
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Practical Algorithms
for Two-dimensional Packing

Shinji IMAHORI, Mutsunori YAGIURA
and Hiroshi NAGAMOCHI

METR 2006–19 March 2006

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Practical Algorithms for Two-dimensional Packing

Shinji Imahori

Department of Mathematical Informatics

Graduate School of Information Science and Technology

University of Tokyo, Tokyo 113-8656, Japan

E-mail: imahori@simplex.t.u-tokyo.ac.jp

Mutsunori Yagiura

Department of Computer Science and Mathematical Informatics

Graduate School of Information Science

Nagoya University, Nagoya 464-8603, Japan

E-mail: yagiura@nagoya-u.jp

Hiroshi Nagamochi

Department of Applied Mathematics and Physics

Graduate School of Informatics

Kyoto University, Kyoto 606-8501, Japan

E-mail: nag@i.kyoto-u.ac.jp

1 Introduction

Cutting and packing problems consist of placing a given set of (small) items
into one or more (larger) objects without overlap so as to minimize/maximize
a given objective function. This is a combinatorial optimization problem
with many important applications in the wood, glass, steel and leather in-
dustries, as well as in LSI and VLSI design, newspaper paging, and container
and truck loading. For several decades, cutting and packing has attracted
the attention of researchers in various areas including operations research,
computer science, manufacturing, etc.

Cutting and packing problems can be classified using different criteria.
The dimensionality of a problem is one of such criteria, and most problems
are defined over one, two or three dimensions. In this chapter we consider
two-dimensional problems. The next criterion to classify two-dimensional
packing problems is the shape of items to pack. We focus on the rectangle
packing problem in this chapter. This problem has been actively studied the
past few decades. When the shapes of the items to be packed are polygons

1

2 RECTANGLE PACKING PROBLEM 2

or arbitrary shapes, the problem is called irregular packing. We also discuss
in this chapter recent research in this area.

Almost all two-dimensional packing problems are known to be NP-hard,
and hence it is impossible to solve them exactly in polynomial time unless
P = NP. Therefore heuristics and metaheuristics are very important to de-
sign practical algorithms for these problems. We survey practical algorithms
for two-dimensional packing problems in this chapter. We also survey var-
ious schemes used to represent solutions to rectangle packing problem, and
introduce algorithms based on these coding schemes.

The remainder of this chapter is organized as follows: Section 2 defines
the rectangle packing problem and its variations. Section 3 introduces cod-
ing schemes for the rectangle packing problem, which are used to represent
solutions. Section 4 presents heuristic algorithms, from the traditional to
the latest ones, for the rectangle packing problem. Section 5 discusses prac-
tical algorithms based on metaheuristics. In Sections 4 and 5, discusses
computational results for the various algorithms on benchmark instances.
Section 6 defines the irregular packing problem and practical algorithms for
this problem are presented.

2 Rectangle Packing Problem

We consider the following two-dimensional rectangle packing problem. We
are given n items (small rectangles) I = {1, 2, . . . , n}, each of which has
width wi and height hi, and one or many large objects (rectangles). We are
required to place the items orthogonally without any overlap (an edge of
each item is parallel to an edge of the object) so as to minimize (or maxi-
mize) a given objective function. The rectangle packing problem arises in
many industrial applications, often with slightly different constraints, and
many variants of this problem have been considered in the literature. The
following characteristics are important to classify the problems [1, 2]: type
of assignment, assortment of objects, and assortment of items. We will
review some specific variations of the rectangle packing problem in this sec-
tion. We should mention two more important constraints for the rectangle
packing problem: orientation and guillotine cut constraint. As for the orien-
tation of the items, we usually assume that “each rectangle has a given fixed
orientation” or “each rectangle can be rotated by 90◦.” Rotation of items is
not allowed in newspaper paging or when the items to be cut are decorated
or corrugated, whereas orientation is free in the case of plain materials etc.
Guillotine cut constraint signifies that the items must be obtained through
a sequence of edge-to-edge cuts parallel to the edges of the large object (see
Figure 1 for an example), which is usually imposed by technical limitations
of the automated cutting machines or the material.

We introduce six types of rectangle packing problems that have been

2 RECTANGLE PACKING PROBLEM 3

(a) guillotine cut (b) non-guillotine

1

2

3

4 5
6

1

2

3

4

5
6

Figure 1: Examples of placements with/without guillotine cut constraint

actively studied. For simplicity, we define the problems assuming that each
item has a fixed orientation and the guillotine cut constraint is not imposed
unless otherwise stated. It is straightforward to extend our definitions for
other cases where each item can be rotated by 90◦ and/or the guillotine
cut constraint is imposed. We first consider two types of typical rectangle
packing problems with one large rectangular object, which may grow in one
or two dimensions, where all the items are to placed disjointly. The problems
are called strip packing and area minimization.

Strip packing problem: We are given n items (small rectan-
gles) each having width wi and height hi, and one large ob-
ject (called a strip) whose width W is fixed, but its height H
is variable. The objective is to minimize the height H of
the strip such that all items can be packed into the strip.

Area minimization problem: We are given n items each hav-
ing width wi and height hi, and one large rectangular ob-
ject, where both its width W and height H are variables.
The objective is to minimize the area WH of the object
such that all items can be packed into the object.

In Sections 3, 4 and 5, we focus mainly on the strip packing (and area
minimization) problem, which is formally formulated as the following math-
ematical program:

minimize the height of the strip H (or the area of the large object WH)
subject to 0 ≤ xi ≤ W − wi, for all i ∈ I (1)

0 ≤ yi ≤ H − hi, for all i ∈ I (2)
At least one of the next four inequalities holds for every pair i and j :

xi + wi ≤ xj , (3)
xj + wj ≤ xi, (4)
yi + hi ≤ yj , (5)
yj + hj ≤ yi, (6)

2 RECTANGLE PACKING PROBLEM 4

where (xi, yi) is the coordinate of the lower left corner of an item i. The
constraints (1) and (2) mean that all items must be placed into the large
object, and the constraints (3) to (6) mean that no two items overlap (that
is, each inequality signifies one of the four relative locations: left-of, right-of,
above and below).

