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Satoru IWATA∗ Kenjiro TAKAZAWA†
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Abstract

Cunningham and Geelen (1997) introduced the notion of independent path-matchings,
which generalize both matchings and matroid intersection. Path-matchings are yet generalized
to even factors in digraphs by Cunningham and Geelen (2001). Pap (2005) gave a combinatorial
algorithm to find a maximum even factor in odd-cycle-symmetric digraphs, in which each arc
in any odd dicycle has the reverse arc.

The even factor problem, however, does not contain the matroid intersection problem.
Cunningham and Geelen (2001) proposed the notion of basic even factors, which generalize
both of even factors and matroid intersection, and showed a polynomial reduction of the basic
even factor problem to the matroid intersection problem, which applies a maximum even factor
algorithm in each oracle call for independence test.

This paper deals with the independent even factor problem, which is a variant of the basic
even factor problem. For odd-cycle-symmetric digraphs, a min-max formula is established as
a common generalization of the Tutte-Berge formula for matchings and the min-max formula
of Edmonds (1970) for matroid intersection. We devise a combinatorial efficient algorithm to
find a maximum independent even factor in an odd-cycle-symmetric digraph accompanied with
general matroids, which commonly extends two of the alternating-path type algorithms, the
even factor algorithm and the matroid intersection algorithm. This algorithm gives a proof of
the min-max formula, and contains a new operation on matroids, which corresponds to shrinking
factor-critical components in the matching algorithm of Edmonds (1965). The running time of
the algorithm is O(n4Q), where n is the number of vertices and Q is the time for an independence
test. The algorithm also gives a common generalization of the Edmonds-Gallai decomposition
for matchings and the principal partition for matroid intersection.

1 Introduction

One of the most fundamental problems in combinatorial optimization is the matching problem.
Tutte [20] characterized graphs that have a perfect matching. Then, Berge [1] showed that Tutte’s
characterization implies a min-max formula, now called the Tutte-Berge formula. Edmonds [5] gave
a combinatorial algorithm to find a maximum matching. This algorithm implies a structural result,
which is also found independently by Gallai [9], and now called the Edmonds-Gallai decomposition.

The matroid intersection problem is also of importance. Edmonds [6] presented a min-max
formula for that problem. Polynomial-time algorithms to find a maximum common independent
set are known, such as those of Edmonds [7] and Lawler [13].
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As a common generalization of the matching and matroid intersection problems, Cunningham
and Geelen [3] introduced the notion of independent path-matchings. They showed a min-max
formula, a totally dual integral polyhedral description, and polynomial-time solvability of the inde-
pendent path-matching problem, which generalize those in the matching and matroid intersection
problems. The independent path-matching problem with free matroids is called the path-matching
problem. For the path-matching problem, Frank and Szegő [8] simplified the min-max formula of
Cunningham and Geelen [3] and provided its combinatorial proof. Spille and Szegő [18] showed
that the path-matching problem has a property which generalizes the Edmonds-Gallai structure
for matchings.

The proof of polynomial-time solvability in Cunningham and Geelen [3] relies on the ellipsoid
method. A combinatorial polynomial-time algorithm to find an optimal path-matching had been
of interest. Spille and Weismantel [19] proposed to generalize Edmonds’ matching algorithm [5] to
path-matchings.

For the sake of a combinatorial approach to path-matchings, Cunningham and Geelen [4]
introduced the even factor problem in digraphs, which is yet a generalization of the path-matching
problem. While finding a maximum even factor is NP-hard in general digraphs, they showed
that the problem is solvable in polynomial time in weakly symmetric digraphs with an algebraic
approach. A digraph is said to be weakly symmetric if every arc in any dicycle has the reverse arc.
In addition, they presented a min-max formula and generalized the Edmonds-Gallai decomposition
to the even factor problem in weakly symmetric digraphs, followed by simplifications of Pap and
Szegő [15]. These properties are known to hold in a broader class of digraphs, called odd-cycle-
symmetric. A digraph is odd-cycle-symmetric if each arc in any odd dicycle has the reverse arc.
Pap [14] devised a combinatorial algorithm to find a maximum even factor in odd-cycle-symmetric
digraphs, which provides an algorithmic proof of the min-max formula and the Edmonds-Gallai
type structure. This algorithm has some properties similar to Edmonds’ matching algorithm [5].

In fact, as mentioned above, the even factor problem leaves matroids out of consideration, or
in other words, it only deals with free matroids. For a common generalization of matchings and
matroid intersection, Cunningham and Geelen [4] proposed the notion of basic even factors. They
showed a polynomial reduction of the basic even factor problem in weakly symmetric digraphs to
the matroid intersection problem. In the resulting algorithm, one needs to compute the cardinality
of a maximum even factor in a certain digraph for each independence test.

In this paper, we deal with the independent even factor problem, which is a variant of the
basic even factor problem. Extending the approach of Cunningham and Geelen [4], we obtain
a min-max formula for the independent even factor problem in odd-cycle-symmetric digraphs,
which commonly extends the Tutte-Berge formula for matchings and the min-max formula for
matroid intersection of Edmonds [6]. For the independent even factor problem in odd-cycle-
symmetric digraphs accompanied with general matroids, we devise a combinatorial algorithm to
find a maximum independent even factor. The algorithm commonly extends the even factor
algorithm [14] and the matroid intersection algorithms [7, 13], in both of which the notion of
alternating-paths plays an essential part. The algorithm runs in O(n4Q) time, where n is the
cardinality of the vertex set of the digraph and Q is the time needed to test if a given set is
independent. By this algorithm, we obtain a different proof of the min-max formula.

The algorithm also gives a common extension of the Edmonds-Gallai decomposition for match-
ings and the principal partition for matroid intersection (cf. [11,12]). Unlike the existing theorems
on the Edmonds-Gallai type structure for path-matchings or even factors, we treat the two ma-
troids equally to achieve a unified decomposition principle including the principal partition for
matroid intersection.

The maximum independent even factor algorithm includes a new operation on matroids, called
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shrinking. For a matroid M and its independent set I, eliminate I and create a new element i
to obtain a new matroid. We call this procedure shrinking I. Note that the resulting matroid
differs from the one derived by contraction or deletion. This procedure corresponds to shrinking a
factor-critical component in the matching algorithm of Edmonds [5] and the even factor algorithm
of Pap [14].

Recently, Harvey [10] gave a new algebraic characterization of basic path-matchings, which
achieved a maximum basic path-matching algorithm. His approach needs the matroids to be lin-
early represented over the same field. The algorithm runs in O(nω) time, where n is the number of
vertices and ω is the exponent for matrix multiplication, bounded by ω < 2.38 (due to Coppersmith
and Winograd [2]). One can easily extend this approach to obtain an O(nω) algorithm for inde-
pendent even factor problems in which the matroids are linearly represented over the same field.
Our algorithm, however, does not need the assumption, that is, it can deal with general matroids.

