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Abstract

The concept of jump system, introduced by Buchet and Cunningham (1995), is a
set of integer points with a certain exchange property. In this paper, we discuss sev-
eral linear and convex optimization problems on jump systems and show that these
problems can be solved in polynomial time under the assumption that a membership
oracle for a jump system is available. We firstly present a polynomial-time imple-
mentation of the greedy algorithm for the minimization of a linear function. We then
consider the minimization of a separable-convex function on a jump system, and pro-
pose the first polynomial-time algorithm for this problem. The algorithm is based on
the domain reduction approach developed in Shioura (1998). We finally consider the
concept of M-convex functions on constant-parity jump systems which has been re-
cently proposed by Murota (2006). It is shown that the minimization of an M-convex
function can be solved in polynomial time by the domain reduction approach.

1 Introduction

The concept of jump system, introduced by Buchet and Cunningham [7], is a set of
integer points with a certain exchange property (to be described in Section 2); see also
[9, 13, 18]. It is a generalization of a matroid [17, 24, 27], a delta-matroid [6, 8], and the
base polyhedron of an integral polymatroid (or a submodular system) [11, 24, 27]. Jump
systems have various examples (see [7, 9, 13, 18]); in particular, the degree sequences
of subgraphs of a graph is a fundamental example of jump systems. In this paper, we
investigate the following linear and convex optimization problems on jump systems:

(LFMin) minimization of a linear function on a jump system,
(ScFMin) minimization of a separable-convex function on a jump system,
(McFMin) minimization of an M-convex function on a constant-parity jump system.

The main aim of this paper is to show that these problems can be solved in polynomial
time under the assumption that a membership oracle for a jump system is available.
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†Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan.
kenitiro@misojiro.t.u-tokyo.ac.jp.

1



1.1 Linear Optimization on Jump Systems

We discuss the greedy algorithm for the problem (LFMin) in Section 3. It is shown [7]
(see also [9, 13, 18]) that the problem (LFMin) can be solved by a greedy algorithm. The
greedy algorithm finds an optimal solution by iteratively calling a procedure for solving
a problem of minimizing (or maximizing) some component of a vector on a jump system.
However, the time-complexity of the greedy algorithm is not analyzed in [7, 9, 13, 18],
and it is not known so far whether the greedy algorithm runs in polynomial time or not,
provided a membership oracle for a jump system is available.

In this paper, we show that the greedy algorithm runs in polynomial time. In partic-
ular, we present an implementation of the procedure mentioned above and prove that the
procedure runs in polynomial time.

1.2 Convex Optimization on Jump Systems

In Section 4, we consider two convex optimization problems (ScFMin) and (McFMin),
and propose polynomial-time algorithms for these problems.

We first consider the problem (ScFMin) in Section 4.1. A canonical example of this
problem arises from the minimization of a separable convex function on the degree se-
quences of an undirected graph; a related problem called the minsquare factor problem
is discussed in [4, 5]. The problem (ScFMin) is studied in [3], where a local criterion for
optimality as well as a greedy algorithm is given. Although it is shown that the greedy
algorithm runs in pseudo-polynomial time, it is not known so far whether the problem
(ScFMin) can be solved in polynomial time.

On the other hand, some special cases of (ScFMin) can be solved in polynomial time.
One of such cases is the problem on integral base polyhedra, which is extensively discussed
and several efficient algorithms have been proposed [14, 15, 20]. Another well-solved case
is the problem on integral bisubmodular polyhedra, to which Fujishige [10] applied a min-
max theorem for bisubmodular polyhedra and developed a polynomial-time algorithm.

In this paper, we present the first polynomial-time algorithm for the problem (ScFMin).
Our algorithm is based on the domain reduction approach [25], which is originally devel-
oped for the minimization of a class of discrete convex functions called M-convex functions
on base polyhedra [21]. One of the key properties to the domain reduction approach is
the “minimizer cut property,” which states that a given feasible vector can be easily sep-
arated from an optimal solution. We show that the minimizer cut property indeed holds
for the problem (ScFMin). By repeatedly applying the minimizer cut property to appro-
priately chosen feasible vectors, we show that the algorithm finds an optimal solution in
polynomial time.

We then discuss in Section 4.2 an application of our algorithm to the problem of finding
least weakly sub- and supermajorized elements. The concept of (weak) majorization plays
a fundamental role in fair resource allocation and related problems (see [19]), and it is
shown that any jump system has least weakly sub- and supermajorized elements [1]. By
using our algorithm as well as the result in [1], we show that the problem of finding least
weakly sub- and supermajorized elements in jump systems can be solved in polynomial
time.

We finally consider the problem (McFMin) in Section 4.3. The concept of M-convex
functions is originally introduced by Murota [21] for functions defined on base polyhedra,
and recently generalized for functions defined on constant-parity jump systems [22], with
a view to providing a general framework for the minsquare factor problem on undirected
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graphs [4, 5]. Examples of M-convex functions on constant-parity jump systems include
a nonseparable convex function arising from the minimum weight perfect b-matching
problem as well as a separable-convex function on the degree sequences of an undirected
graphs (see Section 2). Fundamental properties of M-convex functions on constant-parity
jump systems are investigated in [16, 22, 23], where it is shown that a local optimality
criterion guarantees global optimality and that a greedy algorithm solves the problem
(McFMin) in pseudo-polynomial time.

In this paper, we present the first polynomial-time algorithm for the problem (McFMin),
which is also based on the domain reduction approach. In fact, the minimizer cut prop-
erty for (McFMin) is already shown in [23]. By using this fact, we show that a variant
of the polynomial-time algorithm for (ScFMin) finds an optimal solution of (McFMin) in
polynomial time.

2 Preliminaries on Jump Systems

Let V be a nonempty finite set, and put n = |V |. We denote the set of reals and integers
by R and by Z, respectively. Also, we denote by Z+ the set of nonnegative integers. For
x = (x(v) | v ∈ V ) ∈ RV , we define

x(Y ) =
∑

v∈Y

x(v) (Y ⊆ V ), ||x||1 =
∑

v∈V

|x(v)|, supp(x) = {v ∈ V | x(v) 6= 0}.

We denote by 0 the zero vector in RV . For u ∈ V we denote by χu the characteristic
vector of u, with χu(u) = 1 and χu(v) = 0 for v 6= u. We denote by N1 the set of all
integral vectors x with ||x||1 = 1, i.e., N1 = {+χv,−χv | v ∈ V }. For a nonempty finite
set S ⊆ ZV , we define the size Φ(S) of S by

Φ(S) = max
x,y∈S

||x − y||1 (= max
v∈V

{
max
y∈S

y(v) − min
y∈S

y(v)
}
).

