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Abstract

The generalized empirical likelihood (GEL) method produces a class of estima-
tors of parameters defined via general estimating equations. This class includes
several important estimators, such as empirical likelihood (EL), exponential tilting
(ET), and continuous updating estimators (CUE). We examine the information ge-
ometric structure of GEL estimators. We introduce a class of estimators closely
related to the class of minimum divergence (MD) estimators and show that there is
a one-to-one correspondence between this class and the class GEL.

Keywords and phrases: minimum divergence estimators, minimum discrepancy estima-
tors, f-divergence, implied probabilities, Lagrange duality.

1 Introduction

Let xi, i = 1, . . . , n be i.i.d. observations on a data vector x with unknown probability
distribution F0. Also, let θ be a p × 1 parameter vector of interest and let g(x, θ) be
a q × 1 estimating function of the data observation x and a parameter θ, where q ≥ p.
The model we consider assumes that there exists a unique true parameter θ0 such that
E[g(x, θ0)] = 0, where E[·] denotes expectation with respect to F0.

In this paper we consider generalized empirical likelihood (GEL) estimators (Smith
(1997)) as a class of estimators of θ and examine the information geometric structure of
this class.

GEL estimators are defined as follows: let ρ(v) be a concave function of a scalar v
whose domain is an interval V containing 0 as an interior point and which satisfies the
normalization conditions

ρ(0) = 0, ρ′(0) = ρ′′(0) = −1, (1)
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and then the GEL estimator is defined by

θ̃GEL = arg min
θ∈Θ

sup
λ∈Λn(θ)

1

n

n∑
i=1

ρ(λTg(xi, θ)), (2)

where Θ is a parameter space, and Λn(θ) := {λ |λTg(xi, θ) ∈ V , i = 1, . . . , n}. All GEL
estimators share the same first order asymptotic properties and the asymptotic variance
is equal to that of the efficient generalized method of moments estimators studied by
Hansen (1982).

GEL estimators include several important estimators suggested so far in the statistics
and econometrics literatures. As shown by Smith (1997), the empirical likelihood (EL)
estimator (Owen (1988), Qin and Lawless (1994)) and the exponential tilting (ET) esti-
mator (Kitamura and Stutzer (1997), Imbens, Spady, and Johnson (1998)) are members
of GEL estimators with ρ(v) = log(1 − v) and ρ(v) = 1 − ev, respectively. As shown by
Newey and Smith (2004), the continuous updating estimator (CUE) (Hasen, Heaton, and
Yaron (1996)) is also a GEL estimator with ρ(v) = −v2/2 − v.

Some GEL estimators are also members of the class of minimum divergence (MD)
estimators formulated by Corcoran (1998) 1. MD estimators are defined by using Csiszár’s
f -divergence (Csiszár (1967)). Let f(u) be a convex function of a scalar u satisfying
f(1) = 0 such that the domain of f(u) is an interval U containing 1 as an interior point.
For probability distributions P and Q, the f -divergence from P to Q is defined by

Df (P,Q) =

∫
p(x)f

(
q(x)

p(x)

)
dν(x), (3)

where p(x) and q(x) are the densities of P and Q, respectively, with respect to a measure
ν(x).

MD estimators are defined as follows: for fixed θ ∈ Θ, let df (θ) be the optimal value
of the convex optimization problem

min.
p1,...,pn

1

n

n∑
i=1

f(npi) s. t.
n∑

i=1

pig(xi, θ) = 0,
n∑

i=1

pi = 1. (4)

Then the MD estimator is given by θ̃MD = arg minθ∈Θ df (θ). For this problem, the
objective function

∑n
i=1 f(npi)/n is the f -divergence from the empirical likelihood to the

multinominal distribution {pi}n
i=1 which has the same support as the empirical likelihood.

Several important estimators are both GEL estimators and MD estimators. For exam-
ple, EL and ET estimators can be derived as solutions to the problem above, where f(u)
is − log u and u log u, respectively. In addition, as shown by Newey and Smith (2004),
MD estimators based on the α-divergence, which is a subclass of the f -divergence, can

1MD estimators are sometimes called “ minimum discrepancy ” estimators. However, since in this
paper some properties of divergence play an important role for elucidating properties of GEL estimators,
we use the term “divergence ” instead of “discrepancy ”.
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be formulated as GEL estimators 2. However, GEL estimators do not have to be MD
estimators, and furthermore, MD estimators based on an f -divergence other than the
α-divergence are not GEL estimators.

