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Abstract

We propose iterative proportional scaling (IPS) via decomposable submodels for
maximizing likelihood function of a hierarchical model for contingency tables. In
ordinary IPS the proportional scaling is performed by cycling through the elements
of the generating class of a hierarchical model. We propose to adjust more marginals
at each step. This is accomplished by expressing the generating class as a union of
decomposable submodels and cycling through the decomposable models. We prove
convergence of our proposed procedure, if the amount of scaling is adjusted prop-
erly at each step. We also analyze the proposed algorithms around the maximum
likelihood estimate (MLE) in detail. Faster convergence of our proposed procedure
is illustrated by numerical examples.

Keywords and phrases: chordal graph, hierarchical model, I-projection, iterative propor-
tional fitting, Kullback-Leibler divergence.

1 Introduction

Iterative proportional scaling algorithm for contingency tables, first proposed by Deming
and Stephan [8], has been well studied and generalized by many authors. Ireland and
Kullback [13] proved convergence of IPS and Fienberg [10] gave a simpler proof of con-
vergence from geometric consideration. Darroch and Ratcliff [6] made a generalization to
IPS and its geometrical property was studied by Csiszár [5]. Csiszár [4] also gave a more
general proof of convergence and justified IPS in a general framework. Extension of IPS to
continuous case was studied in Kullback [16] and Ruschendorf [21]. Effective algorithms
and implementations of IPS have been also studied by many authors, including [9], [14],
[15], [20].

In this paper, we propose another generalization of IPS based on decomposable sub-
models. Decomposable models or graph decompositions have been already considered by
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Jiroušek [14], Jiroušek and Přeučil [15] and Malvestuto [20]. However they used decompos-
able models for efficient implementation of conventional IPS. Here we use decomposable
submodels for generalizing IPS itself. In our algorithm we adjust a larger set of marginals
than the conventional IPS. The set of marginals form the generating class of a decompos-
able submodel. By adjusting more marginals, our proposed algorithm achieves a faster
convergence to the maximum likelihood estimate than the conventional IPS, although at
present it seems difficult to theoretically prove that our procedure is always faster. We
prove convergence of our proposed procedure, if we adjust the amount of scaling at each
step. We also analyze in detail the behavior of the proposed algorithms around the max-
imum likelihood estimate. As shown in Section 4 our procedure works well in practice
without adjusting the amount of scaling at each step.

The organization of this paper is as follows. In Section 2 we summarize notations and
basic facts on hierarchical models and decomposable models for multiway contingency
tables. In Section 3 we propose a generalized IPS via decomposable submodels, prove its
convergence and clarify its behavior close to the maximum likelihood estimate. In Section
4 we perform some numerical experiments to illustrate the effectiveness of the proposed
procedure. Some discussions are given in Section 5.

2 Preliminaries

In this section we summarize notations and preliminary materials on decomposable models
and conventional IPS.

We follow the notation of Lauritzen [19]. Let ∆ denote the set of variables of a
multiway contingency table. For each δ ∈ ∆, Iδ = {1, 2, . . . , Iδ} denotes the set of levels
of δ. The set of cells is denoted by I = ×δ∈∆Iδ. Let n(i) denote the frequency of a
cell i ∈ I and let n =

∑
i∈I n(i) denote the total sample size. Throughout the paper we

denote the relative frequency (empirical distribution) by r(i) = n(i)/n. For a cell i and a
subset of variables a ⊂ ∆, the marginal cell of i for a is denoted by ia ∈ Ia = ×δ∈aIδ and
the marginal relative frequency of ia is denoted by r(ia).

A graph G is a pair (V, E), where V is a finite set of vertices and E is the set of
edges. A clique of graph G is a maximal complete subgraph. A path of length m from
a vertex α to a vertex β is a sequence α = α0, . . . , αm = β of distinct vertices such that
(αi−1, αi) ∈ E for all i = 1, . . . , m. A cycle is a path such that α = β. A chord is an edge
between two non-consecutive vertices on a path. A graph G is chordal if every cycle of
length n ≥ 4 has a chord. A set S ⊂ V is a (α, β)-separator if all paths from α to β pass
through S, and S is minimal (α, β)-separator if no proper subset of S is a (α, β)-separator.
A minimal vertex separator is a minimal (α, β)-separator for some α and β. Properties
of a chordal graph and its minimal vertex separators are well studied ([2], [17], [18]).