Before closing this section, let us give some notations and definitions used in the following
sections.

A digraph G with the vertex set V and the arc set A is denoted by G = (V,A). For vertices u
and v, let (u, v) denote an arc which starts in u and ends in v. For an arc a = (u, v), let ∂+a (resp.
∂−a) denote the initial (resp. terminal) vertex of a, that is, ∂+a = u and ∂−a = v. For a vertex v,
define δ+v = {a | a ∈ A, ∂+a = v}, and δ−v = {a | a ∈ A, ∂−a = v}. For an arc set B, define
∂+B = {v | v ∈ V, ∃a ∈ B, v = ∂+a}, and ∂−B = {v | v ∈ V, ∃a ∈ B, v = ∂−a}. For a vertex
set U , denote δ+U = {a | a ∈ A, ∂+a ∈ U, ∂−a 6∈ U}, and δ−U = {a | a ∈ A, ∂−a ∈ U, ∂+a 6∈ U}.

We denote the reverse arc of a by ā, i.e., ā = (v, u) for a = (u, v). An arc a ∈ A is called
symmetric if ā ∈ A. A digraph is said to be symmetric if every arc is symmetric.

For a subgraph H of G, the vertex set and the arc set of H are denoted by V (H) and A(H),
respectively. We say H is odd (resp. even) if |V (H)| is odd (resp. even). A strongly connected
component C with δ−V (C) = ∅ (resp. δ+V (C) = ∅) is called a source-component (resp. sink-
component). For two vertex sets X+ and X−, let G[X+, X−] denote the subgraph whose vertex
set is X+ ∪ X− and arc set is A[X+, X−] = {a | a ∈ A, ∂+a ∈ X+, ∂−a ∈ X−}. For a vertex
set X, we abbreviate G[X,X] and A[X,X] as G[X] and A[X], respectively. We denote by odd+(X)
(resp. odd−(X)) the number of odd source-components (resp. odd sink-components) in G[X].

For v0, v1, . . . , vk ∈ V and a1, . . . , ak ∈ A, a sequence W = (v0, a1, v1, a2, v2, . . . , vk−1, ak, vk) is
called a walk if ai = (vi−1, vi) for all i = 1, . . . , k. We denote the vertex set {v0, . . . , vk} = V (W ) and
the arc set {a1, . . . , ak} = A(W ). For a walk W = (v0, a1, v1, . . . , vk−1, ak, vk), the length k of W is
denoted by |W |. A walk W is said to be odd (resp. even) if |W | is odd (resp. even). A walk W =
(v0, a1, v1, . . . , vk−1, ak, vk) is called a path if v0, v1, . . . , vk are pairwise distinct, and called a cycle
if v0, v1, . . . , vk−1 are pairwise distinct and v0 = vk. For a walk W = (v0, a1, v1, . . . , vk−1, ak, vk),
let W̄ denote the reverse walk of W (if exists), that is, W̄ = (vk, āk, vk−1, . . . , v1, ā1, v0). Recall
that a digraph is odd-cycle-symmetric if any odd cycle has the reverse cycle.

For two vertex sets X+ and X−, we call (X+, X−) a stable pair if there is neither an arc a
with ∂+a ∈ X+ \ X− and ∂−a ∈ X−, nor ∂+a ∈ X+ and ∂−a ∈ X− \ X+. This definition
generalizes that of Cunningham and Geelen [3], who first introduced the notion of stable pairs for
the independent path-matching problem.

The outline of this paper is as follows. Section 2 introduces even factors and matroid intersec-
tion, and describes some important results which are to be extended in independent even factors.
Section 3 provides the operation of shrinking on matroids. Section 4 introduces independent even
factors and proves a min-max formula structurally. Section 5 presents a new algorithm of ours.
Finally, Section 6 reveals the Edmonds-Gallai type structure for independent even factors.
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2 Even Factors and Matroid Intersection

2.1 Even Factors

Let G = (V,A) be a digraph. An even factor is the arc set of a vertex-disjoint collection of some
paths and even cycles. For a digraph G, let ν(G) denote the cardinality of a maximum even factor
in G.

One approach to computing ν(G) is extending the notion of the Tutte matrix in the matching
problem [20]. Let {xuv | (u, v) ∈ A} be the indeterminates such that xuv = −xvu for (u, v), (v, u) ∈
A. The Tutte matrix T = (tuv) is defined by

tuv =

{
xuv ((u, v) ∈ A),
0 (otherwise),

where rows and columns are both indexed by V . Cunningham and Geelen [4] asserted that

ν(G) = rank T (2.1)

if G is weakly symmetric. Based on this fact, the algorithm of Cunningham and Geelen [4] figures
out ν(G) by computing rankT for a weakly symmetric digraph G.

In fact, the proof of (2.1) in Cunningham and Geelen [4] is adaptable even for odd-cycle-
symmetric digraphs. That is, (2.1) and their algorithm are valid for odd-cycle-symmetric digraphs.

Theorem 2.1. Let G be an odd-cycle-symmetric digraph and let T be the Tutte matrix of G. Then
ν(G) = rank T holds.

Another approach to ν(G), proposed by Pap [14], is extending the matching algorithm of
Edmonds [5]. Pap’s algorithm finds a maximum even factor in an odd-cycle-symmetric digraph
and brings about the following min-max formula.

Theorem 2.2. For an odd-cycle-symmetric digraph G = (V,A), it holds that

ν(G) = min
(X+,X−)

{
|V \ X+| + |V \ X−| + |X+ ∩ X−| − odd+(X+ ∩ X−)

}
,

where (X+, X−) runs over all stable pairs.

This formula modestly extends that of Cunningham and Geelen [4, Theorem 1.3], in which the
minimum is taken over all (X+, X−) such that G[X+, X−] is symmetric. One easily sees that such
(X+, X−) forms a stable pair.

2.2 Matroid Intersection

Let V be a finite set and its subset family I ⊆ 2V satisfy the following (I0)–(I2):

(I0) ∅ ∈ I,

(I1) I ⊆ J ∈ I ⇒ I ∈ I,

(I2) I, J ∈ I, |I| < |J | ⇒ ∃j ∈ J \ I, I ∪ {j} ∈ I.
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A set function ρ : 2V → Z+ is defined by

ρ(X) = max{|J | | J ⊆ X,J ∈ I} (X ⊆ V ).

For V , I, and ρ defined above, we say M = (V, I, ρ) forms a matroid. We call V the ground set,
I the independent set family, I ∈ I an independent set, and ρ the rank function. A subset of V is
said to be dependent if it is not an independent set.