For x, y ∈ ZV , a vector s ∈ N1 is said to be an (x, y)-increment if it satisfies ||(x+s)−
y||1 = ||x − y||1 − 1. We denote by inc(x, y) the set of all (x, y)-increments. A nonempty
set J ⊆ ZV is said to be a jump system if it satisfies the following exchange axiom:

(J-EXC0) For any x, y ∈ J and for any s ∈ inc(x, y), if x + s /∈ J then there
exists t ∈ inc(x + s, y) such that x + s + t ∈ J .

A set J ⊆ ZV is said to be a constant-parity system if x(V )−y(V ) is even for any x, y ∈ J .
We here mention some elementary operations which preserve the property (J-EXC0).

Jump systems are closed under reflection.

Proposition 2.1 ([7]). Let J ⊆ ZV be a jump system and u ∈ V . Then, the set

Ju = {y ∈ ZV | ∃x ∈ J s.t. y(u) = −x(u), y(v) = x(v) (v ∈ V \ {u})}

is a jump system.

For any vectors a, b ∈ ZV with a ≤ b, we define a box [a, b] by

[a, b] = {x ∈ ZV | a(v) ≤ x(v) ≤ b(v) (v ∈ V )}.
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Proposition 2.2 (cf. [7]). Let J ⊆ ZV be a jump system, and a, b ∈ ZV be vectors with
a ≤ b. Then, J ∩ [a, b] is a jump system if it is nonempty

A univariate function ϕ : Z → R is convex if it satisfies

2ϕ(α) ≤ ϕ(α − 1) + ϕ(α + 1) (∀α ∈ Z).

A function f : ZV → R is said to be separable-convex if it is a function of the form
f(x) =

∑
v∈V fv(x(v)) with univariate convex functions fv : Z → R (v ∈ V ). The sum of

squares f(x) =
∑

v∈V (x(v))2 is a special case of a separable-convex function.
Let J ⊆ ZV be a constant-parity jump system. A function f : J → R is said to be

M-convex if it satisfies the following property:

For any x, y ∈ J and for any s ∈ inc(x, y), there exists t ∈ inc(x + s, y) such
that x + s + t ∈ J , y − s − t ∈ J , and

f(x) + f(y) ≥ f(x + s + t) + f(y − s − t).

We note that the exchange axiom:

(J-EXC) For any x, y ∈ J and for any s ∈ inc(x, y), there exists t ∈ inc(x +
s, y) such that x + s + t ∈ J and y − s − t ∈ J

characterizes a constant-parity jump system, a fact credited to J. Geelen (see [22] for a
proof).

Proposition 2.3. A nonempty set J ⊆ ZV is a constant-parity jump system if and only
if it satisfies (J-EXC).

Examples of jump systems and M-convex functions follow.

Example 2.4. Let G = (V, E) be an undirected graph that may contain loops and
parallel edges. For a subgraph H = (V, F ) of G, denote its degree sequence by degH =∑

{χu + χv | (u, v) ∈ F} ∈ ZV . It is well known [7, 9, 13, 18] that

J = {degH | H is a subgraph of G}

forms a constant-parity jump system, called the degree system of G. Minimization of a
separable-convex function on the degree system J has been investigated in [4, 5].

Given a edge weight function w : E → R, we define a function f : J → R by

f(x) = min{
∑

e∈F

w(e) | H = (V, F ) is a subgraph of G with degH = x},

which represents the minimum weight of a subgraph with degree sequence x. Then, f is
an M-convex function on a constant-parity jump system [22].

Example 2.5 ([23]). Let G = (V, E) be an undirected graph that may have loops, but
no parallel edges. Let w : E → R be an edge weight function, and c : E → Z+ be an
edge capacity function. We define J ⊆ ZV as the set of vectors x ∈ ZV such that a
c-capacitated perfect x-matching exists in G, i.e., such that there exists λ ∈ ZE satisfying

∑
{λ(e) | edge e is incident to v} = x(v) (∀v ∈ V ), 0 ≤ λ(e) ≤ c(e) (∀e ∈ E).
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Then, J is a constant-parity jump system.
We then define a function f : J → R as the minimum weight of a c-capacitated perfect

x-matching, i.e.,

f(x) = min

{∑

e∈E

λ(e)w(e)
∣∣∣∣

∑
{λ(e) | edge e is incident to v} = x(v) (∀v ∈ V ),

λ(e) ∈ Z, 0 ≤ λ(e) ≤ c(e) (∀e ∈ E)

}
.

Then, f is an M-convex function on a constant-parity jump system. Moreover, the func-
tion f̃ : J → R given as

f̃(x) = f(x) +
∑

v∈V

fv(x(v)),

where fv : Z → R (v ∈ V ) is a family of univariate convex functions, is also M-convex.

3 Polynomiality of the Greedy Algorithm for Linear Opti-
mization on Jump Systems

In this section, we consider the problem of minimizing a linear function on a jump system:

(LFMin) Minimize wT x subject to x ∈ J,

where w ∈ RV and J is a finite jump system. We show that the greedy algorithm for the
problem (LFMin) runs in polynomial time. We assume that a membership oracle for the
jump system J is available.

3.1 Greedy Algorithm

It is shown [7, 18] that the problem (LFMin) can be solved by the following greedy
algorithm:

Algorithm Greedy
Step 0: Let x0 be any vector in J . Put J0 = J . Order the elements in V = {v1, v2, . . . , vn}
so that

|w(v1)| ≥ · · · ≥ |w(vk)| > |w(vk+1)| = · · · = |w(vn)| = 0.

Step 1: For i = 1, 2, . . . , k, do the following:
Step 1-1: Compute the value αi ∈ Z given by

αi =
{

min{y(vi) | x ∈ Ji−1} (if wi > 0),
max{y(vi) | x ∈ Ji−1} (if wi < 0).

Step 1-2: Let xi be any vector in Ji−1 with xi(vi) = αi.
Put Ji = {y ∈ Ji−1 | y(vi) = αi}.

Step 2: Output xk.

Theorem 3.1 ([7, 18]). The algorithm Greedy outputs an optimal solution of (LFMin).

We show that the algorithm Greedy runs in polynomial time.

Theorem 3.2. The algorithm Greedy finds an optimal solution of (LFMin) in O(n2 log Φ(J))
time, provided a vector in J is given.
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Proof. The most time-consuming part is the computation of αi in Step 1-1, which can be
done in O(n log Φ(J)) time by using the vector xi−1, as shown later in Section 3.2. Hence,
the algorithm Greedy runs in O(n2 log Φ(J)) time.

In the next section we explain in details how to compute αi in O(n log Φ(J)) time.

3.2 Computation of Upper and Lower Bounds of Jump Systems

We present two procedures to compute the values max{y(u) | y ∈ J} and min{y(u) | y ∈
J} in polynomial time for a finite jump system J ⊆ ZV and an element u ∈ V .