In this paper, in order to study the information geometric structure of GEL estimators,
we introduce a new class of estimators which have a structure similar to MD estimators.
We do this by utilizing divergences obtained by extending the f -divergence (3) to be
defined on measures instead of probability distributions and we consider estimators which
minimize the extended f -divergence from the empirical distribution to a discrete measure
3. We call them minimum extended divergence (MED) estimators and show that there is
a one-to-one correspondence between GEL and MED estimators.

We also show that MD and MED estimators coincide when we use the α-divergence
and that this fact results from an intrinsic property of the α-divergence. By using this
equivalence between MD and MED based on the α-divergence, we show that the class of
MD estimators based on the α-divergence is a subclass of GEL in a different way from
Newey and Smith (2004).

Finally, we investigate relations between implied probabilities associated with GEL
and discrete measures obtained by minimizing the extended f -divergences in MED. For
a given function ρ(v), the implied probability is defined by

π̃i =
ρ′(λ̃Tg(xi, θ̃GEL))∑n

i′=1 ρ′(λ̃Tg(xi′ , θ̃GEL))
, i = 1, . . . , n, (5)

where θ̃GEL and λ̃ are the saddle point of Eq.(2). Since implied probabilities take account
of the structure of the model, they are important for construction of more efficient empir-
ical estimates (Back and Brown (1993), Qin and Lawless (1994), Imbens (1997), Brown
and Newey (2002)). In general, π̃i may take negative values and these negative implied
probabilities sometimes cause problems in applications, such as the bootstrap method
(Brown and Newey (2002)). We show that the implied probability with a GEL estimator
is obtained by normalizing the discrete measure derived from the corresponding MED
to sum to 1, and we can prevent the implied probability from taking negative values by
considering only nonnegative measures for the corresponding MED.

The organization of this paper is as follows. In Section 2 we introduce a new class of
estimators, that is, MED estimators. In Section 3 we discuss the duality between GEL and
MED. Section 4 shows the equivalence between MD and MED based on the α-divergence.
Section 5 presents relations between implied probabilities and MED.

2In Newey and Smith (2004), Cressie-Read divergence (Cressie and Read (1984)) is used in place of the
α-divergence (Amari (1982)). These two divergences are equivalent under an appropriate transformation
of parameters indexing the divergences.

3In this paper, a “ measure ” means a finite signed measure and may take negative values
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2 Minimum extended divergence estimators

In this section, we introduce a class of estimators similar to MD estimators, which we call
minimum extended divergence (MED) estimators.

To define MED estimators, we use the extended f -divergence to measures, which is
obtained by modifying the f -divergence for probability distributions (3) (e.g., see Zhang
(2004)). Suppose that f(u) is continuously differentiable at u = 1. For a positive measure
P and a measure Q, the extended f -divergence from P to Q is defined by

D̄f (P,Q) =

∫
p(x)

{
f

(
q(x)

p(x)

)
− f ′(1)

(
q(x)

p(x)
− 1

)}
dν(x)

=

∫
p(x)f̄

(
q(x)

p(x)

)
dν(x),

(6)

where f̄(u) = f(u)−f ′(1)(u−1) and f̄(u) satisfies f̄(1) = f̄ ′(1) = 0. If P and Q are both
probability distributions, the extended f -divergence D̄f (P,Q) coincides with the original
f -divergence Df (P,Q). Note that if the domain of f̄(u) contains negative real numbers,
Q may not be a positive measure and q(x) may take negative values. In such a case, since
the domain of f(u) is the same as the domain of f̄(u), the original f -divergence (3) is
defined for a measure Q such that

∫
q(x)dν(x) = 1 and pi, i = 1, . . . , n in the problem (4)

may take negative values.
We define MED estimators as follows: for fixed θ ∈ Θ, let d̄f (θ) be the optimal value

of a convex optimization problem

min.
w1,...,wn

1

n

n∑
i=1

f̄(nwi) s. t.
n∑

i=1

wig(xi, θ) = 0. (7)

Then the MED estimator is defined by θ̃MED = arg minθ∈Θ d̄f (θ). Note that since
we do not impose the normalization constraint for {wi}n

i=1 and the domain of f̄(u) may
contain negative real numbers, the discrete measure {wi}n

i=1 is not necessarily a probability
distribution or even a positive measure.