A generating class C = {C1, . . . , Cm} of a hierarchical model is the family of the
maximal interaction terms in the hierarchical model. We denote a hierarchical model
simply by its generating class C. A hierarchical model is a decomposable model if its
generating class coincides with the set of cliques of a chordal graph. It is well known
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([11], [12], [19]) that the elements of C of a decomposable model can be ordered to satisfy
the running intersection property:

(RIP) For each 2 ≤ j ≤ m, there exists 1 ≤ k ≤ j − 1, such that
Cj ∩ (C1 ∪ C2 ∪ · · · ∪ Cj−1) ⊂ Ck.

An ordering (C1, . . . , Cm) satisfying RIP is called a perfect sequence. For a perfect sequence
of a decomposable model let

Sj = Cj ∩ (C1 ∪ C2 ∪ · · · ∪ Cj−1), 2 ≤ j ≤ m.

Then S2, . . . , Sm are minimal vertex separators of the corresponding chordal graph. The
number of times a minimal vertex separator S appears in any perfect sequence is the same
and called the multiplicity of S. We denote the multiplicity of S by ν(S). In this paper

S = {S2, . . . , Sm},

denotes the multiset of minimal vertex separators, where each minimal vertex separator
S appears ν(S) times in S. Using a perfect sequence, the indices of cliques and minimal
vertex separators can be made to satisfy the condition,

Sj ⊂ Cj, 2 ≤ j ≤ m. (1)

In this paper we index cliques and separators such that (1) is satisfied.
The MLE of the cell probabilities {p(i)} of a hierarchical model C is obtained as the

unique solution (within the model) of the likelihood equation

p(iC) = r(iC), ∀C ∈ C, ∀iC . (2)

In the following we denote the cell probabilities of the MLE by {p∗(i)}. The MLE of a
decomposable model is explicitly written as

p∗(i) =





∏
C∈C r(iC)∏
S∈S r(iS)

, if r(iC) > 0, ∀C ∈ C,

0, otherwise.

(3)

For obtaining MLE for other graphical or hierarchical models we need some iterative
procedure. The following conventional IPS, cycling through the elements of the generating
class, is commonly used for this purpose. In the following let p(t)(i) denote the estimate
of the probability of the cell i at the t-th step of iteration.

Algorithm 0 (Conventional IPS)
Let p(0)(i) ≡ 1/n. The updating formula is given as

p(t+1)(i) = p(t)(i) × r(iC)

p(t)(iC)
, (4)
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where C = Cj, j = (t mod m) + 1.

The Kullback-Leibler divergence (KL-divergence) from a distribution {p(i)} to another
distribution {q(i)} is denoted by

I(p : q) =
∑

i∈I

p(i) log
p(i)

q(i)
.

The log sum inequality (Chapter 2 of [3]) for non-negative numbers a1, . . . , aN and
b1, . . . , bN is

N∑

i=1

ai log
ai

bi

≥ a log
a

b
, ai ≥ 0, bi ≥ 0, a =

N∑

i=1

ai, b =
N∑

i=1

bi,

where a log a
0

= ∞ if a > 0, and 0 log 0 = 0. The equality holds if and only if ai/bi = const.

3 Iterative proportional scaling via decomposable sub-

models

In this section we propose a generalization of conventional IPS and study its properties. At
each step of our procedure we update a larger set of marginals, which form a decomposable
submodel. We prove convergence of our proposed procedure, if the amount of scaling is
adjusted properly at each step. We also give a detailed analysis of our procedure when
the current estimate is close to MLE.

3.1 Proposed algorithms

As in the previous section let C = {C1, . . . , Cm} denote the generating class of a hierar-
chical model. Another generating class C ′ = {C ′

1, . . . C
′
v} is a submodel of C if for each

C ′
j there exists Ci such that C ′

j ⊂ Ci. A submodel C ′ is decomposable if C ′ is the set of
cliques of a chordal graph.

Let C1, C2, . . . , Cu be a family of submodels of C. We say that C1, C2, . . . , Cu properly
span C if the following two conditions are satisfied.

1. ∀i ∃j s.t. Ci ∈ Cj,

2. ∀j ∃C ∈ Cj s.t. C ∈ C.