Procedure Upper Bound(J, u)
Step 0: Let x := x0 be an initial vector in J .
Step 1: Put x := x + ᾱχu, where ᾱ = max{α ∈ Z+ | x + αχu ∈ J}.
Step 2: For each v ∈ V \ {u}, do the following:

Step 2-1: Put x := x + β̄v(χu + χv), where β̄v = max{β ∈ Z+ | x + β(χu + χv) ∈ J}.
Step 2-2: Put x := x + γ̄v(χu − χv), where γ̄v = max{γ ∈ Z+ | x + γ(χu − χv) ∈ J}.

Step 3: Output x.

Procedure Lower Bound(J, u)
Step 0: Let x := x0 be an initial vector in J .
Step 1: Put x := x − ᾱχu, where ᾱ = max{α ∈ Z+ | x − αχu ∈ J}.
Step 2: For each v ∈ V \ {u}, do the following:

Step 2-1: Put x := x+ β̄v(−χu +χv), where β̄v = max{β ∈ Z+ | x+β(−χu +χv) ∈ J}.
Step 2-2: Put x := x+ γ̄v(−χu −χv), where γ̄v = max{γ ∈ Z+ | x+ γ(−χu −χv) ∈ J}.

Step 3: Output x.

Theorem 3.3. For a finite jump system J and u ∈ V , the procedure Upper Bound(J, u)
(resp., Lower Bound(J, u)) finds a vector x ∈ J satisfying x(u) = max{y(u) | y ∈ J}
(resp., x(u) = min{y(u) | y ∈ J}) in O(n log Φ(J)) time, provided a vector x0 ∈ J is
given.

The proof of Theorem 3.3 is given below in Sections 3.2.1 and 3.2.2.

Corollary 3.4. Suppose that J is a jump system given as the intersection J = J̃∩ [a, b] of
another jump system J̃ and a box [a, b], and that a membership oracle for J̃ is available.
For any u ∈ V , we can find vectors x, x′ ∈ J with x(u) = max{y(u) | y ∈ J} and
x′(u) = min{y(u) | y ∈ J} in O(n log Φ(J)) time, provided a vector in J is given.

Proof. Although it takes O(n) time to check whether a given vector is contained in J̃ ∩
[a, b], we can implement the procedures Upper Bound(J, u) and Lower Bound(J, u)
so that they run in O(n log Φ(J)) time.

When the procedures need to check whether x ∈ J̃ ∩ [a, b], the vector x is of the form
x = y + α(χu ± χv) with y ∈ J̃ ∩ [a, b], α ∈ Z+, and v ∈ V . Hence, we have x ∈ J̃ ∩ [a, b]
if and only if x ∈ J̃ , a(u) ≤ x(u) ≤ b(u), and a(v) ≤ x(v) ≤ b(v), which can be checked
in constant time. This shows that the procedures run in O(n log Φ(J)) time for the jump
system J = J̃ ∩ [a, b] as well.
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3.2.1 Validity

We show the validity of the procedure Upper Bound(J, u). The validity of Lower Bound(J, u)
can be shown similarly and therefore omitted.

Lemma 3.5. Let x ∈ J and u ∈ V . Suppose that x + χu + t /∈ J holds for all t ∈
(N1 ∪ {0}) \ {−χu}. Then, we have x(u) = max{y(u) | y ∈ J}.

Proof. Assume, to the contrary, that there exists some x′ ∈ J with x′(u) > x(u). Since
x + χu /∈ J by assumption, (J-EXC0) implies that there exists some t ∈ inc(x + χu, x′)
such that x + χu + t ∈ J , a contradiction since t ∈ N1 \ {−χu}.

Lemma 3.6. Let u ∈ V , and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}

|x(v) − y(v)| + 1.

Then, we have {x + χu, x + 2χu} ∩ J 6= ∅.

Proof. We prove the claim by induction on the value ||x − y||1.
We first consider the case where x(v) = y(v) for all v ∈ V \{u}, which contains the base

case where ||x− y||1 = 1. Then, (J-EXC0) for x and y implies {x + χu, x + 2χu} ∩ J 6= ∅.
We then assume that x(w) 6= y(w) for some w ∈ V \ {u}, where it may be assumed

that x(w) < y(w). Since −χw ∈ inc(y, x), (J-EXC0) for y and x implies that there exists
t ∈ inc(y − χw, x) ∪ {0} such that y′ = y − χw + t ∈ J . The vector y′ satisfies

y′(u) − x(u) ≥ y(u) − x(u) − 1 ≥
∑

v∈V \{u}

|x(v) − y(v)| ≥
∑

v∈V \{u}

|x(v) − y′(v)| + 1

and ||y′−x||1 < ||y−x||1. Hence, the induction hypothesis implies {x+χu, x+2χu}∩J 6=
∅.

Lemma 3.7. Let u ∈ V , and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}

|x(v) − y(v)|.

If {x + χu, x + 2χu} ∩ J = ∅, then {y + χu, y + 2χu} ∩ J = ∅.

Proof. Suppose, to the contrary, that {y + χu, y + 2χu} ∩ J 6= ∅ and let y′ ∈ {y + χu, y +
2χu} ∩ J . Then, we have y′(u) − x(u) ≥

∑
v∈V \{u} |x(v) − y′(v)| + 1, and therefore

{x + χu, x + 2χu} ∩ J 6= ∅ by Lemma 3.6, a contradiction.

Lemma 3.8. Let u,w ∈ V be distinct elements, and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}

|x(v) − y(v)|, |x(w) − y(w)| ≥ 1.

(i) If x(w) < y(w), then {x + χu, x + 2χu, x + χu + χw} ∩ J 6= ∅.
(ii) If x(w) > y(w), then {x + χu, x + 2χu, x + χu − χw} ∩ J 6= ∅.
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Proof. We prove (i) by induction on the value ||x − y||1. The claim (ii) can be shown
similarly.

We first consider the case where x(v) = y(v) holds for all v ∈ V \ {u,w}, which
contains the base case where ||x − y||1 = 2. Then, y = x + αχu + βχw for some positive
integers α and β with α ≥ β. Since +χu ∈ inc(x, y), (J-EXC0) for x and y implies
{x + χu, x + 2χu, x + χu + χw} ∩ J 6= ∅.

We then assume x(v′) 6= y(v′) for some v′ ∈ V \ {u,w}, where we may assume
x(v′) < y(v′). Since −χv′ ∈ inc(y, x), (J-EXC0) for y and x implies y′ = y − χv′ + t ∈ J
for t ∈ inc(y − χv′ , x) ∪ {0}.

[Case 1: t 6= −χu] y′ satisfies

y′(u) − x(u) = y(u) − x(u) ≥
∑

v∈V \{u}

|x(v) − y(v)| ≥
∑

v∈V \{u}

|x(v) − y′(v)| + 1.

Hence, we have {x + χu, x + 2χu} ∩ J 6= ∅ by Lemma 3.6.
[Case 2: t = −χu] We have

y′(u) − x(u) = y(u) − x(u) − 1 ≥
∑

v∈V \{u}

|x(v) − y(v)| − 1 =
∑

v∈V \{u}

|x(v) − y′(v)|,

and y′(w) = y(w) > x(w). Since ||y′ − x||1 = ||y − x||1 − 2, the induction hypothesis
implies {x + χu, x + 2χu, x + χu + χw} ∩ J 6= ∅.