3 Duality between GEL and MED

In this section, we show that Lagrange duality holds between GEL and MED and that
there is a one-to-one correspondence between the two classes of estimators. In this paper,
in order to simplify description, we assume that a convex function takes the value ∞
outside its domain, and similarly that a concave function takes the value −∞ outside its
domain.

First, we derive the Lagrange dual problem for the convex optimization problem (7)
in MED. The Lagrangian for the problem (7) is

L(w, λ) =
1

n

n∑
i=1

f̄(nwi) − λT

n∑
i=1

wig(xi, θ),
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where λ is the Lagrange multiplier for
∑n

i=1 wig(xi, θ) = 0. The objective function of the
dual problem is

inf
w1,...,wn

L(w, λ) = − 1

n

n∑
i=1

sup
wi

{
nwiλ

Tg(xi, θ) − f̄(nwi)
}

= − 1

n

n∑
i=1

f̄∗(λTg(xi, θ)),

where f̄∗(v) is the conjugate function of f̄(u) by the Fenchel-Legendre transformation,
i.e. f̄∗(v) = supu{uv− f̄(u)} and f̄∗(v) is a convex function whose domain V consists of v
for which the supremum is finite (e.g., see Rockafellar (1970)). Note that since f̄(u) takes
∞ outside its domain U , f̄∗(v) depends on U , which is not described explicitly. Letting
ρ(v) = −f̄∗(v), the Lagrange dual problem for the problem (7) can be written as

max.
λ

1

n

n∑
i=1

ρ(λTg(xi, θ)). (8)

Since ρ(v) is concave, minimizing the optimal value of this convex optimization problem
with respect to θ yields a GEL estimator if ρ(v) satisfies the normalization conditions (1).

Next, we consider the normalization conditions on f̄(u) corresponding to the normal-
ization conditions (1) on ρ(v). We assume that f̄(u) is twice continuously differentiable in
a neighborhood of 1 and that the inverse function of f̄ ′(u), (f̄ ′)−1(v), exists in the neigh-
borhood. From the definition of the conjugate function, for v ∈ V such that v = f̄ ′(u) in
the neighborhood, ρ(v) = −f̄∗(v) can be written as

ρ(v) = f̄((f̄ ′)−1(v)) − v(f̄ ′)−1(v),

and then we obtain

ρ′(v) = −(f̄ ′)−1(v) , ρ′′(v) = − 1

f̄ ′′((f̄ ′)−1(v))
.

From these equations, the normalization conditions (1) on ρ(v) can be written as

f̄(1) = f̄ ′(1) = 0, f̄ ′′(1) = 1. (9)

The first two normalization conditions above are required for the extended f -divergence
(6) to be well-defined. As long as f̄(u) satisfies these two normalization conditions and
f̄ ′′(1) > 0, the last normalization condition can always be imposed by replacing f̄(u) with
f̄(u)/f̄ ′′(1), which does not affect the MED estimator. As shown by Newey and Smith
(2004), under the normalization conditions (1) on ρ(v) and several regularity conditions,
then

min
θ∈Θ

sup
λ∈Λn(θ)

2
n∑

i=1

ρ(λTg(xi, θ))
d→ χ2

q−p (10)
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holds and this statistic can be used for testing the overidentified model, E[g(x, θ0)] = 0,
whereas the last normalization condition (9) on f̄(u) can be interpreted as the normal-
ization for the metric derived from the divergence. Eguchi (1983) provides a generic way
of constructing a metric from an arbitrary divergence on statistical manifolds. It is well
known that the f -divergence results in a metric proportional to Fisher’s information, and
that the metric coincides with Fisher’s information when f̄ ′′(1) = 1. Fisher’s information
is an important metric in the filed of information geometry and is given by the Kullback-
Leibler divergence, the α-divergence and other divergences used often in statistics (e.g.,
see Amari and Nagaoka (2000), Zhang (2004)).