The first condition means that each element of C = {C1, . . . , Cm} appears as an element
of some submodel. The second condition means that each submodel Cj contains at least
one element of the original C. Furthermore from now on we consider the case that each Cj

is decomposable. Let Gj denote the chordal graph associated with Cj and let Sj denote
the multiset of the minimal vertex separators of Gj, j = 1, . . . , u.
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We now describe our proposed procedure. Because of the problem with normalization
discussed later, we denote the estimated cell probability at the t-th step by q(t)(i).

Algorithm 1 Let q(0) ≡ 1/n. We cycle through C1, C2, . . . , Cu and for the t-th step
we update the estimated cell probabilities as follows

q(t+1)(i) = q(t)(i) ×
∏

C∈Cj
r(iC)

∏
S∈Sj

r(iS)
×

∏
S∈Sj

q(t)(iS)
∏

C∈Cj
q(t)(iC)

, j = (t mod u) + 1, (5)

and the normalized cell probabilities as p(t+1)(i) = q(t+1)(i)/
∑

k∈I q(t+1)(k).

Example 3.1. Consider a 4-way contingency table H × J × K × L and the following
hierarchical model (“4-cycle model”)

phjkl = exp(ahj + bjk + ckl + dhl).

By slight abuse of notation write ∆ = {H, J,K, L}. In this case, the family of submodels
that properly span C is, for example, as follows.

C1 = {{H, J}, {J,K}, {K, L}}
C2 = {{H, J}, {K, L}, {H, L}}

For each submodel, the updating procedure is performed as follows.

q(t+1)(i) = q(t)(i) × r(ihj) × r(ijk) × r(ikl)

r(ij) × r(ik)
× q(t)(ij) × q(t)(ik)

q(t)(ihj) × q(t)(ijk) × q(t)(ikl)
,

q(t+2)(i) = q(t+1)(i) × r(ihj) × r(ikl) × r(ihl)

r(ih) × r(il)
× q(t+1)(ih) × q(t+1)(il)

q(t+1)(ihj) × q(t+1)(ikl) × q(t+1)(ihl)
.

Because the 4-cycle model is graphical, we can express the model and submodels as in
Figure 1.

mh
mj mk

ml
=

mh
mj mk

ml
∪

mh
mj mk

ml

Figure 1: A decomposable submodels of Example 3.1
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Algorithm 1 is a natural generalization of conventional IPS. However unfortunately it
is difficult to prove convergence of Algorithm 1, although in practice it works well and
has converged to MLE in all of our experiments. The difficulty lies in the fact that the
sum

∑
i∈I q(t+1)(i) after updating might exceed 1 (i.e.

∑
i∈I q(t+1)(i) > 1) in Algorithm 1

even if q(t) is normalized as
∑

i q
(t)(i) = 1. On the other hand, it should be noted that the

normalization is irrelevant in Algorithm 1 because the normalizing constant is canceled
on the right-hand side of (5). In Algorithm 1 we can simply ignore normalization and
update {q(t)} as (5).

In order to deal with the theoretical difficulty concerning the normalization of {q(t+1)}
we consider adjusting the amount of updating as follows.

Algorithm 2 Let α = α(t) ≥ 0. We cycle through C1, C2, . . . , Cu and for the t-th step
we update the unnormalized estimated cell probabilities as

q(t+1)(i) = q(t)(i) ×

(∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
q(t)(iS)

∏
C∈Cj

q(t)(iC)

)α

, j = (t mod u) + 1, (6)

and the normalized cell probabilities as p(t+1)(i) = q(t+1)(i)/
∑

k∈I q(t+1)(k).

Note that in Algorithm 2 we do not have to normalize at each step. Normalization can
be performed any time independent of the updating of the unnormalized cell probabilities.
In the following we write

g(α) =
∑

i∈I

q(t+1)(i) =
∑

i∈I

q(t)(i)

(∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
q(t)(iS)

∏
C∈Cj

q(t)(iC)

)α

. (7)

Lemma 3.1. Consider the t-th step of Algorithm 2. Suppose that
∑

i q
(t)(i) = 1 and

there exists a C ∈ Cj and iC such that q(t)(iC) 6= r(iC). Then there exists a unique
α = α0 = α0(q

(t)) > 0 such that
∑

i q
(t+1)(i) = 1.

Proof. In view of (3) we have

1 =
∑

i∈I

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

=
∑

i∈I

∏
C∈Cj

q(t)(iC)
∏

S∈Sj
q(t)(iS)

.