Lemma 3.9. Let u,w ∈ V be distinct elements, and x, y ∈ J be vectors such that

y(u) − x(u) ≥
∑

v∈V \{u}

|x(v) − y(v)|.

Then, we have the following:
(i) If {x + χu, x + 2χu, x + χu + χw} ∩ J = ∅, then y + χu + χw /∈ J .
(ii) If {x + χu, x + 2χu, x + χu − χw} ∩ J = ∅, then y + χu − χw /∈ J .

Proof. We prove (i) only. Assume, to the contrary, that y′ = y + χu + χw ∈ J .
We first consider the case where y(w) ≥ x(w). Then,

y′(u) − x(u) = y(u) − x(u) + 1 ≥
∑

v∈V \{u}

|x(v) − y(v)| + 1 =
∑

v∈V \{u}

|x(v) − y′(v)|

and y′(w)−x(w) = y(w)−x(w)+1 > 0. Hence, Lemma 3.8 implies {x+χu, x+2χu, x+
χu + χw} ∩ J 6= ∅, a contradiction.

We then consider the case where y(w) < x(w). Then,

y′(u) − x(u) = y(u) − x(u) + 1 ≥
∑

v∈V \{u}

|x(v) − y(v)| + 1 =
∑

v∈V \{u}

|x(v) − y′(v)| + 2.

Hence, Lemma 3.6 implies {x + χu, x + 2χu} ∩ J 6= ∅, a contradiction.

Lemma 3.10. The procedure Upper Bound(J, u) finds a vector x ∈ J satisfying x(u) =
max{y(u) | y ∈ J}.
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Proof. By the definition of ᾱ, we have {x + χu, x + 2χu} ∩ J = ∅ just immediately after
Step 1. Therefore, {x + χu, x + 2χu} ∩ J = ∅ holds during the iterations in Step 2 by
Lemma 3.7. Similarly, we have x+χu +χw /∈ J (resp., x+χu−χw /∈ J) just immediately
after Step 2-1 (resp., Step 2-2) with v = w is performed, and therefore x + χu + χw /∈ J
(resp., x + χu − χw /∈ J) holds in the following iterations in Step 2 by Lemma 3.9. At
the end of procedure, the vector x satisfies x + χu + t /∈ J for all t ∈ (N1 ∪ {0}) \ {−χu}.
Hence, Lemma 3.5 implies x(u) = max{y(u) | y ∈ J}.

3.2.2 Time Complexity

We then analyze the time complexity of the procedure Upper Bound(J, u). The analysis
of Lower Bound(J, u) is similar and therefore omitted.

Lemma 3.11. Let x ∈ J and u ∈ V , and put ᾱ = max{α ∈ Z+ | x + αχu ∈ J}. Then,
we have {x + αχu, x + (α + 1)χu} ∩ J 6= ∅ for any α ∈ Z with 0 ≤ α < ᾱ.

Proof. The claim follows immediately from (J-EXC0).

Lemma 3.12. Let x ∈ J , and u,w ∈ V be distinct elements. Suppose that {x + χu, x +
2χu} ∩ J = ∅.
(i) Let β̄w = max{β ∈ Z+ | x+β(χu +χw) ∈ J}. Then, x+β(χu +χw) ∈ J for all β ∈ Z
with 0 ≤ β ≤ β̄w.
(ii) Let γ̄w = max{γ ∈ Z+ | x+γ(χu −χw) ∈ J}. Then, x+γ(χu −χw) ∈ J for all γ ∈ Z
with 0 ≤ γ ≤ γ̄w.

Proof. We prove (i) only. It suffices to show that for any positive integer β with x +
β(χu + χw) ∈ J , it holds that x + (β − 1)(χu + χw) ∈ J . By (J-EXC0) applied to
y = x + β(χu + χw) and x, we have y − χw + t ∈ J for some t ∈ {0,−χu,−χw}. Since
{x + χu, x + 2χu} ∩ J = ∅, it follows from Lemma 3.6 that {y − χw, y − 2χw} ∩ J = ∅.
Therefore, we have y − χw − χu = x + (β − 1)(χu + χw) ∈ J .

Lemma 3.13. For any u ∈ V , the procedure Upper Bound(J, u) runs in O(n log Φ(J))
time, provided a vector x0 ∈ J is given.

Proof. By Lemma 3.11, the value ᾱ in Step 1 can be computed in O(log Φ(J)) time by a
variant of binary search. Similarly, we can compute β̄v and γ̄v (v ∈ V \ {u}) by binary
search in O(log Φ(J)) time by Lemma 3.12. Hence, the claim follows.

This concludes the proof of Theorem 3.3.

4 Polynomial-Time Algorithms for Convex Optimization
on Jump Systems

In this section, we consider the following two convex optimization problems on jump
systems. The first problem is the minimization of a separable-convex function on a jump
system:

(ScFMin) Minimize f(x) ≡
∑

v∈V

fv(x(v)) subject to x ∈ J,
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where fv : Z → R (v ∈ V ) is a family of univariate convex functions and J is a finite
jump system. The second problem is the minimization of an M-convex function on a
constant-parity jump system:

(McFMin) Minimize f(x) subject to x ∈ J,

where J ⊆ ZV is a finite constant-parity jump system and f : J → R is an M-convex
function. For both of the problems, we assume that a membership oracle for J and an
oracle for evaluating the function value of f are available. We present polynomial-time
algorithms for the two problems.

4.1 A Polynomial-Time Algorithm for Minimizing a Separable-Convex
Function on a Jump System

We first show some properties for optimal solutions of the problem (ScFMin). The global
optimality of the problem (ScFMin) is characterized by a local optimality.

Theorem 4.1 ([3, Corollary 4.2]). A vector x ∈ J is an optimal solution of (ScFMin)
if and only if f(x) ≤ f(x + s + t) for all s ∈ N1 and t ∈ N1 ∪ {0} with x + s + t ∈ J .

The next property shows that a given nonoptimal vector in J can be easily separated
from an optimal solution.

Theorem 4.2 (minimizer cut property for (ScFMin)). Let x ∈ J be a vector which
is not an optimal solution of (ScFMin). Suppose that s∗ ∈ N1 satisfies

s∗ ∈ arg min{f(x + s) | s ∈ N1, ∃t ∈ N1 ∪ {0} s.t. x + s + t ∈ J

and f(x + s + t) < f(x)}. (4.1)

Then, there exists an optimal solution x∗ of (ScFMin) satisfying
{

x∗(u) ≤ x(u) − 1 (if s∗ = −χu),
x∗(u) ≥ x(u) + 1 (if s∗ = +χu).