In the rest of this section we show that there is a one-to-one correspondence between
the classes GEL and MED and that in fact the corresponding GEL and MED estimators
coincide. We suppose that the convex function f̄(u) is closed, i.e. that the epigraph of
f̄(u), {(u, t) | f̄(u) ≤ t }, is a closed set. Then the conjugate function of the conjugate
function of f̄(u) is the original function, i.e. f̄∗∗(u) = (−ρ)∗(u) = f̄(u) (e.g., see Rock-
afellar (1970)). Therefore we have a one-to-one correspondence via the Fenchel-Legendre
transformation between ρ(v) and f̄(u) satisfying the following Assumptions 1 and 2, re-
spectively, and thus we also have a one-to-one correspondence between GEL and MED
estimators via the respective functions.

Assumption 1. (i) −ρ(v) is closed. (ii) ρ(v) is concave. (iii) The domain of ρ(v), V, is
an interval containing 0 as an interior point. (iv) ρ(v) is twice continuously differentiable
in a neighborhood of 0. (v) ρ(v) satisfies the normalization conditions (1).

Assumption 2. (i) f̄(u) is closed. (ii) f̄(u) is convex. (iii) The domain of f̄(u), U , is
an interval containing 1 as an interior point. (iv) f̄(u) is twice continuously differentiable
in a neighborhood of 1. (v) f̄(u) satisfies the normalization conditions (9).

We now show that the corresponding GEL and MED estimators coincide.

Theorem 3. Suppose that ρ(v) and f̄(u) satisfy Assumption 1.(ii)-(v) and 2, respectively,
and f̄(u) = (−ρ)∗(u). Then for any θ ∈ Θ the optimal values of the convex optimization
problems (7) and (8) are equal, i.e.

inf
w1,...,wn

{
1

n

n∑
i=1

f̄(nwi)

∣∣∣∣∣
n∑

i=1

wig(xi, θ) = 0, nwi ∈ U , i = 1, . . . , n

}

= sup
λ

{
1

n

n∑
i=1

ρ(λTg(xi, θ))

∣∣∣∣∣λTg(xi, θ) ∈ V, i = 1, . . . , n

}
.

Here we assume that the left-hand side of the equation above takes the value ∞ if the
convex optimization problem (7) is infeasible and that the right-hand side takes the value
−∞ if the convex optimization problem (8) is infeasible. Thus the GEL estimator θ̃GEL

coincides with the MED estimator θ̃MED if both of them uniquely exist.
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Proof. First we show that the problem (7) for MED can be formulated as the Lagrange
dual problem of the problem (8) for the corresponding GEL. Introducing new variables
vi, i = 1, . . . , n, let us reformulate the problem (8) as

min.
λ,v1,...,vn

− 1

n

n∑
i=1

ρ(vi) s. t. vi = λTg(xi, θ). (11)

The Lagrangian of this problem is

L(λ, v, w) = − 1

n

n∑
i=1

ρ(vi) −
n∑

i=1

wi(vi − λTg(xi, θ)),

where wi, i = 1, . . . , n are the Lagrange multipliers for vi = λTg(xi, θ), i = 1, . . . , n.
Minimizing over λ we find that infλ L(λ, v, w) = −∞ unless wig(xi, θ) = 0, i = 1, . . . , n,
in which case we have

inf
λ,v1,...,vn

L(λ, v, w) = − 1

n

n∑
i=1

sup
vi

{
nwivi − (−ρ(vi))

}
= − 1

n

n∑
i=1

f̄(nwi).

Hence we obtain the problem (7) as the Lagrange dual problem of the problem (8). Since
λ = 0, vi = 0, i = 1, . . . , n is an interior feasible solution of the convex optimization
problem (11), strong duality holds (e.g., see Boyd and Vandenberghe (2004)). Therefore
the optimal value of the problem (11), which is equivalent to (8), is equal to the optimal
value of the problem (7). Thus we obtain the desired result.

Note that in Theorem 3 −ρ(v) is not assumed to be closed, in which case we do not
have a one-to-one correspondence between GEL and MED. We obtain the equivalence
between GEL and MED estimators without requiring a one-to-one correspondence.