Two other rectangle packing problems are the two-dimensional bin pack-
ing and knapsack problems which have (many or one) fixed sized objects.

Two-dimensional bin packing problem: We are given a set
of items, where each item i has width wi and height hi,
and an unlimited number of large objects (rectangular bins)
having identical width W and height H. The objective is
to minimize the number of rectangular bins used to place
all the items.

Two-dimensional knapsack problem: We are given a set I
of items, where each item i ∈ I has width wi, height hi and
value ci. We are also given a rectangular knapsack with
fixed width W and height H. The objective is to find a sub-
set I ′ ⊆ I of items with the maximum total value

∑
i∈I′ ci

such that all items i ∈ I ′ can be packed into the knapsack.

For the two-dimensional bin packing problem, Lodi et al. [3] proposed prac-
tical heuristic and metaheutistic algorithms and performed computational
experiments on various benchmark instances. For the two-dimensional knap-
sack problem, Wu et al. [4] proposed heuristic algorithms that are effective
for many test instances.

We should also mention the following two problems, two-dimensional
cutting stock and pallet loading. For some industrial applications, such as
mass production manufacturing, many small items of an identical shape or
relatively few classes of shapes are packed into the objects. The following
two problems are useful for modeling these situations.

Two-dimensional cutting stock problem: We are given a
set of items each with width wi, height hi and demand di.
We are also given an unlimited number of objects having
identical width W and height H. The objective is to mini-
mize the number of objects used to place all the items (i.e.,
for each i, we place di copies of item i into the objects).

Pallet loading problem: We are given sufficiently large num-
ber of items with identical size (w, h), and one large rect-
angular object with size (W,H). The objective is to place
the maximum number of items into the object, where each
item can be rotated by 90◦.

Note that, the pallet loading problem with a fixed orientation of items
is trivial to solve. Among many studies on the two-dimensional cutting

3 CODING SCHEMES FOR RECTANGLE PACKING 5

stock problem, Gilmore and Gomory [5] provided one of the earliest solu-
tion method. They proposed a column generation scheme in which new
cutting patterns are produced by solving a generalized knapsack problem.
Recently, some practical algorithms for the two-dimensional cutting stock
problem have been proposed [6, 7]. Morabito and Morales [8] proposed a
simple but effective algorithm for the pallet loading problem.

The complexity of the pallet loading problem is open (this problem is not
known to be in class NP, because of the compact input description), whereas
the other problems we defined in this section are known to be NP-hard.

3 Coding Schemes for Rectangle Packing

In this section, we review coding schemes for rectangle packing problems.
For simplicity, we focus on the strip packing problem. An effective search
will be difficult if we search the x and y coordinates of each item directly,
since the number of solutions is uncountable and eliminating the overlap be-
tween items is not easy. To overcome this difficulty, various coding schemes
have been proposed and many algorithms for rectangle packing problems
are based on some coding schemes.

A coding scheme consists of a set of coded solutions, a mapping from
coded solutions to placements, and a decoding algorithm that computes for a
given coded solution the corresponding placement using the mapping. (The
mapping is sometimes defined by the decoding algorithm.) Properties of a
coding scheme (and a decoding algorithm) are given below.

1. There exists a coded solution that corresponds to an optimal place-
ment.

2. The number of all possible coded solutions is finite, where a small total
number is preferable
provided that property 1 is satisfied.

3. Every coded solution corresponds to a feasible placement.

4. Decoding is possible in polynomial time. Fast algorithms are more
desirable.

Some of the coding schemes in the literature satisfy all of the above four
properties, but others do not.

One of the most popular coding schemes is to represent a solution by a
permutation of the n items, where a coded solution (i.e., a permutation of n
items) specifies the placement order. The number of all possible coded solu-
tions is O(n!), which is smaller than other coding schemes in the literature,
and every permutation corresponds to a packing without items overlapping.
A decoding algorithm computes a placement from a given coded solution by
specifying the locations of the items one by one, which defines the mapping

3 CODING SCHEMES FOR RECTANGLE PACKING 6

from coded solutions to placements and is sometimes called a placement
rule. The decoding time complexity and the existence of a coded solution
that corresponds to an optimal placement depend on the decoding algo-
rithms. In the literature, a number of decoding algorithms for permutation
coding schemes have been proposed. We will explain some typical decoding
algorithms in Section 4, and compare them theoretically and experimentally.

We now explain different types of coding schemes for rectangle packing
problems. The schemes we explain hereafter specify the relative locations
for each pair of items by a coded solution. In other words, for every pair
of items, a coded solution determines one of the four inequalities (3) to (6)
that must be satisfied to avoid item overlap. The placement corresponding
to a coded solution is the best one among those that satisfy the relative
locations specified by the coded solution.