Therefore if ∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
q(t)(iS)

∏
C∈Cj

q(t)(iC)
≤ 1 (8)

for all i, then the equality in (8) holds for all i with q(t)(i) > 0. Therefore under the
condition of the lemma there exists at least one cell i ∈ I such that

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
q(t)(iS)

∏
C∈Cj

q(t)(iC)
> 1, q(t)(i) > 0.
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Then the right-hand side of (6) for this i is strictly convex in α and diverges to +∞ as
α → ∞. Then the sum g(α) in (7) is also strictly convex in α and diverges to +∞ as
α → ∞.

Consider the differential of g(α) at α = 0,

g′(0) =
∑

i

q(t)(i) log

(∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
q(t)(iS)

∏
C∈Cj

q(t)(iC)

)

=
∑

C∈Cj

∑

i

q(t)(i) log
r(iC)

q(t)(iC)
−

∑

S∈Sj

∑

i

q(t)(i) log
r(iS)

q(t)(iS)

=
∑

C∈Cj

∑

iC

q(t)(iC) log
r(iC)

q(t)(iC)
−

∑

S∈Sj

∑

iS

q(t)(iS) log
r(iS)

q(t)(iS)
.

Let Cj = {C1, . . . , Cv} and Sj = {S2, . . . , Sv}, where the cliques and the minimal vertex
separators of Cj are indexed to satisfy (1). Then,

∑

iC1

q(t)(iC1) log
r(iC1)

q(t)(iC1)

is the negative of KL-divergence and nonpositive. By the log sum inequality,

∑

iCk

q(t)(iCk
) log

r(iCk
)

q(t)(iCk
)
−

∑

iSk

q(t)(iSk
) log

r(iSk
)

q(t)(iSk
)

is also nonpositive for 2 ≤ k ≤ v. Equality holds if and only if

r(iC) = q(t)(iC), ∀C ∈ Cj.

Then, except for such a case, g(0) = 1, g′(0) < 0, g(∞) = ∞, and g(α) is strictly convex
in α. Therefore there exists a unique α0 > 0 such that g(α0) = 1.

Applying Lemma 3.1, we define the following algorithm.

Algorithm 3 We cycle through C1, C2, . . . , Cu and for the t-th step we update the
estimated cell probabilities as follows

p(t+1)(i) = p(t)(i) ×

(∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)

)α0

, j = (t mod u) + 1, (9)

where α0 = α0(p
(t)) ≥ 0.
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3.2 Convergence of the proposed algorithms

In this section, we prove the convergence of proposed algorithms. As before let {r(i)}
denote the empirical distribution and let {p∗(i)} denote the MLE. Because we consider
hierarchical models, the following equation holds ([4], [5]).

I(r : q) = I(r : p∗) + I(p∗ : q).

I(r : q) corresponds to the log likelihood. Therefore we can prove the convergence of our
algorithms by proving I(p∗ : q(t)) → 0 as t → ∞.

Theorem 3.1. Algorithm 3 converges to MLE.

Proof. Consider KL-divergence after updating,

I(p∗; p(t+1)) =
∑

i

p∗(i) log
p∗(i)

p(t+1)(i)

=
∑

i

p∗(i) log
p∗(i)

p(t)(i) ×
(

Q

C∈Cj
r(iC)

Q

S∈Sj
r(iS)

×
Q

S∈Sj
p(t)(iS)

Q

C∈Cj
p(t)(iC)

)α0

=
∑

i

p∗(i) log
p∗(i)

p(t)(i)
− α0

∑

i

p∗(i) log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)
.

Write Cj = {C1, . . . , Cv} and Sj = {S2, . . . , Sv} as in the proof of Lemma 3.1. Then,

∑

i

p∗(i) log
r(iC1)

p(t)(iC1)
=

∑

iC1

r(iC1) log
r(iC1)

p(t)(iC1)

is a KL-divergence, and nonnegative. By the log sum inequality,

∑

iCk

r(iCk
) log

r(iCk
)

p(t)(iCk
)
−

∑

iSk

r(iSk
) log

r(iSk
)

p(t)(iSk
)

is also nonnegative for 2 ≤ k ≤ v. Therefore,

I(p∗; p(t+1)) ≤ I(p∗; p(t))

holds. Equality holds if and only if r(iC) = q(t)(iC), ∀C ∈ Cj. We see that I(p∗; p(t))
always decreases after updating. The rest of the proof is the same as the classical one
([16]).