Example 1 (Empirical likelihood). EL is an MD estimator by taking f(u) = − log u (U =
{u|u > 0}) and a GEL estimator by taking ρ(v) = log(1 − v) (V = {v|v < 1}). For these
ρ(v) and f(u), f̄(u) = (−ρ)∗(u) and f̄(u) = f(u)− f ′(1)(u− 1) coincide and both can be
expressed as f̄(u) = −1 + u − log u (U = {u|u > 0}).

Example 2 (Exponential tilting). ET is an MD estimator by taking f(u) = u log u (U =
{u|u > 0}) and a GEL estimator by taking ρ(v) = 1 − ev (V = R). For these ρ(v) and
f(u), f̄(u) = (−ρ)∗(u) and f̄(u) = f(u) − f ′(1)(u − 1) coincide as for the preceding
example, and both can be expressed as f̄(u) = −1 + u − log u (U = {u|u > 0}).

Example 3 (Continuous updating). CUE can be written as a GEL estimator by taking
ρ(v) = −v2/2 − v (V = R). For this ρ(v), we have that f̄(u) = u2/2 + u + 1/2 (U = R)
The corresponding f(u) can be written as f(u) = f̄(u) + a(u − 1) (U = R) for ∀a ∈ R.
If we set a = 1 particularly, the associated divergence is the α-divergence with α = 3, as
described in the following section.
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4 MD and MED based on the α-divergence

In this section we consider relations between MD and MED based on the α-divergence
and show that the MD and MED estimators coincide when we use the α-divergence

The α-divergence Df (α)(P,Q) is defined as a subclass of the f -divergence by using

a convex function f (α)(u) indexed by a scalar parameter α. Although Amari (1982)
introduces the α-divergence for probability distributions P and Q, in this paper we also
consider the case where a measure Q may not be a probability distribution and may take
negative values and therefore we consider two types of convex function, f

(α)
j (u), j = 1, 2

for the convex function f (α)(u). For α ∈ R, let

h(α)(u) =


4

1−α2

{
1 − u(1+α)/2

}
(α 6= ±1)

u log u (α = 1)

− log u (α = −1).

(12)

Also, let

U (α)
1 =

{
{u |u > 0} (α ≤ −1)

{u |u ≥ 0} otherwise
(13)

and

U (α)
2 =


{u |u > 0} (α ≤ −1)

R (α = 4k − 1, k = 1, 2, . . . )

{u |u ≥ 0} otherwise .

(14)

We define f
(α)
j (u) as

f
(α)
j (u) =

{
h(α)(u) (u ∈ U (α)

j )

∞ otherwise,
j = 1, 2. (15)

From this definition the two functions f
(α)
j (u), j = 1, 2 are convex and, where both are

defined, differ in value only when α = 4k− 1, k = 1, 2, . . . . Note that in that case f
(α)
1 (u)

is defined only for nonnegative reals, whereas f
(α)
2 (u) is defined for the whole of the

reals. Therefore the α-divergence based on f
(α)
1 (u), D

f
(α)
1

(P,Q), is defined for probability

distributions P and Q, whereas when α = 4k−1, k = 1, 2, . . . , the α-divergence based on
f

(α)
2 (u), D

f
(α)
2

(P,Q), is defined for a probability distribution P and a normalized measure

Q whose density q(x) may take negative values. Note that the two types of convex
function yield different MD estimators because the problem (4) for the class MD depends
on the domain of the convex function f(u) and that when α = 4k − 1, k = 1, 2, . . . ,

pi, i = 1, . . . , n may take negative values if we adopt f
(α)
2 (u).

Similarly we consider two types of extended α-divergence D̄f (α)(P,Q). For α ∈ R, let

h̄(α)(u) =


4

1−α2

{
1−α

2
+ 1+α

2
u − u(1+α)/2

}
(α 6= ±1)

1 − u + u log u (α = 1)

−1 + u − log u (α = −1).