One of the most popular coding schemes of this type is to represent
a solution by an n-leaf binary tree [9]. This coding scheme can represent
only slicing structures (in other words, each placement obtained by this
representation always satisfies the guillotine cut constraint). The leaves
of a binary tree correspond to items, and each internal node has a label
‘h’ or ‘v’, where h stands for horizontal and v stands for vertical. This
coding scheme uses O(n) space to represent a solution, and the number of
all possible coded solutions is O(n!25n−3/n1.5) [9]. In this scheme, one of the
four relative locations are assigned for each pair i and j of items as follows:
If i is a left descendant of an internal node u with ‘h’ label and j is a right
descendant of the same internal node u (i.e., u is the least common ancestor
of i and j), then we must place i to the left of j (i.e., xi + wi ≤ xj). If
the label of the least common ancestor is ‘v’, then we place i below j (i.e.,
yi + hi ≤ yj). Figure 2 shows an example of a binary tree representation
and a placement that satisfies these constraints. For example, in the figure,
there is an internal node with ‘h’ label for which the node for item 6 is a
left descendant and the node for item 1 is a right descendant, and hence
item 6 is placed to the left of item 1; the node for item 4 is a left descendant
and the node for item 3 is a right descendant of the least common ancestor
with ‘v’ label, and hence item 4 is placed below item 3 and so forth. For
a given binary tree τ , let Πτ denote the set of all placements that satisfy
the above horizontal/vertical constraints. The placement corresponding to
a coded solution τ is one of the best (i.e., the most compact) placements
in Πτ . Though Πτ contains infinitely many placements for any τ , natural
decoding algorithms for this coding scheme runs in linear time of the number
of items, and compute one of the best placements among Πτ . Moreover, for
any placement π that satisfy the guillotine cut constraint, there exists a
binary tree τ that satisfies π ∈ Πτ . That is, the binary tree coding scheme
satisfies all of the four desirable properties of a coding scheme if the guillotine
cut constraint is imposed.

Murata et al. [10] proposed a coding scheme called sequence pair. For

3 CODING SCHEMES FOR RECTANGLE PACKING 7

5

2

3

4

16

v v

v

h

h

1

2

3

4

5
6

Figure 2: A binary tree representation τ and a solution π ∈ Πτ

 : 1 2 3 4 5 6

 : 4 5 1 3 6 2

1

2

3

4 5
6

σ+

σ−

Figure 3: A sequence pair representation σ and a solution π ∈ Πσ

the sequence pair representation, a solution is represented by a pair of per-
mutations σ = (σ+, σ−) of the n items (see Figure 3 for an example). Based
on this coded solution, we assign relative locations for each pair of items i
and j as follows: If item i is before item j in both permutations σ+ and σ−,
then item i must be placed to the left of j. If i is before j in σ+ and after j
in σ−, then we place i above j. For example, in Figure 3, element 1 is before
element 2 in both permutations, and hence item 1 is placed to the left of
item 2; element 2 is before element 3 in permutation σ+ and after element 3
in σ−, and hence item 2 is placed above item 3 and so on. For a given pair
of permutations σ = (σ+, σ−), let Πσ be the set of placements that satisfy
the above constraints. The placement corresponding to a coded solution σ
is one of the best placements in Πσ. Murata et al. [10] proposed an O(n2)
time decoding algorithm to obtain one of the best placements π ∈ Πσ for
a given coded solution σ. Takahashi [11] improved the time complexity of
the decoding algorithm to O(n log n); Tang et al. [12] further improved it to
O(n log log n). Moreover, for any feasible placement π, there exists a coded
solution σ that satisfy π ∈ Πσ (such a σ can be computed in O(n log n)
time [13]). That is, the sequence pair coding scheme satisfies all of the four
desirable properties of a coding scheme.

Nakatake et al. [14] proposed a coding scheme called bounded sliceline
grid (in short, BSG). BSG consists of a set of small rooms that are separated
by horizontal and vertical segments, where the number of rooms in the hori-
zontal and vertical directions, denoted p and q, respectively, are parameters
that satisfy pq ≥ n (see Figure 4 (a) with p = q = 6). It introduces one
of the four orthogonal relations (left-of, right-of, above and below) uniquely

3 CODING SCHEMES FOR RECTANGLE PACKING 8

l

r

r

r

r

r

r r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

aaaaaa

aaaa

aa

aaaa

aa

b

bbbbb

bb

b

b

bb

b bbb

bb

l

ll

ll

l

l

ll

ll

(b) (c)(a)

Figure 4: Rooms of bounded sliceline grid representation and relative loca-
tions

1

2

3

4 5
6

3

1

2

4

5

6

Figure 5: A bounded sliceline grid representation α and a solution π ∈ Πα

for each pair of rooms (see Figures 4 (b) and (c)). In these figures, a room
with label l (resp., r, a, b) is left-of (resp., right-of, above, below) the shaded
room. A solution is represented by an assignment of the items to rooms,
where at most one item can be assigned to each room. The assigned items
inherit the relations defined on the rooms. Figure 5 shows an example of
an assignment of items to rooms and a placement that satisfy all specified
constraints of relative locations. For example, in the figure, item 3 is placed
to the right of item 1, item 3 is placed below item 2, item 3 is placed above
item 4 and so forth. For a given assignment α, let Πα be the set of all place-
ments that satisfy the constraints given by α. The placement corresponding
to a coded solution α is one of the best placements in Πα. A decoding algo-
rithm proposed by Nakatake et al. [14] runs in linear time with respect to the
number of small rooms pq, and can find one of the best placements π ∈ Πα

for a given coded solution α. As for the existence of a coded solution that
corresponds to an optimal placement, it is known that an assignment α such
as π ∈ Πα always exists for any placement π if and only if p ≥ n and q ≥ n
hold. The bounded sliceline grid coding scheme with parameters p ≥ n and
q ≥ n satisfies all of the four desirable properties of a coding scheme.

There are many other coding schemes which describe the relative loca-
tions for each pair of items. Guo et al. [15] proposed a tree representation
called O-tree: Two ordered trees for the horizontal and vertical directions

4 HEURISTICS FOR RECTANGLE PACKING 9

are used to represent a coded solution. This coding scheme can repre-
sent non-slicing structures and the number of all possible coded solutions is
O(n!22n−2/n1.5); this is smaller than the number of all coded solutions by
the binary tree representation for slicing structures. There exists a coded
solution corresponding to any placement π that satisfy the bottom left sta-
bility; that is, in the resulting placement, all items cannot be moved any
further to the bottom or to the left. Chang et al. [16] extended the result by
Guo et al. [15]. They proposed another tree representation called B*-tree;
it is easy to implement this data structure and a decoding algorithm for
B*-tree runs in linear time with respect to the number of items. Sakanushi
et al. [17] proposed another coding scheme called quarter-state sequence:
They utilized a string of items and labels to represent a solution and their
decoding algorithm runs in linear time of the number of items.