Corollary 3.1. Using 0 < α(q(t)) ≤ α0(q
(t)), Algorithm 2 converges to MLE.
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Proof. Consider KL-divergence after updating,

I(p∗; p(t+1)) =
∑

i

p∗i log
p∗(i)

q(t)(i)
− α

∑

i

p∗(i) log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
q(t)(iS)

∏
C∈Cj

q(t)(iC)
+ log g(α).

Because α ≤ α0, log g(α) is nonpositive and I(p∗; p(t)) always decreases after updating.
The rest of the proof is the same as Theorem 3.1.

At this point we discuss Algorithm 3 from a geometric viewpoint of I-projection in
the sense of Csiszár ([4], [5]). In our procedure we adjust a larger set of marginals
than the conventional IPS and in practice KL-divergence decreases more in our proposed
algorithms than the conventional IPS for each step. However it is difficult to guarantee this
theoretically. The difficulty lies in the fact that the updating rule (9) is not a projection.
In fact, if we repeat (9) twice with the same Cj then the cell probabilities change, whereas
in the conventional IPS repeating the same updating step twice does not change the cell
probabilities after the first update. We can understand the situation as follows. Starting
from the current estimate {p(t)(i)} suppose that we repeat the step (9) with the same
Cj until the cell probabilities converge to {p?(i)}. Then the limit {p?(i)} maximizes the
likelihood function among {p(i)} of the form

p(i) = p(t)(i)
∏

C∈Cj

µ(iC). (10)

The right-hand side of (10) forms a log-affine model through {p(t)(i)} (Section 4.2.3 of
[19]). Since updating a single C ∈ Cj in the conventional IPS is a special case of (10), it
follows that

I(p∗ : p?) ≤ I(p∗ : p(t+1)′), (11)

where {p(t+1)′(i)} is the updated estimate by the conventional IPS for some C ∈ Cj.
Therefore a larger decrease of KL-divergence of our procedure compared to conventional
IPS is only guaranteed in the sense of (11). The situation will become more clear when
we analyze the behavior of Algorithm 3 close to MLE in the next section.

3.3 Analysis of behavior close to the maximum likelihood esti-
mate

In this section, we study the behavior of our algorithms when the current estimate is
already close to MLE. We assume that MLE is in the interior of the parameter space
and p∗(i) > 0 for all i ∈ I. We analyze the behavior of α0. We also consider the value
of α = α1 which reduces the KL-divergence most and the value of α = α2 such that
KL-divergence decreases in Algorithm 2 for 0 ≤ α ≤ α2.

We repeatedly use the following expansion,

log(1 + x) = x − x2

2
+ O(x3), x → 0. (12)
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Assume that the current estimate {p(t)(i)} is close to MLE in the following sense. For
sufficiently small ε > 0 and for all C ∈ C, S ∈ S, iC , iS we have

1 − ε <
r(iC)

p(t)(iC)
,

r(iS)

p(t)(iS)
< 1 + ε. (13)

The following proposition describes the behavior of α0 in Algorithm 3.

Proposition 3.1. Assume {p(t)(i)} is close to MLE in the sense of (13). Then

α0 =

∑
i p

(t)(i)

{∑
C∈Cj

(
r(iC)

p(t)(iC)
− 1

)2

−
∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)2
}

∑
i p

(t)(i)
{∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)
−

∑
S∈Sj

(
r(iS)

p(t)(iS)
− 1

)}2 + O(ε). (14)

Before giving a proof of this Proposition we rewrite the numerator of the right-hand
side of (14). Let Cj = {C1, . . . , Cv} and Sj = {S2, . . . , Sv}, where the cliques and the
minimal vertex separators of Cj are indexed to satisfy (1). Then

∑

i

p(t)(i)





∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)2

−
∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)2





=
∑

iC1

p(t)(iC1)

(
r(iC1)

p(t)(iC1)
− 1

)2

+
v∑

k=2

∑

iCk

p(t)(iCk
)

(
r(iCk

)

p(t)(iCk
)
− r(iSk

)

p(t)(iSk
)

)2

. (15)

Therefore the numerator is nonnegative. Also note that the denominator of the right-hand
side of (14) can be written as

∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)
−

∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)

=

(
r(iC1)

p(t)(iC1)
− 1

)
+

v∑

k=2

(
r(iCk

)

p(t)(iCk
)
− r(iSk

)

p(t)(iSk
)

)
. (16)

We see that the numerator of α0 consists of the diagonal square terms when we expand
the square of denominator in the form of (16). We now give a proof of Proposition 3.1.