The proof of Theorem 4.2 will be given in Section 4.4.1.
Our algorithm maintains a box [a, b] containing an optimal solution of (ScFMin). Note

that J ∩ [a, b] is a jump system by Proposition 2.2. The box [a, b] is reduced iteratively by
using the minimizer cut property (Theorem 4.2), and finally an optimal solution is found.

Given a finite set J ⊆ ZV , we define a set J◦ ⊆ ZV by

J◦ = J ∩ [a◦J , b◦J ], (4.2)

where

aJ(v) = min{y(v) | y ∈ J}, bJ(v) = max{y(v) | y ∈ J} (v ∈ V ),

a◦J(v) =
⌊(

1 − 1
n

)
aJ(v) +

1
n

bJ(v)
⌋

, b◦J(v) =
⌈

1
n

aJ(v) +
(

1 − 1
n

)
bJ(v)

⌉
(v ∈ V ).

The set J◦ is intended to represent a set of vectors in J lying away from the boundary.

Theorem 4.3. Let J be a finite jump system.
(i) J◦ is nonempty and hence a jump system.
(ii) A vector in J◦ can be found in O(n2 log Φ(J)) time, provided a vector in J is given.
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Proof. The proof is given in Sections 4.4.2 and 4.4.3.

Algorithm Domain Reduction ScFMin
Step 0: Set a(v) := −∞ and b(v) := +∞ for v ∈ V .
Step 1: Find a vector x ∈ (J ∩ [a, b])◦.
Step 2: If f(x) ≤ f(x + s + t) for all s, t ∈ N1 ∪ {0}, then stop (x is optimal).
Step 3: Find s∗ ∈ N1 satisfying (4.1).
Step 4: Put {u} = supp(s∗). Modify a or b as follows:

{
b(u) = x(u) − 1 (if s∗ = −χu),
a(u) = x(u) + 1 (if s∗ = +χu).

Go to Step 1. 2

We analyze the number of iterations of the algorithm. Denote by ai, bi the vectors
a, b at the beginning of the i-th iteration. It is clear that bi(v) − ai(v) is nonincreasing
w.r.t. i. Furthermore, we have the following property:

Lemma 4.4. Let u ∈ V be the element with {u} = supp(s∗), where s∗ are the vectors
chosen in Step 2 of the i-th iteration. Then, we have

bi+1(u) − ai+1(u) <

(
1 − 1

n

)
{bi(u) − ai(u)}.

Proof. We show the inequality in the case s∗ = −χu only. Let x ∈ J∩ [ai, bi] be the vector
chosen in Step 1 of the i-th iteration. Then,

bi+1(u) − ai+1(u) = x(u) − 1 − ai(u)

≤
⌈

1
n

ai(u) +
(

1 − 1
n

)
bi(u)

⌉
− 1 − ai(u)

<

(
1 − 1

n

)
{bi(u) − ai(u)}.

We have b0(v) − a0(v) ≤ Φ(J) for all v ∈ V at the beginning of the algorithm, and if
bi(v) − ai(v) < 1 for all v ∈ V , then we obtain an optimal solution immediately. Hence,
it follows from Lemma 4.4 that the algorithm Domain Reduction ScFMin terminates
in O(n2 log Φ(J)) iterations.

By Theorem 4.3, a vector in (J ∩ [a, b])◦ can be found in O(n2 log Φ(J)) time. Steps
2, 3, and 4 can be done in O(n2) time.

Theorem 4.5. The algorithm Domain Reduction ScFMin finds an optimal solution
of the problem (ScFMin) in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.2 Application to Weak Majorized Elements in Jump Systems

We explain an application of our algorithm to the problem of finding least weakly sub-
and supermajorized elements in jump systems discussed in [1] (see also [26]).
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For a vector x ∈ RV , let x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the components of x in
decreasing order. For two vectors x, y ∈ RV , the vector x is said to be weakly submajorized
by y if

j∑

i=1

x[i] ≤
j∑

i=1

y[i] (j = 1, 2, . . . , n).

For a nonempty subset S of RV , a vector x ∈ S is said to be a least weakly submajorized
element of S if x is weakly submajorized by y for all y ∈ S.

The concept of weak supermajorization is similarly defined. For a vector x ∈ RV , let
x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the components of x in increasing order. For two vectors
x, y ∈ RV , the vector x is said to be weakly supermajorized by y if

j∑

i=1

x(i) ≥
j∑

i=1

y(i) (j = 1, 2, . . . , n).

It is easy to see that x is weakly supermajorized by y if and only if −x is weakly subma-
jorized by −y. For a nonempty subset S of RV , a vector x ∈ S is said to be a least weakly
supermajorized element of S if x is weakly supermajorized by y for all y ∈ S.

The following statement conjectured by Tamir [26] is proven by Ando [1].

Theorem 4.6 ([1]). Any finite jump system has a least weakly sub- and supermajorized
elements.

The proof of Theorem 4.6 in [1] shows that the problem of finding a least weakly
submajorized element of a jump system J can be reduced to the following convex quadratic
optimization problem:

Minimize
∑

v∈V

(x(v) + M)2 subject to x ∈ J,

where M is a nonnegative real number such that x(v) + M ≥ 0 for all x ∈ J and v ∈ V .
Such M is given by

M =

{
0 (if J ⊆ ZV

+),
−min

v∈V
{min{y(v) | y ∈ J}} (otherwise),

and can be computed in O(n2 log Φ(J)) time by Theorem 3.3. Then, the convex quadratic
optimization problem above can be solved in O(n4(log Φ(J))2) time by using the algorithm
Domain Reduction ScFMin.

Theorem 4.7. Least weakly sub- and supermajorized elements of a finite jump system J
can be computed in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.3 A Polynomial-Time Algorithm for Minimization of an M-convex
Function on a Constant-Parity Jump System

The problem (McFMin) can be solved in polynomial time in a similar way as the problem
(ScFMin), due to the following useful properties. The global optimality of the problem
(McFMin) is characterized by a local optimality.
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Theorem 4.8 ([22, Theorem 3.3]). A vector x ∈ J is an optimal solution of (McFMin)
if and only if f(x) ≤ f(x + s + t) holds for all s ∈ N1 and t ∈ N1 with x + s + t ∈ J .

Minimizer cut property holds for the problem (McFMin) as well.

Theorem 4.9 (minimizer cut property for (McFMin) [23, Theorem 4.1]). Let
x ∈ J be a vector which is not an optimal solution of (McFMin), and s∗, t∗ ∈ N1 satisfy

f(x + s∗ + t∗) = min{f(x + s + t) | s, t ∈ N1}.

Put {u} = supp(s∗) and {w} = supp(t∗). Then, there exists x∗ ∈ arg min f such that

x∗(u)
{

≤ x(u) − 1 (if s∗ = −χu),
≥ x(u) + 1 (if s∗ = +χu),

x∗(w)
{

≤ x(w) − 1 (if t∗ = −χw),
≥ x(w) + 1 (if t∗ = +χw).

Based on Theorems 4.8 and 4.9, we consider a variant of the algorithm Domain Reduction ScFMin
in Section 4.1.