4 Heuristics for Rectangle Packing

In this section, we describe heuristic algorithms for rectangle packing prob-
lems. We first explain some heuristic algorithms based on the permutation
coding scheme. Those algorithms consist of two phases: (1) construct a per-
mutation and (2) place the items one by one according to the permutation.

For the first phase, a standard strategy to construct a permutation is
“a larger item has higher priority than a smaller one”. To realize this, the
items are sorted by some criteria, e.g., decreasing height, decreasing width
or decreasing area. It is difficult to decide a priori which criterion is the
best for numerous instances that arise in practice. Hence, many algorithms
generate several permutations with different criteria, and apply a decoding
algorithm to all such permutations.

Let’s consider the second phase, i.e., decoding algorithm for permuta-
tions. We first explain level algorithms in which the placement is obtained
by placing items from left to right in rows forming levels (see Figure 6 for an
example). The first level is the bottom of the object, and each subsequent
level is along the horizontal line coinciding with the top of the tallest item
packed on the level below.

The most popular level algorithms are the next fit, first fit and best fit
strategies, which are extended from the algorithms for the (one-dimensional)
bin packing problem. Let i (i = 1, 2, . . . , n) denote the current item to be
placed, and s be the level created most recently, where the bottom of the
object is level 1 created at the beginning of an algorithm.

• Next fit strategy: Item i is packed on level s left justified (i.e., place
it at the left-most feasible position) if it fits. Otherwise, a new level
(s := s + 1) is created and i is packed on it left justified.

• First fit strategy: We check whether or not item i fits from level 1 to

4 HEURISTICS FOR RECTANGLE PACKING 10

level 1

level 2

level 3

Figure 6: An example of level packing

1

5 6

4 3

2

5

1

64

3

2

5

1

6

43

2

(a) Next fit (b) First fit (c) Best fit

Figure 7: Three level algorithms for the strip packing problem

level s, and pack it left justified on the first level where it fits. If no
level can accommodate i, it is placed on a new level as in the next fit
strategy.

• Best fit strategy: Item i is packed left justified on the level that min-
imizes the unused horizontal space among those where it fits. If no
level can accommodate i, it is placed on a new level as in the next fit
strategy.

Computation time of these algorithms is O(n), O(n log n) and O(n log n),
respectively, if appropriately implemented. The above strategies are illus-
trated through the example in Figure 7 (in this figure, items are sorted by
decreasing height and are numbered accordingly). The resulting placements
of these algorithms always satisfy the guillotine cut constraint. More pre-
cisely, they are so-called two-stage guillotine placements in that they can
be cut out in two stages: the first stage for horizontal cuts and the second
stage for vertical cuts.

A different classical approach, and the most documented one, is the
bottom left approach. The first algorithm of this type was proposed by Baker

4 HEURISTICS FOR RECTANGLE PACKING 11

(a) Baker et al. (b) Jakobs (c) Liu and Teng

x

x

x

x

Figure 8: Three bottom left algorithms for the strip packing problem

et al. [18] in 1980, and some variants of this method have been proposed the
last couple of decades. A common characteristic of this type of algorithms is
to place items one by one at the bottom left stable positions; that is, in the
resulting placement, all items cannot be moved any further to the bottom
or to the left.

Baker et al. [18] used a bottom-left rule that places each item at the left-
most point among the lowest possible positions. This approach is called bot-
tom left fill (in short, BLF) strategy in [19, 20], which is illustrated through
the example in Figure 8 (a). The ‘x’ marks in the figure show the bottom
left stable positions. There are natural algorithms that require O(n3) time
in the worst case for this strategy, and Hopper and Turton implemented one
of them in their article [20]. Chazelle [21] devised an efficient algorithm that
requires O(n2) time and O(n) space in the worst case.

Jakobs [22] utilized another bottom-left method: For each item, first
place it at the top right location of the object and make successive sliding
moves down and to the left alternately as long as possible (see an example
in Figure 8 (b)). This strategy is called bottom left (in short, BL) in [19, 20]
and it runs in O(n2) time, if appropriately implemented. We will see a com-
parison of BL and BLF algorithms through our computational experiments
later on. Liu and Teng [23] developed another bottom-left heuristics sim-
ilar to Jakobs’s algorithm. In their strategy, the downward movement has
priority such that items slide leftwards only if no downward movement is
possible (see Figure 8 (c)). This algorithm also runs in O(n2) time.

There are more algorithms which utilize the permutation to represent a
solution. For example, Lodi et al. [3] proposed several decoding algorithms
such as floor ceiling, alternate directions and touching perimeter, and exper-
imentally compared these algorithms with other decoding algorithms in the
literature. Wu et al. [4] proposed complicated decoding algorithms, which
runs in O(n4 log n) or O(n5 log n) time and has achieved certain computa-
tional success.

We discuss a different type of heuristic algorithm proposed by Burke

4 HEURISTICS FOR RECTANGLE PACKING 12

LAG
LAG

LAGLAG

Figure 9: A heuristic algorithm for the strip packing by Burke et al. [19]

et al. [19] in 2004. This method does not have a permutation of items to
place, but dynamically decide the next item to place during the packing
stage. More precisely, it finds the lowest available gap (LAG) within the
large object and then places the item that best fits there (see Figure 9 for
an example). This enables the algorithm to make informed decisions about
which item should be packed next and where it should be placed. A natural
implementation of this strategy runs in O(n2) time. We will also present
experimental results for this algorithm.