(16)
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For f
(α)
j (u), j = 1, 2, the convex functions f̄

(α)
j (u) = f

(α)
j (u) − (f

(α)
j )′(1)(u − 1), j = 1, 2

can be written as

f̄
(α)
j (u) =

{
h̄(α)(u) (u ∈ U (α)

j )

∞ otherwise,
j = 1, 2, (17)

and both of them satisfy Assumption 2. When α = 4k − 1, k = 1, 2, . . . , the two types
of convex function give different MED (GEL) estimators as in the case of MD estimators

and the two concave functions ρ
(α)
j (v) = −(f

(α)
j )∗(v), j = 1, 2 are different because a

conjugate function depends on the domain of the original convex function. However, these
two concave functions have the same form in a neighborhood of 0 from the definition of
a conjugate function and this common function can be expressed as

ρ(α)(v) =


2

1+α

{
1 −

(
1 − 1−α

2
v
)−(1+α)/(1−α)

}
(α 6= ±1)

1 − ev (α = 1)

log(1 − v) (α = −1).

(18)

By setting α = −1 and 1, we obtain EL and ET, respectively. In addition, as described
in Example 4, by setting α = 3 and adopting f̄

(α)
2 (u) we obtain CUE.

Example 4 (Continuation of Example 3). We consider the case where α = 3. CUE is an

MED estimator by taking f̄
(3)
2 (u) and ρ

(3)
2 (v) = −(f̄

(3)
2 )∗(v) = −v2/2 − v for ∀v ∈ R. On

the other hand, for f̄
(3)
1 (u), ρ

(3)
1 (v) = −(f̄

(3)
1 )∗(v) can be written as

ρ
(3)
1 (v) =

{
−1

2
v2 − v v ≥ −1

1
2

v < −1

and ρ
(3)
1 (v) is different from ρ

(3)
2 (v) when v < −1. Therefore we find that utilizing f̄

(3)
1 (u)

results in a different estimator from CUE.

We show that minimization of the α-divergence for probability distributions is equiv-
alent to minimization of the extended α-divergence for measures in general settings. The
results given below do not depend on which convex functions we adopt, f

(α)
1 (u) or f

(α)
2 (u).

Therefore we write f (α)(u) without distinguishing f
(α)
1 (u) and f

(α)
2 (u), and write f̄ (α)(u)

without distinguishing f̄
(α)
1 (u) and f̄

(α)
2 (u). Let P be a probability distribution and

{Qξ|ξ ∈ Ξ} be a family of measures indexed by a parameter ξ such that each element Qξ

satisfies
∫

qξ(x)dν(x) = 1.

Theorem 4. For arbitrarily fixed α ∈ R, suppose that Df (α)(P,Qξ) can be defined for any
ξ ∈ Ξ. Then for arbitrarily fixed cp > 0 and cq > 0, ξ ∈ Ξ that minimizes Df (α)(P,Qξ)
coincides with ξ ∈ Ξ that minimizes D̄f (α)(cpP, cqQξ) if both of them uniquely exist.

Proof. From Eq.(15) and (17) we have

D̄f (−1)(cpP, cqQξ) =

∫ {
cqqξ(x) − cpp(x) + cpp(x) log

cpp(x)

cqqξ(x)

}
dν(x)

= cq − cp − cp log
cp

cq

+ cpDf (−1)(P,Qξ) ,

9



D̄f (1)(cpP, cqQξ) =

∫ {
cpp(x) − cqqξ(x) + cqqξ(x) log

cqqξ(x)

cpp(x)

}
dν(x)

= cp − cq + cq log
cq

cp

+ cqDf (1)(P,Qξ) ,

and for α 6= ±1

D̄f (α)(cpP, cqQξ) =
4

1 − α2

∫ {
1 − α

2
cpp(x) +

1 + α

2
cqqξ(x) − (cpp(x))

1−α
2 (cqqξ(x))

1+α
2

}
dν(x)

=
4

1 − α2

(
1 − α

2
cp +

1 + α

2
cq − c

1−α
2

p c
1+α

2
q

∫
p(x)

1−α
2 qξ(x)

1+α
2 dν(x)

)
=

4

1 − α2

(
1 − α

2
cp +

1 + α

2
cq − c

1−α
2

p c
1+α

2
q

)
+ c

1−α
2

p c
1+α

2
q Df (α)(P,Qξ).