Algorithm Domain Reduction McFMin
Step 0: Set a(v) := −∞ and b(v) := +∞ for v ∈ V .
Step 1: Find a vector x ∈ (J ∩ [a, b])◦.
Step 2: If f(x) ≤ f(x + s + t) for all s, t ∈ N1, then stop (x is optimal).
Step 3: Find s∗, t∗ ∈ N1 satisfying f(x + s∗ + t∗) = min{f(x + s + t) | s, t ∈ N1}.
Step 4: Put {u} = supp(s∗) and {w} = supp(t∗). Modify a and b as follows:

{
b(u) = x(u) − 1 (if s∗ = −χu),
a(u) = x(u) + 1 (if s∗ = +χu),

{
b(w) = x(w) − 1 (if t∗ = −χw),
a(w) = x(w) + 1 (if t∗ = +χw).

Go to Step 1. 2

We can show the following result, where the proof is quite similar to that for Theorem
4.5 and therefore omitted.

Theorem 4.10. The algorithm Domain Reduction McFMin solves the problem (McFMin)
in O(n4(log Φ(J))2) time, provided a vector in J is given.

4.4 Proofs

4.4.1 Proof of Minimizer Cut Property for (ScFMin)

In this section, we prove Theorem 4.2. A proof of Theorem 4.2 is given for a special case
where J is a convex jump system [2, Theorem 5.2]. A jump system J is said to be convex
if every integral point in the convex hull of J is contained in J . In the following, we give
a proof for the general case.

The proof uses the following fundamental properties of separable convex functions.

Proposition 4.11. Let f : ZV → R be a separable-convex function.
(i) For any x, y ∈ ZV and any s ∈ inc(x, y), we have

f(x) + f(y) ≥ f(x + s) + f(y − s).

(ii) For any x ∈ ZV and distinct s, t ∈ N1, we have

f(x + s + t) − f(x) = {f(x + s) − f(x)} + {f(x + t) − f(x)}.
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Let x ∈ J be a vector which is not an optimal solution of (ScFMin), and s∗ ∈ N1

be a vector satisfying (4.1). We assume, without loss of generality, that s∗ = +χu for
some u ∈ V . Let x∗ be an optimal solution of (ScFMin) maximizing the value x∗(u), and
assume that x∗ minimizes ||x∗−x||1 among all such x∗. We assume, to the contrary, that
x∗(u) ≤ x(u) and derive a contradiction.

By the definition of s∗, there exists t∗ ∈ N1 ∪ {0} such that

x + s∗ + t∗ ∈ J, f(x + s∗ + t∗) < f(x). (4.3)

Lemma 4.12. f(x + s∗) < f(x).

Proof. We assume t∗ 6= 0 since otherwise the claim is obvious from (4.3). If t∗ = s∗, then
the separable convexity of f and (4.3) imply {f(x+s∗)−f(x)} ≤ {f(x+2s∗)−f(x)}/2 < 0.
If t∗ 6= s∗, then (4.1) and Proposition 4.11 (ii) imply

2{f(x + s∗) − f(x)} ≤ {f(x + s∗) − f(x)} + {f(x + t∗) − f(x)} = f(x + s∗ + t∗) − f(x),

which, together with (4.3), yields f(x + s∗) < f(x).

Lemma 4.13. There exists p ∈ inc(x∗, x) such that f(x∗ + p) > f(x∗) and f(x − p) <
f(x + s∗).

Proof. Since s∗ ∈ inc(x∗, x + s∗), Proposition 4.11 (i) and Lemma 4.12 imply

f(x∗ + s∗) − f(x∗) ≤ f(x + s∗) − f(x) < 0, (4.4)

which, together with the optimality of x∗, yields x∗+s∗ /∈ J . Since s∗ ∈ inc(x∗, x+s∗+t∗),
(J-EXC0) implies that there exists p ∈ inc(x∗ + s∗, x + s∗ + t∗) such that x∗ + s∗ + p ∈ J .
By the choice of x∗, we have

f(x∗ + s∗ + p) > f(x∗). (4.5)

Claim 1: p 6= s∗.

[Proof of Claim] Assume, to the contrary, that p = s∗. We consider the following two
cases and derive a contradiction.

[Case 1: s∗ = t∗] Separable convexity of f , the inequality x∗(u) ≤ x(u), and (4.3)
imply

f(x∗ + 2s∗) − f(x∗) ≤ f(x + 2s∗) − f(x) < 0,

which contradicts the inequality (4.5).
[Case 2: s∗ 6= t∗] (4.5) implies f(x∗ + 2s∗) > f(x∗), from which follows

f(x∗ + 2s∗) − f(x∗ + s∗) ≥ (1/2){f(x∗ + 2s∗) − f(x∗)} > 0. (4.6)

Since s∗ = p ∈ inc(x∗ + s∗, x + s∗ + t∗), Proposition 4.11 (i) implies

f(x + s∗ + t∗) − f(x + t∗) ≥ f(x∗ + 2s∗) − f(x∗ + s∗). (4.7)

Since f(x+ s∗ + t∗)−f(x+ t∗) = f(x+ s∗)−f(x) by Proposition 4.11 (ii), it follows from
(4.6) and (4.7) that f(x + s∗) > f(x), a contradiction to Lemma 4.12. [End of Claim]
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We first show that p ∈ inc(x∗, x). Assume, to the contrary, that p /∈ inc(x∗, x). Since
p ∈ inc(x∗ + s∗, x + s∗ + t∗) = inc(x∗, x + t∗), we have p = t∗. Then, t∗ 6= s∗ by Claim 1.
Therefore, Proposition 4.11 (ii) implies

f(x∗ + s∗ + p) − f(x∗) = f(x∗ + s∗ + t∗) − f(x∗)
= {f(x∗ + s∗) − f(x∗)} + {f(x∗ + t∗) − f(x∗)}
≤ {f(x + s∗) − f(x)} + {f(x + t∗) − f(x)}
= f(x + s∗ + t∗) − f(x) < 0,

where the first inequality is by s∗ ∈ inc(x∗, x + s∗) and t∗ = p ∈ inc(x∗, x + t∗), and the
second inequality by (4.3). This, however, is a contradiction to (4.5).

We then show that f(x∗ + p) > f(x∗) and f(x− p) < f(x+ s∗). By (4.5), Proposition
4.11 (ii), and Claim 1, we have

0 < f(x∗ + s∗ + p) − f(x∗) = {f(x∗ + s∗) − f(x∗)} + {f(x∗ + p) − f(x∗)}. (4.8)

Therefore, it holds that

f(x − p) − f(x) ≤ f(x∗) − f(x∗ + p)
< f(x∗ + s∗) − f(x∗)
≤ f(x + s∗) − f(x) < 0,

where the first inequality is by Proposition 4.11 (i) and p ∈ inc(x∗, x), the second by
(4.8), and the last two inequalities are by (4.4). This implies f(x∗ + p) > f(x∗) and
f(x − p) < f(x + s∗).