At the end of this section, we compare typical heuristic algorithms
through computational experiments. Test instances given by Hopper and
Turton [20] were used for the experiments. There are seven different cat-
egories C1, C2, . . . , C7 with the number of items ranging from 17 to 197,
with each category having three instances. The optimal solution for all
instances are known; these instances have placements without any dead
space (in other words, these instances have perfect packings). The results
of algorithms BL-R, BL-DW, BL-DH, BLF-R, BLF-DW and BLF-DH are
taken from [20], where BL (resp., BLF) means that item are placed with BL
(resp., BLF) strategy into the object, and R, DW and DH signify the types
of permutations: R means random permutation, DW (resp., DH) means
that items are sorted by decreasing width (resp., decreasing height). The
results by Burke et al. reported in [19] algorithm (denoted BKW) are also
shown.

Computational results are shown in Table 1. Each row corresponds to a
heuristic algorithm and each column corresponds to a category of instances,
where n is the number of items for each instance. In this table, the relative
distances in % between the optimal and resulting solutions are reported. The
computation time for each instance is within one second on a PC with an
850 MHz CPU (for BKW) or a 200 MHz CPU (for others). From Table 1,
we can observe that BLF outperformed BL by up to 25% and that pre-
ordering the items by decreasing width or decreasing height for BL and BLF
algorithms increased the packing quality by up to 10% compared to random

5 METAHEURISTICS FOR RECTANGLE PACKING 13

Table 1: Solution quality of heuristic algorithms for the strip packing prob-
lem

C1 C2 C3 C4 C5 C6 C7
n 16 25 28 49 72 97 196

BL 25 39 33 33 31 34 41
BL-DH 17 68 27 21 18 19 31
BL-DW 18 31 24 18 22 21 29
BLF 14 20 17 15 11 12 10
BLF-DH 11 42 12 6 5 5 4
BLF-DW 11 12 12 5 5 5 5
BKW 12 7 10 4 3 2 2

permutations. Moreover, the algorithm by Burke et al. outperformed other
algorithms, especially for large instances.

5 Metaheuristics for Rectangle Packing

In the last decade, many local search and metaheuristic algorithms for rect-
angle packing problems have been proposed. Dowsland [24] was one of
the early researchers who implemented metaheuristics for rectangle packing
problems. Her simulated annealing (in short, SA) algorithm explores both
feasible and infeasible (i.e., some items overlap) solutions. During the search,
the objective is to reduce the overlapping area. Computational results for
small problem instances are reported in [24].

Let’s explain some metaheuristic algorithms based on the permutation
coding scheme. Those algorithms consist of two phases; (1) find a good
permutation using metaheuristics and (2) the decoding algorithm places the
items one by one following the permutation order. In [22], Jakobs proposed
a metaheuristic algorithm for the strip packing problem. In this algorithm,
he uses a genetic algorithm (in short, GA) to find a good permutation, and
places items with using the bottom left strategy explained in the previous
section. He treats not only rectangle packing problems but also irregu-
lar packing problems, and reports several computational results. Liu and
Teng [23] also proposed a GA algorithm using their BL type decoding algo-
rithm.

In [20], Hopper and Turton compare the performance of various meta-
heuristics (multistart local search (MLS), SA, GA and so on) with two de-
coding rules on small and large test instances. The computational results
reported in [20] are shown in Table 2. The first decoding rule is the BL

5 METAHEURISTICS FOR RECTANGLE PACKING 14

Table 2: Solution quality of metaheutistic algorithms for the strip packing
problem

C1 C2 C3 C4 C5 C6 C7

GA+BL 6 10 8 9 11 15 21
SA+BL 4 7 7 6 6 7 13
MLS+BL 9 18 11 14 14 20 25
GA+BLF 4 7 5 3 4 4 5
SA+BLF 4 6 5 3 3 3 4
MLS+BLF 7 10 7 7 6 7 7

heuristic proposed by Jakobs [22], and the second one is the BLF strategy
proposed by Baker et al. [18]. The stopping criterion for each algorithm is
a fixed number of iterations, and the computation time for each instance
is about 50,000 times as large as the simple heuristic algorithms (BL and
BLF). The representation of this table is similar to Table 1. From this ta-
ble, we observe that the performance of the hybrid algorithms is strongly
dependent on the decoding rule and the instance size. Moreover, it is also
reported that certain computation time is needed to attain better solutions
with metaheuristics than the solutions obtained by well-designed heuristics
such as BLF-DW and BLF-DH.

We now discuss metaheuristic algorithms based on other coding schemes.
For the sequence pair representation, Murata et al. [10] proposed an SA
algorithm and Imahori et al. [13] proposed an iterated local search (in short,
ILS) algorithm. They used metaheuristics to find a good coded solution
where each coded solution is evaluated with their own decoding algorithms.
Chang et al. [16] and Nakatake et al. [14] proposed SA algorithms using B*-
trees and BSG, respectively. One of the advantages of the above algorithms
is generality: Imahori et al. [13] incorporated “spatial cost functions” into
their algorithms which was used to handle various types of rectangle packing
problems and scheduling problems. Chang et al. [16] and Nakatake et al. [14]
designed algorithms which can treat the rectangle packing problem with
additional constraints such as pre-placed items, soft modules and etc.

Recently, more effective algorithms for rectangle packing problems have
been proposed. Lesh et al. [25] proposed a stochastic search variation of
the bottom left heuristics for the strip packing problem. Their algorithm
outperforms other heuristic and metaheuristic algorithms based on the bot-
tom left strategy reported in the literature. Furthermore, they incorporated
their algorithm in an interactive system that combines the advantages of
computer speed and human reasoning. Using the interactive system, they

6 IRREGULAR PACKING PROBLEM 15

succeeded in producing significantly better solutions than their original al-
gorithm quickly.

Imahori et al. [26] proposed an improved metaheuristic algorithm based
on sequence pair representation. Metaheuristic algorithms generate numer-
ous number of coded solutions and evaluate all of them. Hence, the effi-
ciency of metaheuristic algorithms strongly depends on the time complexity
of decoding algorithms. Imahori et al. proposed new decoding algorithms to
evaluate all coded solutions in various neighborhoods efficiently. As a result,
they attained an amortized constant time to evaluate one coded solution in
basic neighborhoods.