Given a matroid (V, I, ρ), a subset B ⊆ V is called a base if B is an inclusion-wise maximal
independent set, and a subset C ⊆ V is called a circuit if C is an inclusion-wise minimal dependent
set.

The closure function cl : 2V → 2V is defined by

cl(X) = {j | ρ(X ∪ {j}) = ρ(X)} (X ⊆ V ).

For any I ∈ I and j ∈ cl(I) \ I, the union I ∪{j} contains a unique circuit, called the fundamental
circuit denoted by C(I | j).

Let us be given two matroids on the same ground set, say M+ = (V, I+, ρ+) and M− =
(V, I−, ρ−). The matroid intersection problem is a problem to find a maximum common indepen-
dent set I ∈ I+ ∩ I−.

A min-max formula for the matroid intersection problem is given by Edmonds [6].

Theorem 2.3 (Edmonds [6]). For two matroids M1 = (V, I1, ρ1) and M2 = (V, I2, ρ2), it holds
that

max{|I| | I ⊆ V, I ∈ I1 ∩ I2} = min
X⊆V

{ρ1(V \ X) + ρ2(X)}.

There are some combinatorial polynomial-time algorithms to find a maximum common inde-
pendent set, such as Lawler’s [13] and Edmonds’ [7]. We remark that the notion of alternating-
paths plays an essential part in those algorithms, as is the case with the matching algorithm of
Edmonds [5] and the even factor algorithm of Pap [14].

3 Shrinking of Matroids

This section is devoted to the notion of shrinking of matroids. Note that it is different from the
well-known notion of contraction of matroids.

3.1 Definition

Let M = (V, I, ρ) be a matroid and W ⊆ V be an independent set in M. Then, consider Ṽ =
V \W∪{w}, where w is a new element. Define a subset family Ĩ of Ṽ and a set function ρ̃ : 2Ṽ → Z+

by

Ĩ = {I | I ⊆ V \ W, ∃J ⊆ W, |J | = |W | − 1, I ∪ J ∈ I}
∪ {I ∪ {w} | I ⊆ V \ W, I ∪ W ∈ I} ,

ρ̃(X) = max{|J | | J ⊆ X,J ∈ Ĩ} (X ⊆ Ṽ ).

Lemma 3.1. The tuple (Ṽ , Ĩ, ρ̃) forms a matroid.
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Proof. It is easily seen that Ĩ satisfies (I0) and (I1). We prove (I2) by showing that for any Ĩ , J̃ ∈ Ĩ
with |Ĩ| < |J̃ |, there exists an element v such that

v ∈ J̃ \ Ĩ , Ĩ ∪ {v} ∈ Ĩ. (3.1)

Suppose w ∈ Ĩ, i.e., Ĩ = Ĩ ′ ∪{w} with Ĩ ′ ⊆ V \W . As Ĩ , J̃ ∈ Ĩ, it follows that I = Ĩ ′ ∪W ∈ I,
and there exists J ∈ I with |J | = |J̃ | + |W | − 1 and J \ J̃ ⊆ W . Then, |I| < |J | holds, which
implies that there exists v ∈ J \ I such that I ∪ {v} ∈ I. Hence, it holds that Ĩ ∪ {v} ∈ I and
v ∈ J̃ \ Ĩ. Thus, v satisfies (3.1).

Suppose w 6∈ Ĩ. Then, there exists WI ⊆ W such that |WI | = |W | − 1 and I = Ĩ ∪ WI ∈ I.
Define J and v as mentioned above. If v 6∈ W , we have that v satisfies (3.1). So, we may
assume v ∈ W , which implies W = WI ∪ {v} and Ĩ ∪ {w} ∈ Ĩ. If w ∈ J̃ , then w satisfies
(3.1). Otherwise, let WJ = J \ J̃ . Note that |WJ | = |W | − 1 and WJ ⊆ W . Then, it holds that
I ′ = Ĩ ∪ WJ ⊆ Ĩ ∪ W . Hence, by (I1) we have I ′ ∈ I, and |I ′| = |Ĩ| < |J |. Therefore, there exists
an element u ∈ J \ I ′ ⊆ J̃ \ Ĩ such that I ′ ∪ {u} ∈ I, which implies (3.1) holds for u.

We denote the new matroid (Ṽ , Ĩ, ρ̃) defined above by MW . The procedure to obtain MW is
called shrinking W , and we say that W is shrunk into w. Conversely, given an independent set IW

in MW , there exists an independent set I ∈ I such that IW \ {w} ⊆ I and |I| = |IW | + |W | − 1.
The procedure of obtaining I is said to be expanding W .

Lemma 3.1 can also be confirmed through combining well-known operations in matroid theory,
induction through a bipartite graph and contraction.

Let M = (V, I, ρ) be a matroid and W ⊆ V be its independent set. Make a copy M′ =
(V ′, I ′, ρ′) of M. We denote the copy of v ∈ V (resp. U ⊆ V ) by v′ (resp. U ′). Then, construct a
bipartite graph G = (V ′, V ; A), where

A = {(u′, v) | u, v ∈ W} ∪ {(v′, v) | v ∈ V \ W}.

Associated with I ′ and G, define a subset family I◦ of V : a subset I ⊆ V belongs to I◦ if and only
if there exists a matching M ⊆ A in G such that ∂−M = I and ∂+M ∈ I ′. Perfect [16] observed
that I◦ satisfies (I0)–(I2). We denote the resulting matroid by M◦ = (V, I◦, ρ◦).

Next, choose an arbitrary subset S of W with |S| = |W | − 1 and contract S in M◦ to obtain a
new matroid M̃. By denoting the unique element in W \ S by w, one easily checks that M̃ is the
same as MW .

From this construction, we obtain an explicit description of ρ̃.

Theorem 3.2. Let M = (V, I, ρ) be a matroid, W ⊆ V be an independent set in M, and MW =
(Ṽ , Ĩ, ρ̃) be the matroid obtained by shrinking W . Then, for X ⊆ Ṽ , it holds that

ρ̃(X) =

{
ρ(X ∪ W ) − |W | + 1 (w ∈ X),
min{ρ(X), ρ(X ∪ W ) − |W | + 1} (w 6∈ X).

