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Abstract

Although several domain-specific bidirectional transformation lan-
guages have been proposed, it remains unclear how general these lan-
guages could be. In this paper, we show that XQuery, a powerful
functional language used to query XML data, can be made bidirec-
tional. Our approach consists of two steps: designing a new language
for bidirectional XML transformation with more practical view updat-
ing semantics, and then interpreting XQuery with this language. As a
result, an XQuery expression can be executed in two directions: in the
forward direction, it generates a materialized view from a source XML
document; while in the backward direction, it takes as input the mod-
ified view together with the original source document, and returns an
updated source document. After backward execution, modifications
on the view are reflected back into the source data. Our prototype
implementation confirms the usefulness of this approach.

1 Introduction

As increasing amount of information are stored, exchanged, and presented
using XML, the ability to intelligently query XML data becomes more and
more important. XQuery [1] is such a query language that is designed as
a standard for querying a broad spectrum of XML information sources,
including both databases and documents. The role of XQuery in XML is
just like that of SQL in relation database. However, XQuery still lacks an
important feature that SQL has. This feature is view update [2, 3, 4], that
is, modifications on a view can be reflected back to the underlying relational
database that makes up the view. XQuery does not support view update on
XML [5], and it is only able to perform unidirectional XML transformation.

1



When a view is changed, the corresponding source XML data cannot be
updated automatically.

To see how view update is useful, consider, as an example, the XML
data (about a book) stored in the file “book.xml” as given in Appendix A.
Suppose we want to compute a table-of-content (toc) view consisting of all
sections and their titles in the book. We may write the following query
expression in XQuery, which is borrowed from the XQuery use cases in a
W3C working draft [6].

<toc>
{ for $s in doc("book.xml")/book
return local:toc($s)}

</toc>

Here, the local recursive function toc is to compute the table-of-content,
and is defined as follows.

declare function local:toc (
$book-or-section as element()) as element()*

{
for $section in $book-or-section/section
return
<section>

{ $section/title ,
local:toc($section)

}
</section>

}

This query will produce the following view.

<toc>
<section>

<title>Introsuction</title>
<section>

<title>Audience</title>
</section>
...

</section>
<section>

<title>A Syntax For Data</title>
<section>

<title>Base Tupes</title>
</section>
...

</section>
</toc>
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You may have found that there are two spelling errors: “Introsuction” should
be “Introduction” and “Tupes” should be “Types”. These errors need to be
corrected. One way is to find these errors in file book.xml first, and then
correct them, but this would be much more difficult if the size of the file is
huge or if it is on a remote server that is not convenient to access. It would
be nice if we could correct these mistakes directly on the view, and have the
system to reflect these corrections to the original source data. However, this
is impossible at present since the current XQuery can only generate view
from source data.

In this paper, we aim to solve the problem of updating XML documents
through view generated by XQuery. Our approach consists of two steps:
designing a domain specific language for bidirectional XML transformation,
and then interpreting XQuery with this language. With such interpreta-
tion, an XQuery expression can execute in two directions: in the forward
direction, it generates a materialized view from a source XML document;
while in the backward direction, it takes as input the modified view to-
gether with the original source XML document, and returns an updated
source document. After backward execution, this updated document con-
tains the modifications on view and users do not need to modify the source
document directly.

There are two challenges we are facing: the first one is to design the
underlying bidirectional transformation language that should be expressive
enough to interpret XQuery, and the second is to define a suitable view
updating semantics for this language.

There have been several attempts on designing domain-specific bidirec-
tional transformation languages, such as FOCAL [7] for synchronizing tree
data and X [8] for implementing a programmable editor, and the technique
used to define these languages is to define forward and backward transfor-
mation semantics for each language construct. However, it remains open
how general or expressive a bidirectional language defined using this tech-
nique could be. For our purpose, the question is wether this technique can
be used to define an expressive target language to interpret XQuery. The
answer is positive in our work, but with this technique enhanced by sev-
eral new mechanisms. For example, our language supports variable binding,
function declaration and call, and in the backward execution of a function
call, each argument could be updated.

Most of the existing view updating semantics like that in [7] is basi-
cally defined with two functions, one for generating view (get function) and
another for updating the source data (putback function), and these two func-
tions must obey two laws. The first law says if a view generated by a get
is not modified, then the corresponding putback function must not do any
change to the source data; the second law says that for a modified view,
if a putback function generates an updated source document, which is then
transformed by the corresponding get function to produce a new view, then
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this two views should be same. However, the second law is too strong. There
are mainly two cases that the second law is violated for an expressive lan-
guage. In the first case, if a query creates a view that includes several copies
of one value from the source data (i.e., the local dependency [8]), then only
changing one copy will violate the second law, since after putback and get
again, other copies in view also change. In the second case, if a view includes
the data used by query conditions, then the second law is violated if these
data is changed and no longer satisfies the query conditions.

Our main contributions in this paper can be summarized as follows.