Therefore for all α ∈ R, D̄f (α)(cpP, cqQξ) is monotone increasing with respect to Df (α)(P,Qξ)
and we have equivalence between the minimizations of D̄f (α)(cpP, cqQξ) and Df (α)(P,Qξ).

Theorem 5. For arbitrarily fixed α ∈ R, suppose that Df (α)(P,Qξ) can be defined for
any ξ ∈ Ξ. Then for arbitrarily fixed cp > 0, ξ ∈ Ξ that minimizes Df (α)(P,Qξ) coincides
with ξ ∈ Ξ that minimizes mincq∈R D̄f (α)(cpP, cqQξ) if both of them uniquely exist.

Proof. In order to obtain c̃q(ξ) minimizing D̄f (α)(cpP, cqQξ) for fixed ξ ∈ Ξ, we differen-
tiate D̄f (α)(cpP, cqQξ) with respect to cq. From Eq.(17) we have

∂

∂cq

D̄f (1)(cpP, cqQξ) = log
cq

cp

+ Df (1)(P,Qξ)

and for α 6= 1

∂

∂cq

D̄f (α)(cpP, cqQξ) =
2

1 − α

{
1 −

(
cp

cq

) 1−α
2

∫
p(x)

(
qξ(x)

p(x)

) 1+α
2

dν(x)

}
.

For α = 1, solving ∂D̄f (1)(cpP, cqQξ)/∂cq = 0 gives c̃q(ξ) = cp exp(−Df (1)(P,Qξ)) and we
have c̃q(ξ) > 0. For α 6= 1, we have

c̃q(ξ) = cp

{∫
p(x)

(
qξ(x)

p(x)

) 1+α
2

dν(x)

} 2
1−α

.

Since by Jensen’s inequality∫
p(x)

(
qξ(x)

p(x)

) 1+α
2

dν(x) ≥
(∫

qξ(x)dν(x)

) 1+α
2

= 1,

it is the case that c̃q(ξ) > 0 when α 6= 1 Therefore the desired result follows from Theorem
4.
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Applying Theorem 5 into the classes MD and MED, the following corollaries are
immediately obtained.

Corollary 6. The MD estimator θ̃MD with f (α)(u) coincides with the MED estimator
θ̃MED with f̄ (α)(u) if both of them uniquely exist.

Corollary 7. Suppose that for a fixed θ ∈ Θ there exist a unique optimal solution
{p̃i(θ)}n

i=1 of the convex optimization problem (4) with f (α)(u) and a unique optimal so-
lution {w̃i(θ)}n

i=1 of the convex optimization problem (7) with f̄ (α)(u). Then

w̃i(θ) =
p̃i(θ)∑n

i′=1 p̃i′(θ)
, i = 1, . . . , n,

holds.

Newey and Smith (2004) show that the MD estimator with f (α)(u) and the GEL esti-
mator with ρ(α)(v) coincide by comparing the first order conditions of the two estimators.
This result also follows from Theorem 3 and Corollary 6.

5 Implied probabilities

In this section, we consider relations between implied probabilities associated with GEL
and discrete measures derived from MED.

Firstly, we show that the solution of the problem (7) for MED can be obtained by
solving the problem (8) for the corresponding GEL. Note that in the following theorem
it is not assumed that f̄(u) is differentiable on its domain U .

Theorem 8. Suppose that ρ(v) and f̄(u) satisfy Assumption 1 and 2 respectively, ρ(v) =
−f̄∗(v) and that ρ(v) is differentiable on V. If for fixed θ ∈ Θ there exists an optimal
solution λ̃(θ) for the convex optimization problem (8), then

w̃i(θ) = − 1

n
ρ′(λ̃T(θ)g(xi, θ)) , i = 1, . . . , n (19)

is the optimal solution of the convex optimization problem (7).