Proof. Given M = (V, I, ρ) and W ∈ I, define G = (V ′, V ; A) and M◦ = (V, I◦, ρ◦) as above and
let S be a subset of W with |S| = |W | − 1. Then, for X ⊆ Ṽ , it holds that

ρ̃(X) = ρ◦(X ∪ S) − ρ◦(S)
= min

Y ⊆X∪S
{ρ(Γ(Y )) + |X ∪ S \ Y |} − |W | + 1,

where Γ(Y ) = {u | u ∈ V, ∃(u′, v) ∈ A, v ∈ Y } for Y ⊆ V .
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Suppose w ∈ X. In this case, we have

ρ̃(X) = min
Y ⊆X∪S

{ρ(Γ(Y )) + |X ∪ S \ Y |} − |W | + 1

= min

 min
Y ⊆X\{w}

{ρ(Y ) + |X ∪ S \ Y |}, min
Y ⊆X∪S,
Y ∩W 6=∅

{ρ(Y ∪ W ) + |X ∪ S \ Y |}

 − |W | + 1

= min {ρ(X \ {w}) + |W |, ρ(X ∪ W )} − |W | + 1
= ρ(X ∪ W ) − |W | + 1,

where the third equality can be seen through putting Y = X \ {w}, X ∪ S.
Suppose w 6∈ X. In this case,

ρ̃(X) = min
Y ⊆X∪S

{ρ(Γ(Y )) + |X ∪ S \ Y |} − |W | + 1

= min

min
Y ⊆X

{ρ(Y ) + |X ∪ S \ Y |} , min
Y ⊆X∪S,
Y ∩S 6=∅

{ρ(Y ∪ W ) + |X ∪ S \ Y |}

 − |W | + 1

= min{ρ(X) + |W | − 1, ρ(X ∪ W )} − |W | + 1
= min{ρ(X), ρ(X ∪ W ) − |W | + 1},

where the third equality can be seen through putting Y = X,X ∪ S.

3.2 Independence Test

Here we describe how to test independence in matroids obtained by repeated shrinking. Suppose we
have an independence oracle for a matroid M = (V, I, ρ), and we obtained a matroid M̃ = (Ṽ , Ĩ, ρ̃)
by applying to M the procedure shrinking repeatedly. Let w1, . . . , wk be the newly created elements
in Ṽ , that is, {w1, . . . , wk} = Ṽ \V , and denote the set of vertices shrunk into the pseudo-vertex wi

by Wi ⊆ V (i = 1, . . . , k). Assume that we have an independent set Ĩ ∈ Ĩ, and we know how
to expand Wi (i = 1, . . . , k) to obtain an independent set I ∈ I. We focus on testing whether
Ĩ ∪{v} is independent for all v ∈ Ṽ \ Ĩ. Moreover, if Ĩ ∪{v} 6∈ Ĩ, we enumerate all u ∈ Ĩ such that
(Ĩ \ {u}) ∪ {v} ∈ Ĩ. These independence tests can be performed efficiently through constructing
an auxiliary graph.

Construct an auxiliary bipartite graph G\ = (V \, A\; S1, S2) as follows. The vertex set V \ =
V 1 ∪ V 2, where V 1 and V 2 are copies of V . The copy of v ∈ V (resp. W ⊆ V ) in V i is denoted by
vi (resp. W i), for i = 1, 2. The arc set A\ consists of A\ = AV ∪ AM ∪ J , where

AV =

(
k∪

i=1

{
(u1, v2) | u, v ∈ Wi

})
∪

{
(v1, v2) | v ∈ V \ (W1 ∪ · · · ∪ Wk)

}
,

AM = {(v2, v1) | v ∈ I},
J =

{
(u2, v2) | u ∈ cl(I) \ I, v ∈ I, I \ {v} ∪ {u} ∈ I

}
.

The two subsets S1 ⊆ V 1 and S2 ⊆ V 2 are defined by

S1 = {v1 | v ∈ V \ I},
S2 = {v2 | v ∈ V \ I, I ∪ {v} ∈ I}.
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We refer to S1 and S2 as the set of source-vertices and sink-vertices, respectively, and refer to a
path which starts from S1 and ends in S2 as a source-sink path.

Fix v ∈ V \ I. Assume v is not a pseudo-vertex. If there exists a source-sink path in G\

which starts from v1, then Ĩ ∪ {v} ∈ Ĩ. If not, one can find all elements u ∈ Ĩ which satisfies
(Ĩ \ {u})∪{v} ∈ Ĩ as follows: for a vertex u ∈ Ĩ \ {w1, . . . , wk}, it holds that (Ĩ \ {u})∪{v} ∈ Ĩ if
and only if there exists a path in G\ which starts from v1 and ends in u2; for a pseudo-vertex wi ∈ Ĩ,
it holds that (Ĩ \ {wi}) ∪ {v} ∈ Ĩ if and only if there exists a path in G\ which starts from v1 and
ends in w2 with w ∈ Wi.

Assume v is a pseudo-vertex, say v = w1, and let w∗ be the unique vertex in W1\I. In that case,
if there exists a source-sink path in G\ which starts from w∗, then Ĩ ∪{v} ∈ Ĩ. If not, one can find
all elements u ∈ Ĩ which satisfies (Ĩ \ {u}) ∪ {v} ∈ Ĩ as follows: for a vertex u ∈ Ĩ \ {w1, . . . , wk},
it holds that (Ĩ \ {u}) ∪ {v} ∈ Ĩ if and only if there exists a path in G\ which starts from w1

∗ and
ends in u2; for a pseudo-vertex wi ∈ Ĩ, it holds that (Ĩ \ {wi})∪ {v} ∈ Ĩ if and only if there exists
a path in G\ which starts from w1

∗ and ends in w2 with w ∈ Wi.

4 The Independent Even Factor Problem

From now on, we deal with the independent even factor problem, which is a variant of the basic
even factor problem [4].

Definition 4.1. Let G = (V,A) be a digraph and M+ = (V, I+, ρ+), M− = (V, I−, ρ−) be
matroids. An even factor M in G is called an independent even factor in (G,M+,M−) if ∂+M ∈ I+

and ∂−M ∈ I−. If ∂+M and ∂−M are bases of M+ and M−, respectively, M is called a basic
even factor.

For a digraph G = (V,A) and matroids M+ = (V, I+), M− = (V, I−), let ν(G,M+,M−)
denote the cardinality of a maximum independent even factor in (G,M+,M−). The independent
even factor problem contains the even factor problem and the matroid intersection problem as
special cases.

Even Factor Problem: If M+ and M− are free, an arc set is an independent even factor in
(G,M+,M−) if and only if it is an even factor in G.

Matroid Intersection Problem: Let M1 = (V, I1, ρ1) and M2 = (V, I2, ρ2) be an instance of
the matroid intersection problem. Then, construct an associated bipartite digraph G =
(V1, V2;A) as follows. The vertex set V1 and V2 are copies of V , respectively, and the arc
set A is given by

A = {(v1, v2) | v ∈ V } ,

where v1 ∈ V1 (resp. v2 ∈ V2) denotes the copy of v ∈ V . On the vertex set V1 ∪ V2,
define matroids M+ = (V1 ∪ V2, I+, ρ+) and M− = (V1 ∪ V2, I−, ρ−) by the following rank
functions ρ+, ρ− : 2V1∪V2 → Z+:

ρ+(X) = ρ1(X ∩ V1),
ρ−(X) = ρ2(X ∩ V2).