Let p1 ∈ inc(x∗, x) be a vector with f(x∗ +p1) > f(x∗) minimizing the value f(x−p1)
among all such vectors. It follows from Lemmas 4.12 and 4.13 that

f(x − p1) < f(x + s∗) < f(x), (4.9)

which implies x− p1 /∈ J by (4.1). Hence, (J-EXC0) implies that there exists q ∈ inc(x−
p1, x∗) such that x − p1 + q ∈ J . By (4.1) and (4.9), we have

f(x − p1 + q) ≥ f(x). (4.10)

Lemma 4.14. q 6= −p1.

Proof. Assume, to the contrary, that q = −p1. Since −p1 = q ∈ inc(x − p1, x∗), Proposi-
tion 4.11 (i) implies

f(x∗) − f(x∗ + p1) ≥ f(x − 2p1) − f(x − p1). (4.11)

By (4.9) and (4.10), we have

f(x − 2p1) − f(x − p1) ≥ f(x) − f(x − p1) > 0. (4.12)

It follows from (4.11) and (4.12) that f(x∗) > f(x∗ + p1), a contradiction to the choice of
p1.
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Since q ∈ inc(x − p1, x∗) ⊆ inc(x, x∗), it follows from Proposition 4.11 (i) that

f(x∗) − f(x∗ − q) ≥ f(x + q) − f(x). (4.13)

By Proposition 4.11 (ii), (4.10) and Lemma 4.14, we have

f(x + q) − f(x) ≥ f(x) − f(x − p1). (4.14)

It follows from (4.9), (4.13), and (4.14) that

f(x∗) − f(x∗ − q) ≥ f(x) − f(x − p1) > 0. (4.15)

From this inequality we have x∗− q /∈ J since x∗ is an optimal solution. Hence, (J-EXC0)
implies that there exists p2 ∈ inc(x∗ − q, x) such that x∗ − q + p2 ∈ J . We note that
(x∗ − q + p2)(u) ≥ x∗(u) since −s∗ 6∈ {−q, p2} and that ||(x∗ − q + p2)− x||1 < ||x∗ − x||1.
Therefore, we have

f(x∗ − q + p2) > f(x∗) (4.16)

by the choice of x∗.

Lemma 4.15. p2 6= −q.

Proof. Assume, to the contrary, that p2 = −q. Since −q = p2 ∈ inc(x∗−q, x), Proposition
4.11 (i) implies

f(x) − f(x + q) ≥ f(x∗ − 2q) − f(x∗ − q) > 0, (4.17)

where the last inequality is by (4.15) and (4.16). On the other hand, Proposition 4.11
(ii), (4.10), and Lemma 4.14 imply

f(x + q) − f(x) ≥ f(x) − f(x − p1) > 0,

where the last inequality is by (4.9). This inequality, however, is a contradiction to
(4.17).

By Proposition 4.11 (ii), (4.16) and Lemma 4.15, we have

f(x∗ + p2) − f(x∗) > f(x∗) − f(x∗ − q). (4.18)

Since p2 ∈ inc(x∗ − q, x) ⊆ inc(x∗, x), it follows from Proposition 4.11 (i) that

f(x) − f(x − p2) ≥ f(x∗ + p2) − f(x∗),

which, together with (4.15) and (4.18), implies f(x∗ + p2) > f(x∗) and f(x − p2) <
f(x − p1), a contradiction to the choice of p1.

This concludes the proof of Theorem 4.2.

4.4.2 Nonemptyness of J◦

We prove Theorem 4.3 (i), the nonemptyness of the set J◦ = J ∩ [a◦J , b◦J ] defined by (4.2).
We first show that the intersection of the convex hull conv(J) of J and the box [a◦J , b◦J ]

is nonempty.
We define

3V = {(X, Y ) | X,Y ⊆ V, X ∩ Y = ∅}.
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Given a function ρ : 3V → R, we define a polyhedron P∗(ρ) as

P∗(ρ) = {x ∈ RV | x(X) − x(Y ) ≤ ρ(X, Y ) (∀(X, Y ) ∈ 3V )}.

A function ρ : 3V → R is called a bisubmodular function if it satisfies the following
inequality for all (X1, Y1), (X2, Y2) ∈ 3V :

ρ(X1, Y1) + ρ(X2, Y2)
≥ ρ(X1 ∩ X2, Y1 ∩ Y2) + ρ((X1 ∪ X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪ X2)).

Theorem 4.16 ([7]). Let J ⊆ ZV be a jump system. Then, there exists an integer-valued
bisubmodular function ρJ : 3V → Z∪{+∞} such that ρJ(∅, ∅) = 0 and conv(J) = P∗(ρJ).
Moreover, such ρJ is uniquely determined by

ρJ(X, Y ) = sup{x(X) − x(Y ) | x ∈ J} ((X, Y ) ∈ 3V ). (4.19)

Theorem 4.17 ([12]). Let ρ : 3V → R be a bisubmodular function with ρ(∅, ∅) = 0, and
a, b ∈ RV be vectors with a ≤ b. Then, the set P∗(ρ) ∩ [a, b] is nonempty if and only if

a(X) − b(Y ) ≤ ρ(X, Y ) (∀(X,Y ) ∈ 3V ). (4.20)

Lemma 4.18. For a finite jump system J ⊆ ZV , it holds that conv(J) ∩ [a◦J , b◦J ] 6= ∅.

Proof. Let ρ = ρJ be a function defined by (4.19). It follows from Theorem 4.16 that ρ
is an integer-valued bisubmodular function satisfying ρ(∅, ∅) = 0 and conv(J) = P∗(ρJ).
Moreover, we have

a◦J(v) =
⌊
−

(
1 − 1

n

)
ρ(∅, {v}) +

1
n

ρ({v}, ∅)
⌋

(v ∈ V ), (4.21)

b◦J(v) =
⌈
− 1

n
ρ(∅, {v}) +

(
1 − 1

n

)
ρ({v}, ∅)

⌉
(v ∈ V ) (4.22)

since ρ(∅, {v}) = −aJ(v) and ρ({v}, ∅) = bJ(v) hold. To prove conv(J) ∩ [a◦J , b◦J ] 6= ∅, it
suffices to show that a◦J(X) − b◦J(Y ) ≤ ρ(X, Y ) for all (X, Y ) ∈ 3V by Theorem 4.17.

