have shown
in our previous works ([5], [4]).

For the Marcinkiewicz-Zygmund strong law in Section 5 we have given a game-theoretic
proof for r > 1. We also assumed availability of two kinds of hedges for convenience as
we discussed in Remark 5.1. If we make the blanket assumption that H is weakly closed,
then we believe that measure-theoretic proof of the Marcinkiewicz-Zygmund strong for
0 < r < 1 can be translated to game-theoretic proof without too many modifications.
From game-theoretic viewpoint however, the case r < 1 does not seem to be natural.

A Proofs of Proposition 2.1 and Proposition 3.1

Proof of Proposition 2.1. We argue by contradiction. Suppose there exists Skeptic’s
strategy P which allows Skeptic to observe his collateral duty with the initial capital
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Ko = 1 and lim, K¥ = oo whenever s, /n'/" £ 0, where s, = 1 + --- + x,,. Consider a
random strategy of Reality, where each x,,, n > v, is independently chosen as
v v
P(z,=0)=1-=, P(z, =n'") = P(z, = —n'/") = —.
(20 =0) =12, Pla,=n") = Ple, = —n¥) =~
Here v is the price of h(z) = |z|". Then by the second part of measure-theoretic Borel-
Cantelli lemma

1= P(|z,| =n'" i.0) = P(|lza|/n" =1 i.0.). (14)
Note that if s, /n'/" — 0, then z,/n'/" — 0 because
Sn n— 1IN\ s, Tn
niir < n ) (n—1)4/r + ni/r’

Therefore (14) implies that P(s,/n'/" — 0) = 0. Then by our assumption P(K? —
o>0) = 1. However under the randomized strategy of Reality KV is a measure-theoretic
non-negative martingale and its measure-theoretic expectation is F(K?) = Ky = 1. Then
by Doob’s martingale inequality (e.g. Theorem 14.6 of [10])

1
P(max K. >¢) <=, Ve>0,Vn.

k<n C
and P(sup, K7 > ¢) < 1/c. But this contradicts P(K? — oo) = 1. O.
Proof of Proposition 3.1. Consider a random strategy of Reality, where each x,, for
n, h(n) > v, is independently chosen as
v v
Plz,=0=1-———, P(x, =n)=P(z,=—n) = .
(@2 =0) =1 = 25, Play=n) = Ple, = -n) = 5
The rest of the proof is the same as the proof of Proposition 2.1. O

B Proof of the fact lim;_.., v =0

Consider the identity for x € R:

2l = > ((lal = k)4 = (2l =k = 1)+ ). (15)
k=0
For each real z, the right-hand side is actually a finite sum and there is no question on
the convergence. On the other hand consider the identity
K-1
Vo = Z(Vk — Vpt1) + Vk.
k=0

Since {v;} is a monotone non-increasing sequence of non-negative reals

c= lim vg >0

—00

exists. If ¢ > 0 then, vy > > 77 (v — V441). But then Skeptic can sell |z| and buy the
right-hand side of (15) and he is certain to make money. This contradicts the assumption
of coherence.
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