Then, a subset I ⊆ V belongs to I1 ∩ I2 if and only if the arc set {(v1, v2) | v ∈ I} is an
independent even factor in (G,M+,M−).
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For any independent even factor in (G,M+,M−) and any stable pair in G, the following
inequality holds.

Lemma 4.2. Let G = (V,A) be a digraph and M+ = (V, I+, ρ+), M− = (V, I−, ρ−) be matroids.
Then, for any independent even factor M in (G,M+,M−) and any stable pair (X+, X−) in G, it
holds that

|M | ≤ ρ+(V \ X+) + ρ−(V \ X−) +
∣∣X+ ∩ X−∣∣ − odd+(X+ ∩ X−). (4.1)

Proof. As (X+, X−) is a stable pair, it holds that M = M1 ∪ M2 ∪ M3, where

M1 =
{
a | a ∈ M, ∂+a ∈ V \ X+

}
, (4.2)

M2 =
{
a | a ∈ M, ∂−a ∈ V \ X−}

, (4.3)
M3 =

{
a | a ∈ M, a ∈ A[X+ ∩ X−]

}
. (4.4)

Note that M1 and M2 are not necessarily disjoint. We accomplish the proof by showing

|M1| ≤ ρ+(V \ X+), |M2| ≤ ρ−(V \ X−), |M3| ≤ |X+ ∩ X−| − odd+(X+ ∩ X−). (4.5)

First, as M is an independent even factor, it follows that ∂+M ∈ I+, especially ∂+M1 ∈ I+.
By the definition of M1, we have ∂+M1 ⊆ V \ X+, which implies |M1| ≤ ρ+(V \ X+).

Next, a similar argument shows that |M2| ≤ ρ−(V \ X−).
Finally, let us estimate |M3| by counting |∂−M3|. For a source-component C in G[X+ ∩ X−],

it holds that |V (C) ∩ ∂−M3| = |A(C) ∩ M3|. Hence, if C is odd and |V (C) ∩ ∂−M3| = |C|, then
A(C) ∩ M3 would contain an odd cycle, which contradicts that M is an even factor in G. Thus,
for every odd source-component C in X+ ∩ X−, it holds that |V (C) ∩ ∂−M3| ≤ |C| − 1, which
implies |M3| = |∂−M3| ≤ |X+ ∩ X−| − odd+(X+ ∩ X−).

A stable pair (X+, X−) is called minimizing if (X+, X−) minimizes the right hand side of (4.1).
In fact, for a maximum independent even factor M and a minimizing stable pair (X+, X−), (4.1)
holds with equality if G is odd-cycle-symmetric.

Theorem 4.3. For an odd-cycle-symmetric digraph G = (V,A) and matroids M+ = (V, I+, ρ+),
M− = (V, I−, ρ−), it holds that

ν(G,M+,M−) = min
(X+,X−)

{
ρ+(V \ X+) + ρ−(V \ X−) +

∣∣X+ ∩ X−∣∣ − odd+(X+ ∩ X−)
}

, (4.6)

where (X+, X−) runs over all stable pairs.

One easily sees that Theorem 4.3 generalizes Theorems 2.2 and 2.3.
Theorem 4.3 can be proved by extending Cunningham and Geelen’s approach [4]. Let G =

(V,A) be an odd-cycle-symmetric digraph, M+ = (V, I+, ρ+) and M− = (V, I−, ρ−) be matroids,
and T be the Tutte matrix of G. Let us denote by T [I+, I−] the submatrix of T whose row set is
I+ ⊆ V and column set I− ⊆ V . Note that the submatrix T [I+, I−] is the Tutte matrix of the
subgraph G[I+, I−]. By Theorem 2.1, we have that if a submatrix T [I+, I−] such that I+ ∈ I+

and I− ∈ I+ is nonsingular, there exists an independent even factor M with ∂+M = I+ and
∂−M = I−. As for such submatrices, there exists a min-max formula, which is a special case of
Schrijver’s one for linking systems [17, Theorem 3.6].
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Theorem 4.4. Let T be a matrix whose row set and column set are both indexed by V . and let
M+ = (V, I+, ρ+) and M− = (V, I−, ρ−) be matroids. Then, it holds that

max
{
|I+| | I+ ∈ I+, I− ∈ I−, T [I+, I−] is nonsingular

}
= min

U+,U−⊆V

{
ρ+(V \ U+) + ρ−(V \ U−) + rankT [U+, U−]

}
.

We remark here that Schrijver [17] proved the min-max formula using Theorem 2.3. Combining
Theorems 2.2 and 4.4 procures us a proof of Theorem 4.3.

Proof of Theorem 4.3. Let T be the Tutte matrix of G. By Theorem 4.4, we have

ν(G,M+,M−) = min
U+,U−⊆V

{
ρ+(V \ U+) + ρ−(V \ U−) + rank T [U+, U−]

}
.

Moreover, we know by Theorems 2.1 and 2.2 that

rankT [U+, U−] = ν(G[U+, U−])
= min

(X+,X−)

{
|U+ \ X+| + |U− \ X−| + |X+ ∩ X−| − odd+(X+ ∩ X−)

}
,

where (X+, X−) runs over all stable pairs in G[U+, U−]. Note that the second equality follows
from a variant of Theorem 2.2, which can also be proved by Pap’s even factor algorithm [14].
Therefore, we have that

ν(G,M+,M−) = min
U+,U−⊆V

{
ρ+(V \ U+) + ρ−(V \ U−)

+ min
(X+,X−)

{
|U+ \ X+| + |U− \ X−| + |X+ ∩ X−| − odd+(X+ ∩ X−)

}}
= min

(X+,X−)

{
min

U+,U−

{
ρ+(V \ U+) + ρ−(V \ U−) + |U+ \ X+| + |U− \ X−|

}
+ |X+ ∩ X−| − odd+(X+ ∩ X−)

}
,

where U+ and U− satisfy that (X+, X−) is a stable pair in G[U+, U−]. The inner minimum in
the right hand side is achieved when U+ = X+ and U− = X−. Hence, it follows that

ν(G,M+,M−) = min
(X+,X−)

{
ρ+(V \ X+) + ρ−(V \ X−) + |X+ ∩ X−| − odd+(X+ ∩ X−)

}
,

where (X+, X−) runs over all stable pairs.