Let (X,Y ) ∈ 3V and put k = |X| + |Y |. We claim that

kρ(X, Y ) + k
∑

v∈Y

ρ({v}, ∅) + k
∑

v∈X

ρ(∅, {v})

≥
∑

v∈Y

{ρ({v}, ∅) + ρ(∅, {v})} +
∑

v∈X

{ρ({v}, ∅) + ρ(∅, {v})}. (4.23)
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Indeed, the bisubmodularity of ρ implies

LHS of (4.23) =
∑

w∈Y

{
ρ(X,Y ) +

∑

v∈Y \{w}

ρ({v}, ∅) +
∑

v∈X

ρ(∅, {v})
}

+
∑

w∈X

{
ρ(X, Y ) +

∑

v∈Y

ρ({v}, ∅) +
∑

v∈X\{w}

ρ(∅, {v})
}

+
∑

v∈Y

ρ({v}, ∅) +
∑

v∈X

ρ(∅, {v})

≥
∑

w∈Y

{
ρ(X,Y ) + ρ(Y \ {w}, ∅) + ρ(∅, X)

}

+
∑

w∈X

{
ρ(X, Y ) + ρ(Y, ∅) + ρ(∅, X \ {w})

}

+
∑

v∈Y

ρ({v}, ∅) +
∑

v∈X

ρ(∅, {v})

≥ RHS of (4.23).

Since the LHS of (4.23) is nonnegative and k ≤ n, the integer k in (4.23) can be replaced
with n. Thus,

ρ(X,Y ) ≥
∑

v∈X

{
−

(
1 − 1

n

)
ρ(∅, {v}) +

1
n

ρ({v}, ∅)
}

−
∑

v∈Y

{
− 1

n
ρ(∅, {v}) +

(
1 − 1

n

)
ρ({v}, ∅)

}

≥ a◦J(X) − b◦J(Y ),

where the last inequality follows from (4.21) and (4.22).

We prove the nonemptyness of J◦ by using the following theorem.

Theorem 4.19 ([18, Theorem 5.1]). Let J be a finite jump system and a, b ∈ ZV be
vectors with a(v) < b(v) for all v ∈ V . Then, there exists a vector w ∈ {−1, 0, +1}V such
that

min{||x − y||1 | x ∈ [a, b], y ∈ J} = min{wT x | x ∈ [a, b]} − max{wT y | y ∈ J}.

Lemma 4.20. For a finite jump system J , the set J◦ defined by (4.2) is nonempty.

Proof. Let V ′ = {v ∈ V | a◦J(v) < b◦J(v)}. We denote by J ′ ⊆ ZV ′
the orthogonal

projection of J onto ZV ′
, i.e.,

J ′ = {y ∈ ZV ′ | ∃x ∈ J such that y(v) = x(v) (v ∈ V ′)}.

For v ∈ V \ V ′, we have a◦J(v) = b◦J(v) = aJ(v) = bJ(v), implying that y(v) = a◦J(v) (=
b◦J(v)) for all y ∈ J . Therefore, J ∩ [a◦J , b◦J ] 6= ∅ if and only if

J ′ ∩ {x ∈ ZV ′ | a◦J(v) ≤ x(v) ≤ b◦J(v) (v ∈ V ′)} 6= ∅,

where it is noted that a◦J ′(v) = a◦J(v) and b◦J ′(v) = b◦J(v) for v ∈ V ′. Hence, it suffices to
consider the case where a◦J(v) < b◦J(v) for all v ∈ V .
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By Theorem 4.19, there exists some w ∈ {−1, 0,+1}V such that

min{||x − y||1 | x ∈ [a◦J , b◦J ], y ∈ J} = min{wT x | x ∈ [a◦J , b◦J ]} − max{wT y | y ∈ J}.
(4.24)

Since conv(J) ∩ [a◦J , b◦J ] 6= ∅ by Lemma 4.18, we have

min{wT x | x ∈ [a◦J , b◦J ]} − max{wT y | y ∈ J}
= min{wT x | x ∈ [a◦J , b◦J ]} − max{wT y | y ∈ conv(J)} ≤ 0. (4.25)

It follows from (4.24) and (4.25) that min{||x − y||1 | x ∈ [a◦J , b◦J ], y ∈ J} = 0, implying
J◦ = J ∩ [a◦J , b◦J ] 6= ∅.

This concludes the proof of Theorem 4.3 (i).

4.4.3 Finding a Vector in J◦

We prove Theorem 4.3 (ii) by providing an algorithm to find a vector in J◦. More
generally, we consider how to find a vector in the (nonempty) intersection of a jump
system J and a box [a, b].

Our algorithm is based on the following simple observation.

Lemma 4.21. Let J be a jump system, u ∈ V , and α, β be integers such that α ≤ β and
J ∩ {y ∈ ZV | α ≤ y(u) ≤ β} 6= ∅. Then, we have

max{y(u) | y ∈ J, y(u) ≤ β} ≥ α, min{y(u) | y ∈ J, y(u) ≥ α} ≤ β.

Proof. Let x be any vector in J ∩ {y ∈ ZV | α ≤ y(u) ≤ β}. Then, we have

max{y(u) | y ∈ J, y(u) ≤ β} ≥ x(u) ≥ α, min{y(u) | y ∈ J, y(u) ≥ α} ≤ x(u) ≤ β.

Given a jump system J and vectors a, b ∈ ZV with a ≤ b and J ∩ [a, b] 6= ∅, the
following algorithm finds a vector in J ∩ [a, b], provided a vector in J is given.

Algorithm Find Vector in J ∩ [a, b]
Step 0: Let x := x0 be an initial vector in J .
Step 1: For each u ∈ V with x(u) < a(u), do the following:

Step 1-1: Find a vector x∗ in J ′ maximizing the value x∗(u), where

J ′ = J ∩ {y ∈ ZV | y(u) ≤ b(u),
min(x(v), a(v)) ≤ y(v) ≤ max(x(v), b(v)) (v ∈ V \ {u})}.

Step 1-2: Put x := x∗.
Step 2: For each u ∈ V with x(u) > b(u), do the following:

Step 2-1: Find a vector x∗ in J ′ minimizing the value x∗(u), where

J ′ = J ∩ {y ∈ ZV | y(u) ≥ a(u),
min(x(v), a(v)) ≤ y(v) ≤ max(x(v), b(v)) (v ∈ V \ {u})}.

Step 2-2: Put x := x∗.
Step 3: Output x.
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We observe that if the inequality a(v) ≤ x(v) ≤ b(v) for some v ∈ V is once satisfied,
then it is kept until termination of the algorithm. Note that the set J ′ defined in Step
1-1 is a jump system by Proposition 2.2. This, together with Lemma 4.21, implies that
the vector x satisfies x ∈ J ′ and a(u) ≤ x(u) ≤ b(u) just immediately after Step 1-2.
Similarly, for each u ∈ V with x(u) > b(u), the inequality a(u) ≤ x(u) ≤ b(u) is satisfied
just immediately after Step 2-2. Thus, the vector x satisfies x ∈ J ∩ [a, b] at the end of
the algorithm.

Each iteration of Steps 1 and Step 2 requires O(n log Φ(J ′)) time by Corollary 3.4,
and we have Φ(J ′) ≤ Φ(J) since J ′ ⊆ J . Hence, the algorithm runs in O(n2 log Φ(J))
time.

This concludes the proof of Theorem 4.3 (ii).
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