Bortfeldt [27] proposed a GA for the strip packing problem that works
without any encoding of solutions. Instead of using a coding scheme, fully
defined layouts are directly manipulated by specific genetic operators. He
conducted thorough computational experiments using existing benchmark
instances with up to 5000 rectangles, and compared his algorithm with
eleven competing methods which were proposed in 1993 to 2004. He re-
ported that his GA performed best among them.

For more information of the metaheuristic algorithms applied to rectan-
gle packing problems, we refer the reader to articles by Hopper and Tur-
ton [20] and Bortfeldt [27].

6 Irregular Packing Problem

In this section, we consider the two-dimensional irregular packing problem,
which has been actively studied in the last decade. The irregular pack-
ing problem has many practical applications, e.g., the garment, shoe and
shipbuilding industries, and many variants of this problem have been con-
sidered in the literature. Among the numerous variants of this problem, the
irregular strip packing problem has been studied extensively.

Irregular strip packing problem: We are given n items of
arbitrary shapes, and one object (called a strip) with con-
stant width W but variable height H. The objective is to
minimize the height H of the strip such that all the items
can be packed into the strip.

In this section, we mainly focus on fixed orientation packing. The problem
in which items can be rotated (freely or by some fixed degrees) has also been
studied in the literature. One of the main differences between rectangle and
irregular packing problems is that the intersection test between irregular
items is considerably more complex than the case with rectangular items.
To overcome this difficulty, some approximation techniques and geometric
algorithms have been incorporated into the packing algorithms.

6 IRREGULAR PACKING PROBLEM 16

One popular idea for speeding up the intersection test is to represent the
items (irregular shapes) approximately. Oliveira and Ferreira [28] proposed
two approaches to the irregular strip packing problem, and one of them uses
this type of approach. Their approach is based on a raster representation
(in other words, bitmap representation) of the irregular shapes to be placed.
This approximation allows a quick test overlapping, but suffers from inac-
curacy, caused by the approximation inherent in the raster representation.
Their another approach uses a polygon-based representation which does not
use any approximation technique. Both methods allow overlap in the solu-
tions, and the extent of overlap is penalized by an evaluation function. They
try to find a good solution via SA, where the algorithms aim to reduce the
overlap to zero.

Okano [29] proposed a heuristic algorithm for the irregular two-dimensional
bin packing problem using a scanline representation. He approximates a
two-dimensional item with a set of parallel line segments. He also uses a
clustering technique; some items are gathered and packed tightly, and then
these items are treated as one new item. Okano designed his algorithm for
the irregular two-dimensional bin packing problem; however, his technique
is also useful for treating the irregular strip packing problem. He conducted
computational experiments with real instances from a ship building com-
pany, and reported that the quality of the resulting layouts was sufficiently
high for practical use.

Jakobs [22] used another type of approximation scheme; for all irregular
shapes, the minimum bounding rectangles of the given items is calculated
and his algorithm treats these rectangles instead of the original shapes. For
these shapes, a good placement is computed by his BL decoding algorithm
and GA techniques. After finding a good placement for the rectangles, the
algorithm replaces rectangles with the original irregular shapes, and com-
putes a better placement of the irregular items. He reported computational
results for this algorithm. Jakobs also discussed an idea of clustering several
shapes, and finding the minimum bounding rectangle of several items.

Dighe and Jakiela [30] proposed an algorithm for the irregular strip pack-
ing problem, which is based on a clustering method with a tree structure.
Their algorithm uses a tree structure to represent a solution: The leaves of
a tree correspond to items, and clustering operations are applied to items
from the leaves to the root of the tree. To find a good coded solution (i.e.,
tree), they utilized GA. Dighe and Jakiela created new test instances and
conducted computational experiments on these instances.

One of the most popular geometric techniques used for the intersection
test is no-fit polygon. The concept of no-fit polygon was introduced by
Art [31] in 1966, who used the term “shape envelope” to describe the po-
sitions where two items can be placed without intersection. Albano and
Sapuppo [32] proposed an algorithm to solve the irregular strip packing
problem with this geometric technique. This was the first paper that used

6 IRREGULAR PACKING PROBLEM 17

i

j

Rj

i

NFPi,j

Figure 10: An example of the no-fit polygon NFP i,j of convex items i and j

the term “no-fit polygon”. This concept is also known as Minkowski sums,
and is utilized in various fields such as motion planning for polygonal robots.

The no-fit polygon of item j relative to item i (NFP i,j) is the set of all
loci of the reference point of item j (denoted Rj) such that items i and j have
a common point when the position of item i is fixed (each item is considered
as the set of points on the boundary and inside it). If both items i and j
are convex, the boundary of NFP i,j is the trace of Rj when item j slides
along the boundary of item i. See Figure 10 for an example of the no-fit
polygon NFP i,j of convex polygons i and j. From the definition of no-fit
polygons, it follows that:

• if the reference point Rj of item j is placed in the interior of NFP i,j ,
then item j overlaps item i;

• if Rj is placed on the boundary of NFP i,j , then item j touches item i;

• if Rj is placed in the exterior of NFP i,j , then item j neither overlaps
nor touches item i.

The problem of finding the relative position of two polygons is trans-
formed into a simpler problem of finding the relative position of one point
and one polygon. To achieve a non-overlapping compact layout, each item
should have its reference point on the boundary of at least one no-fit polygon
and in the exterior of all the other no-fit polygons.

Albano and Sapuppo [32] proposed an algorithm to solve the irregular
strip packing problem using no-fit polygons. They approached the problem
using a bottom left algorithm which utilized the no-fit polygon to reduce
the geometric complexity of the packing process. Their algorithm places
each item one by one at the right frontier called the leading edge of the
current layout only, i.e., without hole filling capabilities. See Figure 11 for
an example of the leading edge and holes in a layout. Blazewicz et al. [33]
presented an extension of the work performed by Albano and Sapuppo [32].