5 An Alternating-Path Algorithm

In this section, we describe a combinatorial algorithm to find a maximum independent even factor
in (G,M+,M−), where G is odd-cycle-symmetric. This algorithm is a natural generalization of
the maximum even factor algorithm [14] and the matroid intersection algorithms [7,13], in both of
which the notion of alternating-path plays an essential part. The algorithm also finds a minimizing
stable pair which certificates (4.6).
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5.1 The Algorithm

Let G = (V,A) be an odd-cycle-symmetric digraph, and M+ = (V, I+, ρ+) and M− = (V, I−, ρ−)
be matroids, whose closure functions and fundamental circuits are denoted by cl+(·), cl−(·) and
C+(· | ·), C−(· | ·), respectively. Assume we have an independent even factor M in (G,M+,M−).
We show a procedure to find an independent even factor M ′ with |M ′| = |M | + 1, or determine
that M is a maximum independent even factor.

For an independent even factor M , construct an auxiliary graph GM = (V ∗, A∗; S+, S−) as
follows. The vertex set V ∗ is given by V ∗ = V + ∪V −, where V + and V − are two copies of V . For
a vertex v ∈ V , we denote the copy of v in V + (resp. V −) by v+ (resp. v−).

The arc set A∗ is composed of

A∗ = A◦ ∪ M◦ ∪ J+ ∪ J−,

where

A◦ =
{
(u+, v−) | (u, v) ∈ A

}
(copy of A),

M◦ =
{
(v−, u+) | (u, v) ∈ M

}
(reverse copy of M),

J+ =
{
(u+, v+) | u ∈ ∂+M, v ∈ cl+(∂+M) \ ∂+M, ∂+M \ {u} ∪ {v} ∈ I+

}
,

J− =
{
(u−, v−) | u ∈ cl−(∂−M) \ ∂−M, v ∈ ∂−M, ∂−M \ {v} ∪ {u} ∈ I−}

.

We call the arcs in J+ and J− the jumping arcs.
The two subsets S+ ⊆ V + and S− ⊆ V − are defined by

S+ = {v+ | v ∈ V \ ∂+M, ∂+M ∪ {v} ∈ I+},
S− = {v− | v ∈ V \ ∂−M, ∂−M ∪ {v} ∈ I−}.

We refer to S+ and S− as the set of source-vertices and sink-vertices, respectively.
A vertex v ∈ V ∗ is called source-reachable if there exists a path which starts in S+ and ends

in v, and called sink-reachable if there exists a path which starts in v and ends in S−. A path P
is called a source-sink path if P starts in S+ and ends in S−. For a path P in GM , we denote the
master copy of A(P ) ∩ (A◦ ∪ M◦) by A◦(P ) (that is, A◦(P ) ⊆ A).

Suppose that GM has source-sink paths. Let P be the shortest source-sink path and A◦(P ) =
{a1, m1, a2, . . . , ak,mk, ak+1}, which is in order of appearance in P . Note that a1, . . . , ak+1 ∈ A\M
and m1, . . . ,mk ∈ M . Then, we obtain an independent even factor M ′ with |M ′| = |M | + 1 by
putting M ′ = M 4 A◦(P ) = (M \ {m1, . . . ,mk}) ∪ {a1, . . . , ak+1}, if M ′ does not contain odd
cycles. We refer to this procedure as Augment(M,P ).

If there exist odd cycles in M ′, we avoid the creation of the cycles as follows. Denote
{a1, m1, a2, . . . , ai,mi} = A◦(Pi) for each i ≤ k. Let j be the largest number such that M 4A◦(Pj)
does not contain odd cycles. If j = k, it follows that there exists a unique odd cycle in M 4A◦(P ),
which contains ak+1. Else, there exists a unique odd cycle in M 4 A◦(Pj+1). Let us denote such
an odd cycle by C, and note that V (C) ∈ I+ ∩ I−. In those cases, take the symmetric difference
of M and A◦(Pj), say N = M 4 A◦(Pj) = (M \ {m1, . . . ,mj}) ∪ {a1, . . . , aj}. Let us remark that
N is an independent even factor with |N | = |M | and |N ∩ A(C)| = |C| − 1. Then, shrink V (C)
into a new vertex vC to obtain a new digraph G̃ = (Ṽ , Ã) and matroids M̃+, M̃−. In need of
explicit representation of the shrunk odd cycle, we shall denote G̃, Ṽ , and Ã by GC , VC , and AC ,
respectively. Note that the arc set Ñ = N ∩ Ã is an independent even factor in (G̃, M̃+, M̃−) with
|Ñ | = |N | − |C| + 1. We call this procedure Shrink(M,P,C).

We show the validity of the procedure Shrink(M,P,C) by the propositions below. First, the
following proposition assures the odd-cycle-symmetry of G̃.
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Proposition 5.1 (Pap [14]). Let G = (V,A) be an odd-cycle-symmetric digraph. For an odd
cycle C, it holds that GC = (VC , AC) is also odd-cycle-symmetric. ¤

By Lemma 3.1 and Proposition 5.1, it is ensured that the algorithm also runs in (G̃, M̃+, M̃−).
Next, for an independent even factor M̃ in (GC ,M+

V (C),M
−
V (C)), we describe how to obtain an

independent even factor M in (G,M+,M−) with |M | = |M̃ | + |C| − 1. We only discuss the case
where vC ∈ ∂+M̃ ∩ ∂−M̃ . Similar arguments hold in the other cases.

Since vC ∈ ∂+M̃ ∩ ∂−M̃ , we have that ∂+M = (∂+M̃ \ {vC}) ∪ V (C) ∈ I+ and ∂−M =
(∂−M̃ \ {vC}) ∪ V (C) ∈ I−. In this case, it suffices to add |C| − 1 arcs in A(C) ∪ A(C̄) to M̃ so
that the resulting arc set forms an even factor. Let us denote by a+ (resp. a−) ∈ Ã the unique arc
in δ+vC ∩ M̃ (resp. δ−vC ∩ M̃). As C is odd and G is odd-cycle-symmetric, there exists an even
path P from ∂−a− to ∂+a+ in C or C̄. In addition, there exist cycles of length two that cover
every vertex v ∈ V (C) exposed by P exactly once. The union of M̃ , A(P ) and the arcs in these
cycles is an independent even factor in (G,M+,M−) of size |M̃ |+ |C| − 1. We call this procedure
Expand(M̃, C).

The procedure Expand(M̃, C) ensures that for every independent even factor M̃ in (GC ,M+
V (C),M

−
V (C)),

there exists an independent even factor M in (G,M+,M−) with |M | = |M̃ |+ |C| − 1. Hence, the
following proposition holds.

Proposition 5.2. Let G = (V,A) be an odd-cycle-symmetric digraph, and M+, M− be two ma-
troids on V . For an odd cycle C with V (C) ∈ I+ ∪ I−, it follows that

ν
(
G,M+,M−)

≥ ν
(
GC ,M+

V (C),M
−
V (C)

)
+ |C| − 1.

We are now ready to describe the steps to find an independent even factor of cardinality larger
than M by one.

Step 1: Construct the auxiliary graph GM . If there exists a source-sink path in GM , then go to
Step 2. Otherwise, go to Step 4.