Proof. Consider the following expansion,

log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)
=

∑

C∈Cj

log
r(iC)

p(t)(iC)
−

∑

S∈Sj

log
r(iS)

p(t)(iS)

10



=
∑

C∈Cj

(
r(iCj

)

p(t)(iC)
− 1

)
−

∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)
+ O(ε2)

=O(ε).

Then the s-th derivative of g(α) at 0 is

g(s)(0) =
∑

i

p(t)(i)

(
log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)

)s

=O(εs).

The first and the second order derivatives of g(α) at 0 are,

g(1)(0) =
∑

i

p(t)(i)

(
log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)

)

=
∑

C∈Cj

∑

iC

p(t)(iC) log
r(iC)

p(t)(iC)
−

∑

S∈Sj

∑

iS

p(t)(iS) log
r(iS)

p(t)(iS)

=
∑

C∈Cj

∑

iC

p(t)(iC)

{
r(iC)

p(t)(iC)
− 1 − 1

2

(
r(iC)

p(t)(iC)
− 1

)2
}

−
∑

S∈Sj

∑

iS

p(t)(iS)

{
r(iS)

p(t)(iS)
− 1 − 1

2

(
r(iS)

p(t)(iS)
− 1

)2
}

+ O(ε3)

=
∑

C∈Cj

∑

iC

{
(r(iC) − p(t)(iC)) − p(t)(iC)

2

(
r(iC)

p(t)(iC)
− 1

)2
}

−
∑

S∈Sj

∑

iS

{
(r(iS) − p(t)(iS)) − p(t)(iS)

2

(
r(iS)

p(t)(iS)
− 1

)2
}

+ O(ε3)

=
1

2

∑

i

p(t)(i)





∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)2

−
∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)2



 + O(ε3),

and

g(2)(0) =
∑

i

p(t)(i)

(
log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)

)2

=
∑

i

p(t)(i)





∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)
−

∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)



2

+ O(ε3).

Then, we expand g(α) at 0,

g(α) = g(0) + αg(1)(0) +
α2

2
g(2)(0) + O(ε3).

11



Assuming normalization at each step of the algorithm, we have g(0) = 1 and substituting
α0 for α, we obtain

α0 =
−2g(1)(0)

g(2)(0)
+ O(ε)

=

∑
i p

(t)(i)

{∑
C∈Cj

(
r(iC)

p(t)(iC)
− 1

)2

−
∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)2
}

∑
i p

(t)(i)
{∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)
−

∑
S∈Sj

(
r(iS)

p(t)(iS)
− 1

)}2 + O(ε).

Consider (15) and (16). If the signs of the terms on the right hand side of (16) are
“random” then we can expect that α0 is close to 1. We can imagine that {p(t)(i)} converges
to MLE from various directions. Then α0 is close to 1 “on the average”. Furthermore
as shown in the following proposition α0 is the optimum value of the adjustment close to
MLE. We believe that this is the reason that Algorithm 1 works very well in practice.

Proposition 3.2. Assume {p(t)(i)} is close to MLE in the sense of (13). Then

α1 = α0 + O(ε), (17)

where α1 is the value of α which reduces the KL-divergence most.

Proof. Define F (α) by

F (α) = α
∑

i

p∗(i) log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)
, (18)

which corresponds to the decrease of KL-divergence before normalization. Consider the
derivative of F (α),

F (1)(α) =
∑

i

p∗(i) log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)

=g(1)(0) +
∑

i

p(t)(i)

(
p∗(i)

p(t)(i)
− 1

)
log

∏
C∈Cj

r(iC)
∏

S∈Sj
r(iS)

×
∏

S∈Sj
p(t)(iS)

∏
C∈Cj

p(t)(iC)

=g(1)(0) +
∑

i

p(t)(i)

(
p∗(i)

p(t)(i)
− 1

) 



∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)
−

∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)



+ O(ε3)

=g(1)(0) +
∑

i

p(t)(i)





∑

C∈Cj

(
r(iC)

p(t)(iC)
− 1

)2

−
∑

S∈Sj

(
r(iS)

p(t)(iS)
− 1

)2



 + O(ε3)

12



= − g(1)(0) + O(ε3).