6 IRREGULAR PACKING PROBLEM 18

holes

leading

edge

Figure 11: The leading edge and holes in a layout of irregular shapes

Their method is an extension of the bottom left fill algorithm; that is, their
approach attempts to fill holes in the existing layout before attempting to
place an item on the leading edge. Their algorithm utilizes the tabu search
technique to produce moves from one solution to another.

Oliveira et al. [34] also tackled the irregular strip packing problem us-
ing no-fit polygons. Their algorithm places all small items one by one at a
nonoverlapping position touching at least one item already placed. Several
criteria to choose the next item to place and its orientation were proposed
(in this article, they treated a problem such that each item can be rotated
by some fixed degrees). Different evaluation functions were also proposed to
evaluate partial solutions and to decide the position of each item. A total
of 126 variants of the algorithm, generated by the complete set of combina-
tions of criteria and evaluation functions, were computationally compared.
In their computational experiments, they solved several types of test in-
stances; test instances from a fabric cutting company, and a test instance
generated by Blazewicz et al. [33]. Oliveira et al. compared their results
against an implementation of Albano and Sapuppo’s algorithm [32], and
against results from Blazewicz et al. [33]. In some cases, their new algorithm
generated better solutions than the best known solutions in the literature;
more precisely, their algorithm generated solutions that ranged from 6.2%
better to 4% worse than the best known results.

Gomes and Oliveira [35] developed shape ordering heuristics for an ex-
tended irregular packing algorithm similar to that given by Oliveira et
al. [34]. The algorithm is improved by the introduction of the inner-fit
rectangle, which is derived from the concept of no-fit polygon and repre-
sents the feasible set of points for placing a new polygon inside the object.
In addition to this extension of geometric techniques, the paper introduces
a 2-exchange heuristic for manipulating a permutation that specifies the or-
der of placing items one by one. They generated some initial permutations
with various criteria, e.g., random, decreasing order of area, decreasing or-
der of the longest length of items, and improved them using the 2-exchange
heuristic over a number of iterations. In [35], they conducted thorough com-
putational experiments and compared the proposed algorithm with existing

7 CONCLUSIONS 19

algorithms. They improved almost all best known solutions for well-known
benchmark instances (except for an instance called SHAPE0).

Gomes and Oliveira [36] also developed a hybrid algorithm of simulated
annealing with linear programming (LP) technique to solve the irregular
strip packing problem. In this algorithm, a neighborhood structure based
on the exchange of items on the layout was used for SA. For a given layout
(which is neither feasible nor tight), they solved LP to locally optimize the
layout. Computational tests were conducted using 15 benchmark instances
that are commonly used in the literature, and the best results published so
far were improved for all instances by their new algorithm.

Burke et al. [37] proposed a heuristic algorithm for the irregular strip
packing problem with new shape overlap resolution techniques applied to
the given shapes directly (i.e., without reference to no-fit polygons). In this
article, they treated not only polygons (i.e., shapes with line representation)
but also shapes that incorporate circular arcs and holes, and proposed over-
lap resolution techniques for line & line, line & arc, and arc & arc. Items
are placed one by one according to a permutation (coded solution) with the
bottom left fill strategy, and tabu search is used in order to find a good
permutation. They conducted computational experiments on 26 existing
benchmark instances and 10 new test instances with items having circular
arcs and holes. Their technique produced 25 new best solutions for the 26
existing benchmark instances; most of them were found within 5 minutes on
a PC with a 2 GHz CPU.

7 Conclusions

In this chapter, we surveyed practical algorithms for the two-dimensional
rectangle packing problem and the irregular packing problem, both of which
have many industrial applications. For the rectangle packing problem, we
first introduced some coding schemes (in other words, how to represent a
solution) such as permutation, binary tree, sequence pair and bounded slice-
line grid. We then explained various heuristic and metaheuristic algorithms,
most of which are based on these coding schemes. For some representative
algorithms, we reported computational results on benchmark instances and
compared them. The irregular packing problem has also been studied ex-
tensively in the last decade. The main difference between rectangle and
irregular packing problems is that the intersection test between irregular
items is considerably more complex. To overcome this difficulty, some dif-
ferent types of methodologies have been proposed; no-fit polygon is one
of the representative and effective ones. We explained some heuristic and
metaheuristic algorithms based on these techniques for the irregular packing
problem.

The survey in this chapter is by no means comprehensive, but we hope

REFERENCES 20

this article gives valuable information to the readers who are interested
in devising practical algorithms for cutting and packing problems. Fortu-
nately, there have been many survey papers (thirty or more in these twenty
years) on cutting and packing problems; e.g., Dychhoff [1] and Wäscher et
al. [2] presented typologies of cutting and packing problems and categorized
existing literature, and Hopper and Turton [20] investigated heuristic and
metaheuristic algorithms for the rectangle packing problem.

References

[1] Dyckhoff, H., A typology of cutting and packing problems, Eur. J. of
Oper. Res., 44, 145, 1990.

[2] Wäscher, G., Haußner, H., and Schumann, H., An improved typology of
cutting and packing problems, Working Paper 24, Faculty of Economics
and Management, Guericke University Magdeburg, 2004.

[3] Lodi, A., Martello, S., and Vigo, D., Heuristic and metaheuristic ap-
proaches for a class of two-dimensional bin packing problems, IN-
FORMS J. on Comput., 11, 345, 1999.

[4] Wu, Y.L., Huang, W., Lau, S., Wong, C.K., and Young, G.H., An
effective quasi-human based heuristic for solving the rectangle packing
problem, Eur. J. of Oper. Res., 141, 341, 2002.

[5] Gilmore, P.C. and Gomory, R.E., Multistage cutting stock problems of
two and more dimensions, Oper. Res., 13, 94, 1965.