Step 2: Let P be the shortest source-sink path. If M 4 A◦(P ) does not contain any odd cycle,
apply Augment(M,P ), and then go to Step 4. Otherwise, go to Step 3.

Step 3: Apply Shrink(M,P,C), and (G,M+,M−) := (G̃, M̃+, M̃−), M := Ñ . Then, go to Step 1.

Step 4: Apply Expand(M,C) while there exists a pseudo-vertex vC .

In the case that no source-sink path is found in Step 1, the algorithm determines that M
is a maximum independent even factor. We certify this by showing that there exists a stable
pair (X+, X−) such that M and (X+, X−) certificate (4.6).

Algorithmic Proof of Theorem 4.3. Let (G,M+,M−) be the tuple in which no source-sink path
was found in Step 1. Let R be the set of the source-reachable vertices in GM , X+ = {v | v+ ∈ R},
and X− = {v | v− 6∈ R}. Then, we can easily see that (X+, X−) is a stable pair, M1 ∩ M2 = ∅,
and M3 = ∅. Moreover, A[X+ ∩ X−] = ∅, which implies that |X+ ∩ X−| = odd+(X+ ∩ X−).

Pick up v ∈ (V \X+) \ ∂+M . As v+ is not source-reachable, v+ is not a source-vertex, that is,
∂+M ∪ {v} 6∈ I+. Then, consider the fundamental circuit C+(∂+M | v). If C+(∂+M | v) and X+

intersect at some vertex u, there would be a jumping arc from u+ to v+, which contradicts that v+

is not source-reachable. Hence, we have that C+(∂+M | v) ⊆ V \X+ for all v ∈ (V \X+) \ ∂+M ,
which implies that |M1| = ρ+(V \ X+). A similar argument shows that |M2| = ρ−(V − \ X−).
Therefore, it holds that |M | = ρ+(V \ X+) + ρ−(V \ X−) + |X+ ∩ X−| − odd+(X+ ∩ X−).
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The argument above just assures that (4.6) holds in (G,M+,M−), which may be achieved as
a result of applying Shrink(·, ·, ·) repeatedly. We show below that (4.6) holds before the repeated
Shrink(·, ·, ·).

Suppose that (G,M+,M−) is the tuple obtained by applying Shrink(M̂, P,C) to (Ĝ, M̂+, M̂−),
where Ĝ = (V̂ , Â), M̂+ = (V̂ , Î+, ρ̂+), and M̂− = (V̂ , Î−, ρ̂−). Associated with X+ and X−

mentioned above, define X̂+, X̂− ⊆ V̂ as the inverse-image of X+, X−, respectively, that is,

X̂+ =

{
X+ (vC 6∈ X+),
X+ ∪ V (C) (vC ∈ X+),

and so is X̂−. Now we prove that (X̂+, X̂−) is a stable pair which certificates (4.6).
Firstly, one can easily see that (X̂+, X̂−) forms a stable pair in Ĝ, which follows from the fact

that (X+, X−) is a stable pair in G.
Secondly, we estimate the value ρ̂+(V̂ \ X̂+) + ρ̂−(V̂ \ X̂−) + |X̂+ ∩ X̂−| − odd+(X̂+ ∩ X̂−).
One can easily see that vC is a source-vertex in GM , which implies that vC ∈ X+. Then, by

Theorem 3.2, we have

ρ̂+(V̂ \ X̂+) = ρ(V \ X+),

since ρ̂+(V̂ \ X̂+) ≤ ρ̂+
(
(V̂ \ X̂+) ∪ V (C)

)
− |C| + 1 follows that we can extend M with |C| − 1

arcs in A(C) ∪ A(C̄) to obtain an independent even factor in (Ĝ, M̂+, M̂−).
Assume vC ∈ X+∩X−. Then, we have ρ̂−(V̂ \X̂−) = ρ−(V \X−) from an argument similar to

the above one. Moreover, the equation |X̂+ ∩ X̂−| − odd+(X̂+ ∩ X̂−) = |X+ ∩X−| − odd+(X+ ∩
X−) + |C| − 1 follows the equations: |X̂+ ∩ X̂−| = |X+ ∩ X−| + |C| − 1; odd+(X̂+ ∩ X̂−) =
odd+(X+ ∩ X−).

Assume vC ∈ X+ \ X−. In this case, Theorem 3.2 implies that ρ̂−(V̂ \ X̂−) = ρ−(V \ X−) +
|C| − 1, and it is obvious that |X̂+ ∩ X̂−| − odd+(X̂+ ∩ X̂−) = |X+ ∩ X−| − odd+(X+ ∩ X−).

Therefore, in any case we have

ρ̂+(V̂ \ X̂+) + ρ̂−(V̂ \ X̂−) + |X̂+ ∩ X̂−| − odd+(X̂+ ∩ X̂−)
= ρ+(V \ X+) + ρ−(V \ X−) + |X+ ∩ X−| − odd+(X+ ∩ X−) + |C| − 1. (5.1)

Hence, combining Proposition 5.2 and (5.1), we have that (4.6) holds for (Ĝ, M̂+, M̂−).

5.2 Complexity

We discuss the complexity of the algorithm described in § 5.1. Let (G,M+,M−), where G = (V,A),
M+ = (V, I+, ρ+) and M− = (V, I−, ρ−), be the original instance. Recall that n = |V | and Q is
the time needed to test if a given set U ⊆ V is independent in M+ or M−.

The most time-consuming part of the algorithm is the construction of the auxiliary graphs GM =
(V ′, A′; S+, S−). We can identify the source-vertices S+, sink-vertices S−, and jumping arcs J+, J−

by searching paths in the auxiliary graphs G\ described in § 3.2. The construction of the auxiliary
graph G\ takes O(n2Q) time. In the procedure Shrink(·, ·, ·), the number of vertices decreases at
least by two, which implies that we have to construct O(n) auxiliary graphs GM between augmen-
tations. Since there are at most n augmentations, the total time complexity of the algorithm is
O(n4Q).

We remark that the auxiliary graph G\ helps us finding which vertices in V (C) one should
choose to be in ∂+M and ∂−M in the procedure Expand(M,C).
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6 An Edmonds-Gallai Type Structure

In this section, we show that independent even factors have a structure which generalizes both of
the Edmonds-Gallai decomposition for matchings or even factors, and the principal partition for
matroid intersection.

Theorem 6.1. Let G = (V,A) be an odd-cycle-symmetric digraph and M+ = (V, I+, ρ+),M− =
(V, I−, ρ−) be matroids. Define

V +
D = {v | v ∈ V, ∃maximum independent even factor M, v 6∈ cl+(∂+M)},

V +
A = {v | v ∈ V, ∃maximum independent even factor M, v− is source-reachable in GM},

V −
D = {v | v ∈ V, ∃maximum independent even factor M, v 6∈ cl−(∂−M)},

V −
A = {v | v ∈ V, ∃maximum independent even factor M, v+ is sink-reachable in GM}.