Consider the derivative of F (α) − log g(α) and equating 0, we obtain,

F (1)(α1) −
g(1)(α1)

g(α1)
= 0.

Then

g(1)(α1) = g(1)(0) + α1g
(2)(0) + O(ε3),

g(α1) = g(0) + α1g
(1)(0) +

α2
1

2
g(2)(0) + O(ε3)

= 1 + O(ε2)

and

F (1)(α1) − g(1)(α1) + O(ε3) = −g(1)(0) − g(1)(0) − α1g
(2)(0) + O(ε3) = 0.

Therefore we have

α1 =
−2g(1)(0)

g(2)(0)
+ O(ε) = α0 + O(ε).

Finally we show that KL-divergence decreases in the range 0 < α < 2α0. This result
indicates that in Algorithm 2, α > α0 often decreases KL-divergence in practice.

Proposition 3.3. Assume {p(t)(i)} is close to MLE in the sense of (13). Then

α2 = 2α0 + O(ε). (19)

where α2 is the value of α such that I(p∗ : p(t+1)) = I(p∗ : p(t)) in Algorithm 2.

Proof.

0 = F (α2) − log g(α2) = −α2g
(1)(0) − α2g

(1)(0) +
α2

2

2
g(2)(0) + O(ε3)

and

α2 =
−4g(1)(0)

g(2)(0)
+ O(ε) = 2α0 + O(ε).

We show the behavior of log g(α) and F (α) − log g(α) in Figure 2. Proposition 3.1,
Proposition 3.2 and Proposition 3.3 indicate that in many cases we can decrease KL-
divergence by using α = 1. In the next section we illustrate this by numerical experiments.
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Figure 2: Behavior of log g(α) and F (α) − log g(α)

4 Numerical experiments

In this section, we compare our Algorithm 1 with the conventional IPS by numerical ex-
periments. In a case of three-way contingency table, we consider the hierarchical model
that contains all two-dimensional interaction terms (the model without the 3-factor in-
teractions). Similarly for J ≥ 4 we consider J-way cycle model with the generating class
{{1, 2}, {2, 3}, . . . , {J−1, J}, {J, 1}}. As a family of decomposable submodels which prop-
erly span the model we use the set of two decomposable submodels obtained by deleting
one element of generating class of the hierarchical model.

Table 1: The submodels in numerical experiments

Dim Hierarchical model Decomposable submodels
3 M3 = {12, 23, 13} M3 \ {13}, M3 \ {12}
4 M4 = {12, 23, 34, 14} M4 \ {14}, M4 \ {23}
5 M5 = {12, 23, 34, 45, 15} M5 \ {15}, M5 \ {23}
6 M6 = {12, 23, 34, 45, 56, 16} M6 \ {16}, M6 \ {34}
7 M7 = {12, 23, 34, 45, 56, 67, 17} M7 \ {17}, M7 \ {34}
8 M8 = {12, 23, 34, 45, 56, 67, 78, 18} M8 \ {18}, M8 \ {45}

We show the considered model and its submodels in Table 1, where {1, 2} is abbrevi-
ated as 12. For example in the 5-way case we span M5 = {12, 23, 34, 45, 15} by M5 \ {15}
and M5 \ {23} as illustrated in Figure 3.

Each variable takes two levels. We generated random contingency tables by filling
each cell by uniform random integers from 1 to 106 and we obtained MLE by Algorithm
1 and standard IPS for each contingency table. As the convergence criterion we used

14
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Figure 3: A decomposable submodels in a 5-way case

∑
i |p(t+1)(i) − p(t)(i)| ≤ 10−6. For each dimension we generated 1000 contingency tables

and took the average of the number of steps to convergence.
The results are shown in Table 2. In all of our runs Algorithm 1 converged to MLE.

We show the appearance of convergence in Figure 4 to Figure 9. The vertical axis is the
average of the logarithm of D(t) =

∑
i |p(t+1)(i) − p(t)(i)| and the horizontal axis is the

number of steps. The experiments shows that Algorithm 1 always converges faster than
conventional IPS. It is interesting to note that in the case of conventional IPS, log D(t)
decreases by a large amount periodically. The period is J − 1, which is one less than
the complete cycling of {{1, 2}, {2, 3}, . . . , {J − 1, J}, {J, 1}}. On the other hand for
Algorithm 1 log D(t) decreases steadily because we adjust a larger set of marginals at
each step.