[6] Valdés, R.A., Parajón, A., and Tamarit, J.M., A tabu search algorithm
for large-scale guillotine (un)constrained two-dimensional cutting prob-
lems, Computers and Oper. Res., 29, 925, 2002.

[7] Vanderbeck, F., A nested decomposition approach to a three-stage, two-
dimensional cutting-stock problem, Management Sci., 47, 864, 2001.

[8] Morabito, R. and Morales, S., A simple and effective recursive proce-
dure for the manufacturer’s pallet loading problem, J. of the Oper. Res.
Society, 49, 819, 1998.

[9] Preas, B.T. and van Cleemput, W.M., Placement algorithms for arbi-
trarily shaped blocks, in Proc. of the DAC, 1979, 474.

[10] Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y., VLSI mod-
ule placement based on rectangle-packing by the sequence-pair, IEEE
Trans. on CAD, 15, 1518, 1996.

REFERENCES 21

[11] Takahashi, T., An algorithm for finding a maximum-weight decreasing
sequence in a permutation, motivated by rectangle packing problem,
Technical Report of the IEICE, VLD96, 1996, 31.

[12] Tang, X., Tian, R., and Wong, D.F., Fast evaluation of sequence pair in
block placement by longest common subsequence computation, IEEE
Trans. on CAD, 20, 1406, 2001.

[13] Imahori, S., Yagiura, M., and Ibaraki, T., Local search algorithms for
the rectangle packing problem with general spatial costs, Math. Prog.,
97, 543, 2003.

[14] Nakatake, S., Fujiyoshi, K., Murata, H., and Kajitani, Y., Module
packing based on the BSG-structure and IC layout applications, IEEE
Trans. on Computer Aided Design of Integrated Circuits and Systems,
17, 519, 1998.

[15] Guo, P.N., Takahashi, T., Cheng, C.K., and Yoshimura, T., Floor-
planning using a tree representation, IEEE Trans. on Computer Aided
Design of Integrated Circuits and Systems, 20, 281, 2001.

[16] Chang, Y.C., Chang, Y.W., Wu, G.M., and Wu. S.W., B*-trees: a new
representation for non-slicing floorplans, in Proc. of the DAC, 2000,
458.

[17] Sakanushi, K., Kajitani, Y., and Mehta, D.P., The quarter-state-
sequence floorplan representation, IEEE Trans. on Circuits and Sys.,
50, 376, 2003.

[18] Baker, B.S., Coffman Jr., E.G., and Rivest, R.L., Orthogonal packing
in two dimensions, SIAM J. on Comput., 9, 846, 1980.

[19] Burke, E.K., Kendall, G., and Whitwell, G., A new placement heuristic
for the orthogonal stock-cutting problem, Oper. Res., 52, 655, 2004.

[20] Hopper, E. and Turton, B.C.H., An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem, Eur. J. of
Oper. Res., 128, 34, 2001.

[21] Chazelle, B., The bottom-left bin-packing heuristic: an efficient imple-
mentation, IEEE Trans. on Computers, 32, 697, 1983.

[22] Jakobs, S., On genetic algorithms for the packing of polygons, Eur. J.
of Oper. Res., 88, 165, 1996.

[23] Liu, D. and Teng, H., An improved BL-algorithm for genetic algorithm
of the orthogonal packing of rectangles, Eur. J. of Oper. Res., 112, 413,
1999.

REFERENCES 22

[24] Dowsland, K., Some experiments with simulated annealing techniques
for packing problems, Eur. J. of Oper. Res., 68, 389, 1993.

[25] Lesh, N., Marks, J., McMahon, A., and Mitzenmacher, M., New heuris-
tic and interactive approaches to 2D rectangular strip packing, ACM
J. of Experimental Algorithmics, 10(1-2), 1, 2005.

[26] Imahori, S., Yagiura, M., and Ibaraki, T., Improved local search al-
gorithms for the rectangle packing problem with general spatial costs,
Eur. J. of Oper. Res., 167, 48, 2005.

[27] Bortfeldt, A., A genetic algorithm for the two-dimensional strip packing
problem with rectangular pieces, Eur. J. of Oper. Res., (to appear).

[28] Oliveira, J.F. and Ferreira, J.S., Algorithms for nesting problems, in
Applied Simulated Annealing, Vidal, R.V. (ed.), 1993, 255.

[29] Okano, H., A scanline-based algorithm for the 2D free-form bin packing
problem, J. of the Oper. Res. Soc. Japan, 45, 145, 2002.

[30] Dighe, R. and Jakiela, M.J., Solving pattern nesting problems with ge-
netic algorithms employing task decomposition and contact detection,
Evolutionary Computation, 3, 239, 1996.

[31] Art, R.C., An approach to the two dimensional irregular cutting stock
problem, Technical Report, 36-Y08, IBM Cambridge Scientific Center
Report, 1966.

[32] Albano, A. and Sapuppo, G., Optimal allocation of two-dimensional
irregular shapes using heuristic search methods, IEEE Trans. on Sys-
tems, Man and Cybernetics, 10, 242, 1980.

[33] Blazewicz, J., Hawryluk, P., and Walkowiak, R., Using a tabu search
for solving the two-dimensional irregular cutting problem, Annals of
Oper. Res., 41, 313, 1993.

[34] Oliveira, J.F., Gomes, A.M., and Ferreira, J.S., TOPOS – A new con-
structive algorithm for nesting problems, OR Spektrum, 22, 263, 2000.

[35] Gomes, A.M. and Oliveira, J.F., A 2-exchange heuristic for nesting
problems, Eur. J. of Oper. Res., 141, 359, 2002.

[36] Gomes, A.M. and Oliveira, J.F., Solving irregular strip packing prob-
lems by hybridising simulated annealing and linear programming, Eur.
J. of Oper. Res., (to appear).

[37] Burke, E.K., Hellier, R., Kendall, G., and Whitwell, G., A new bottom-
left-fill heuristic algorithm for the 2D irregular packing problem, Oper.
Res., (to appear).