Proof. We have
∑n

i=1 ρ′(λ̃T(θ)g(xi, θ))g(xi, θ) = 0 from the first order condition of the
problem (8) and we also have nw̃i(θ) ∈ U , i = 1, . . . , n since f̄(u) = (f̄∗)∗(u) and ρ′(v) =
−(f̄∗)′(v). Therefore {w̃i(θ)}n

i=1 in Eq.(19) is a feasible solution of the problem (7). Let
{wi(θ)}n

i=1 be any feasible solution of the problem (7) and ∂f̄(u) be a subdifferential of
f̄(u) at a point u, i.e. ∂f̄(u) := {v|f̄(u′) ≥ f̄(u) + v(u′ − u),∀ u′ ∈ U}. ∀vi ∈ ∂f̄(nw̃i(θ))
we have

n∑
i=1

f̄(nwi(θ)) −
n∑

i=1

f̄(nw̃i(θ)) ≥
n∑

i=1

vi(nwi(θ) − nw̃i(θ)). (20)
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Now from Eq.(19) and ρ(v) = −f̄∗(v), we have nw̃i(θ) = (f̄∗)′(λ̃T(θ)g(xi, θ)) and nw̃i(θ) ∈
∂f̄∗(λ̃T(θ)g(xi, θ)). Hence it follows from Theorem 23.5 in Rockafellar (1970) p.218 that
λ̃T(θ)g(xi, θ) ∈ ∂f̄(nw̃i(θ)). Therefore setting vi = λ̃T(θ)g(xi, θ) in Eq.(20) gives

n∑
i=1

f̄(nwi(θ)) −
n∑

i=1

f̄(nw̃i(θ)) ≥
n∑

i=1

λ̃T(θ)g(xi, θ)(nwi(θ) − nw̃i(θ)) = 0,

where the equality follows from the fact that {w̃i(θ)}n
i=1 and {wi(θ)}n

i=1 are feasible solu-
tions. Thus we obtain the desired result.

From Theorems 3 and 8, the implied probability (5) associated with GEL can be
written as π̃i = w̃i(θ̃MED)/

∑n
i′=1 w̃i′(θ̃MED), i = 1, . . . , n, where {w̃i(θ)}n

i=1 and θ̃MED are
the solutions of the problem (7) and the corresponding MED estimator, respectively. From

Corollaries 6 and 7, when we adopt f
(α)
j (u) in Eq.(15) in MD and ρ

(α)
j (v) = −(f̄

(α)
j )∗(v) in

GEL, we also have π̃i = p̃i(θ̃MD), i = 1, . . . , n, where {p̃i(θ)}n
i=1 and θ̃MD are the solution

of the problem (7) and the corresponding MD estimator, respectively.
From Theorem 8 we also find that the possibility of negative values for implied prob-

abilities results from the fact that a discrete measure in MED may take negative values.
Therefore we can remove this possibility by restricting the domain of f̄(u) to nonnegative

real numbers. For example, since f̄
(α)
2 (u) in Eq.(17) is defined for all real numbers when

α = 4k − 1, k = 1, 2, . . . , the implied probability with ρ
(α)
2 (v) may be negative; how-

ever, since f̄
(α)
1 (u) is defined only for nonnegative real numbers, the implied probability

with ρ
(α)
1 (v) is always nonnegative. In addition, since the problem (7) in MED is a con-

vex optimization problem, if the implied probability with ρ
(α)
2 (v) is nonnegative, i.e. the

optimal solution of the problem (7) in MED is positive, then the difference in domains

of f̄
(α)
1 (u) and f̄

(α)
2 (u) does not affect the optimal solutions of the problem (7) and the

implied probability with ρ
(α)
1 (v) coincides with the implied probability with ρ

(α)
2 (v).

Example 5 (Continuation of Example 3 and 4). The implied probability associated with

ρ
(3)
2 (v) may take negative values, whereas the implied probability associated with ρ

(3)
1 (v)

is always nonnegative. Note that the domain of ρ
(3)
1 (v) is the entire set of real numbers

and ρ
(3)
1 (v) is differentiable on this domain, although the domain of f̄

(3)
1 (u) is the set of

nonnegative real numbers and f̄
(3)
1 (u) is not differentiable at u = 0. The derivative of

ρ
(3)
1 (v) can be written as

(ρ
(3)
1 )′(v) =

{
−v − 1 v ≥ −1

0 v < −1.

We find that since −(ρ
(3)
1 )′(v) is nonnegative ∀v ∈ V , the associated implied probability

is always nonnegative from the definition of implied probabilities (5).
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