Then, the following (i)–(iv) hold.

(i) The pair (V +
D , V \ V +

A ) is a minimizing stable pair (i.e., minimizes the right hand side of
(4.1) among all stable pairs). Similarly, (V \ V −

A , V −
D ) is a stable pair which minimizes

ρ+(V \ Y +) + ρ−(V \ Y −) +
∣∣Y + ∩ Y −∣∣ − odd−(Y + ∩ Y −), (6.1)

where (Y +, Y −) runs over all stable pairs.

(ii) Every strongly connected component C in G[V +
D ∩ (V \ V +

A )] or in G[V −
D ∩ (V \ V −

A )] is an
odd component with V (C) ∈ I+ ∩ I−.

(iii) If M is a maximum independent even factor in (G,M+,M−), then the following (a)–(c)
hold.

(a) For every strongly connected component C in G[V +
D ∩ (V \V +

A )] or in G[V −
D ∩ (V \V −

A )],
|M ∩ A(C)| = |C| − 1.

(b) |(V \ V +
D )∩ ∂+M | = ρ+(V \ V +

D ), |V +
A ∩ ∂−M | = ρ−(V +

A ), |V −
A ∩ ∂+M | = ρ+(V −

A ), and
|(V \ V −

D ) ∩ ∂−M | = ρ−(V \ V −
D ).

(c) For a vertex v ∈ V +
A ∩ ∂−M , there exists a vertex u ∈ V +

D with (u, v) ∈ M , and for a
vertex v ∈ V −

A ∩ ∂+M , there exists a vertex u ∈ V −
D with (v, u) ∈ M .

(iv) Any minimizing stable pair (X+, X−) satisfies that V +
D ⊆ X+ and V −

D ⊆ X−. Similarly, any
stable pair (Y +, Y −) that minimizes (6.1) satisfies that V +

D ⊆ Y + and V −
D ⊆ Y −.

Proof. Here we only show the statements on the stable pair (V +
D , V \V +

A ). Those on (V \V −
A , V −

D )
can be proved similarly by exchanging the roles of M+ and M− in the maximum independent even
factor algorithm.

Assertions (i) and (ii) follow from the fact that (V +
D , V \ V +

A ) is the minimizing stable pair
which the algorithm finds.

For a maximum independent even factor M , define M1,M2,M3 by (4.2)–(4.4), where X+ = V +
D

and X− = V \ V +
A . As M is a maximum independent even factor and (X+, X−) is a minimizing

stable pair, Inequations (4.5) hold with equalities and M1 ∩ M2 = ∅. One checks that these
conditions induce (iii) (cf. the proof of Lemma 4.2).

We show (iv). Suppose there exists a minimizing stable pair (X+, X−) such that there is
a vertex u with u ∈ V +

D \ X+. As u ∈ V +
D , there is a maximum independent even factor M

with u 6∈ cl+(∂+M). Then, the stable pair (X+, X−) and M satisfy (4.5) with equality. The
equation |M1| = ρ+(V \X+), however, contradicts that u ∈ V \X+ and u 6∈ cl+(∂+M). Therefore,
for any minimizing stable pair (X+, X−), it holds that V +

D ⊆ X+.

14



Let us describe how Theorem 6.1 generalizes the Edmonds-Gallai decomposition for matchings
and the principal partition for matroid intersection.

Edmonds-Gallai Decomposition for Matchings Let G = (V,E) be an undirected graph with
the vertex set V and the edge set E, and ~G = (V,A) be a symmetric digraph whose arc set
is

A = {(u, v), (v, u) | ∃edge between u and v in E}.

Consider an instance of matching problem G and an instance of the independent even factor
problem ( ~G,M+,M−) where M+ and M− are free matroids. Then, it follows that V +

D =
V −

D = VD, V +
A = V −

A = VA, where

VD = {v | v ∈ V, ∃maximum matching which does not cover v},
VA = {v | v ∈ V \ VD, v is adjacent to some vertex in VD}.

By Theorem 6.1, the following statements on the undirected graph G hold.

• The cardinality of a maximum matching in G is equal to

1
2
ν(~G,M+,M−) =

1
2

(
|V \ V +

D | + |V +
A | + |V +

D ∩ (V \ V +
A )| − odd+(V +

D ∩ (V \ V +
A ))

)
=

1
2

(|V | + |VA| − odd(VD)) ,

where odd(X) denotes the number of odd component in G[X] (X ⊆ V ).

• Every connected component C in G[VD] is odd and factor-critical.

• If M is a maximum matching, then it holds that

– for every connected component C in G[VD], C has (|C| − 1)/2 edges in M ,
– every vertex in V \ VD is covered by M ,
– for a vertex v ∈ VA, there exists a vertex u ∈ VD such that an edge in M connects

u and v.

• For any V ′
D ⊆ V which minimizes |V ′

A| − odd(V ′
D), it follows that VD ⊆ V ′

D.

These statements are exactly the statements of the Edmonds-Gallai decomposition.

Principal Partition for Matroid Intersection Let M1 = (V, I1, ρ1) and M2 = (V, I2, ρ2) be
an instance of the matroid intersection problem, and define

V 1
D = {v | v ∈ V, ∃maximum common independent set I, v 6∈ cl1(I)},

V 2
D = {v | v ∈ V, ∃maximum common independent set I, v 6∈ cl2(I)}.

Recalling the instance of the independent even factor problem (G,M+,M−) to which we
reduced the matroid intersection instance in § 4, we have that

V +
D = V +

A =
∪

v∈V 1
D

{v1, v2}, V −
D = V −

A =
∪

v∈V 2
D

{v1, v2}.

Applying Theorem 6.1 to (G,M+,M−), we obtain the following statements.
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• The cardinality of a maximum common independent set in I1 ∩ I2 is equal to

ν(G,M+,M−) = ρ1(V \ V 1
D) + ρ2(V 1

D)

= ρ1(V 2
D) + ρ2(V \ V 2

D).

• If I is a maximum common independent set, then it holds that |(V \V 1
D)∩I| = ρ1(V \V 1

D),
|V 1

D ∩ I| = ρ2(V 1
D), |V 2

D ∩ I| = ρ1(V 2
D), and |(V \ V 2

D) ∩ I| = ρ2(V \ V 2
D).

• Any subset X ⊆ V that minimizes ρ1(V \ X) + ρ2(X) satisfies that V 1
D ⊆ X and

V 2
D ⊆ V \ X. That is, V 1

D (resp. V 2
D) is the minimal (resp. maximal) subset minimizing

the submodular function ρ1(V \ X) + ρ2(X).
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