Table 2: The number of steps to convergence

Dim Conventional IPS Algorithm 1
3 54.228 39.918
4 23.02 12.744
5 18.188 7.789
6 17.226 6.199
7 13.979 4.063
8 15.272 3.987

5 Some discussions

For using the proposed algorithms, we have to find a family of decomposable submodels
that properly span a generating class of a hierarchical model. We recommend spanning
the generating class by a small number of large decomposable submodels. Here large
decomposable submodels might mean maximal submodels in the sense of model inclusion
or submodels with largest degrees of freedom. In the literature some methods for finding
a maximal chordal subgraph of a given graph are studied ([1], [7], [22]). In the case of

15



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  10  20  30  40  50  60  70  80  90  100

lo
gD

(t
)

t

Conventional
Proposed

Figure 4: Convergence in the 3-way case
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Figure 5: Convergence in the 4-way case
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Figure 6: Convergence in the 5-way case
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Figure 7: Convergence in the 6-way case

graphical models, this might give a solution to our problem. However we have to satisfy the
condition that each element of a generating class is contained in at least one decomposable
submodel. Therefore we need a method to find a maximal chordal subgraph under the
restriction that specific cliques are contained. For general hierarchical models we are
not aware of any algorithm in existing literature for obtaining a family decomposable
submodels properly spanning the generating class of the hierarchical model.

In this paper we compared various algorithms of IPS in terms of the number of steps to
convergence. We showed that the proposed algorithm converges faster than conventional
IPS by numerical experiments. However we should mention that the computational com-
plexity for each step depends on the algorithms and comparison of computational time
may be different from comparison of the number of steps. Note that the complexity of
each step of IPS depends also on actual implementation of IPS (see e.g. [9], [14], [15],
[20]). In this paper we have not investigated efficient implementation of the steps of our
algorithms. Efficient implementation of our procedure is left to further investigations.

Acknowledgment. The authors are grateful to Satoshi Kuriki for very useful com-
ments.
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Figure 8: Convergence in the 7-way case
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Figure 9: Convergence in the 8-way case

References

[1] Berry, A.,Heggernes, P. and Villanger, Y. (2003), A vertex incremental approach
for dynamically maintaining chordal graphs. Lecture Notes in Computer Science,
Vol.2906, pp.47–57.

[2] Blair, J. R. S. and Peyton, B. W. (1994), An introduction to chordal graphs and
clique trees. Graph theory and sparse matrix computation, IMA Vol. Math. Appl.,
Vol.56, pp.1–29, Springer, New York.

[3] Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley,
New York.

[4] Csiszár, I. (1975), I-divergence geometry of probability distributions and minimiza-
tion problems. Ann. Probab., Vol.3, pp.146–158.

[5] Csiszár, I. (1989), A geometric interpretation of Darroch and Ratcliff’s generalized
iterative scaling. Ann. Stat., Vol.17, pp.1409–1413.

[6] Darroch, J. N. and Ratcliff, D. (1972), Generalized iterative scaling for log-linear
models. Ann. Math. Statist., Vol.43, pp.1470–1480.

[7] Dearing, P. M., Shier, D. R. and Warner, D. D. (1988), Maximal chordal subgraphs.
Disc. Appl. Math., Vol.20, pp.181–190.

[8] Deming, W. E. and Stephan, F. F. (1940), On a least squares adjustment of a
sampled frequency table when the expected marginal totals are known. Ann. Math.
Statist., Vol.11, pp.427–444.

[9] Denteneer, D. and Verbeek, A. (1986), A fast algorithm for iterative proportional fit-
ting in log-linear models. Computational Statistics and Data Analysis, Vol.3, pp.251–
264.

17



[10] Fienberg, S. E. (1970), An iterative procedure for estimation in contingency tables.
Ann. Math. Statist., Vol.41, pp.907–917.

[11] Hara, H. and Takemura, A. (2005a). Improving on the maximum likelihood esti-
mators of the means in Poisson decomposable graphical models. Technical Report
METR 05-08, University of Tokyo. Submitted for publication.

[12] Hara, H. and Takemura, A. (2005b). Bayes admissible estimation of the means in
Poisson decomposable graphical models. Technical Report METR 05-22, University
of Tokyo. Submitted for publication.

[13] Ireland, C. T. and Kullback, S. (1968), Contingency tables with given marginals.
Biometrika, Vol.55, pp.179–188.
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