• We design and implement a new bidirectional transformation language.
Compared with FOCAL [7] and X [8], the new language supports some
new mechanisms and features, such as supporting variable binding,
function declaration and call, a type system with regular expression
types, dealing with sequence values, supporting XPath expressions, al-
lowing to construct computed elements. Introduction of variable bind-
ing and scope makes it easy to interpret XQuery, because in XQuery
the evaluation result of an expression can be bound to a variable by
for or let, and may then be used many times by other expressions in
a valid scope. A type system with regular expression types is useful
when we need to reflect some newly inserted values back into source
data. Insertion causes much trouble because the backward transforma-
tion does not know for the inserted values what the source data should
like after updated. Types annotated on transformation can give some
information about the updated source data. So the updated source
data is more reasonable than that obtained without such information.

• We introduce a new view updating semantics based on the relations
between values in view and their corresponding values in the source
data. By studying how an value in the updated source data is changed
with respect to the corresponding values in the original source data and
its changed view, we can guarantee that a backward transformation is
side effect free and reflects all appropriate modifications back into the
source data.

Technically, in order to relate corresponding values between source
data and view, each value in our work is annotated with two special
flags: one is for uniquely identifying the value, and another is for indi-
cating the changing status of the value, that is, whether it is modified,
inserted, deleted or still unchanged. Intuitively, our basic idea is that
after a source data is updated, all values in the updated source data
must be equivalent to the corresponding values in view if they appear
there and are changed, and other values not appeared in view must be
kept same as the corresponding ones in the original source data.

• We propose a set of transformation rules to interpret XQuery by trans-
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Val ::= () | strO
I | <tagO

I >[ValSeq ]
ValSeq ::= Val1, ...,Valn

I ::= id | x
O := mod | ins | del | non

Figure 1: Syntax of Annotated XML Values

lating XQuery expressions into the code of the underlying language.
And as such, XQuery becomes a bidirectional transformation language.
In our implementation with OCaml, our approach is based on XQuery
Core since its syntax is more compact and can be automatically gen-
erated by Galaxy [9], an implementation of XQuery. We have proved
that this interpretation preserves the semantics of XQuery.

The organization of the paper is as follows. We start by defining a
new view updating semantics based on the relations between values in the
source and view in Section 2. Then, after introducing an important updating
operation merge in Section 3, we define our new bidirectional language in
Section 4, and give a set of transformation rules for translating XQuery
expressions to those in the new bidirectional language in Section 5. Finally,
we discus the related work in Section 7, and make conclusion in Section 8.

2 View Updating Semantics

We shall propose a new updating semantics based on relations between
values in the source and its corresponding view. To formalize such relations,
we annotate each value with an identifier to identify where it is from, and
an editing annotation to indicate how it is changed.

2.1 XML Values and Editing Operations on View

The syntax of XML values in this work is given in Figure 1. An XML value
can be either a simple value Val including the unit value, string or element
with annotations, or ValSeq a sequence of simple values. To save space,
the end tags of XML elements are omitted and its contents are enclosed by
brackets. For example, the element <author>Tom</author> is represented
as <author>[Tom]. This notation is borrowed from [10]. Unit values can
be inserted into or removed from a value sequence freely without changing
its meaning. In this work, we assume that a value sequence does not include
unit values except that it is just a unit value.

A string or the tag of an element is annotated with I and O. I is for
identifying a value, and it can be x or id. The special annotation x means
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that the annotated value originates from the transformation code. For ex-
ample, if a string is used as the parameter of a transformation, then the
I annotation of this string is x. The annotation id is used to uniquely iden-
tify values in a source. After a source value is translated into a view, the
view probably includes both x- or id-annotated values, and an id annotation
may appear several times if the value with this annotation is duplicated in
view.

The annotation O specifies the kind of changes on a value, which can be
non, mod, ins or del. The annotation non is for values that are not changed
yet, and the last three annotations correspond to three editing operations on
view. A value is annotated with mod when it is modified, with ins when it is
inserted, and with del when it is deleted. Note that the deleted value is not
really removed from source data after backward transformations. They can
be removed easily with an eraser procedure, since they have been annotated.

The I annotation is used only to illustrate our view updating semantics;
it does not play a role in transformation. For brevity, we always omit I and
O annotations on a value if we are not interested in them.

2.2 View Updating Semantics

As a preparation, we first introduce some notations for defining view updat-
ing semantics. The operator anno(ValSeq) returns a bag of annotation pairs
(I, O), and each pair is for the I and O annotations on a string or a tag in
ValSeq. In the following definition, ] denotes the union of two bags, and φ
is for an empty bag.

anno(()) = φ
anno(strO

I ) = {(I ,O)}
anno(<tagO

I >[ValSeq ]) = {(I ,O)} ] anno(ValSeq)
anno(Val1, ...,Valn) = anno(Val1) ] ... ] anno(Valn)

There are several variants of the operator anno:

annoI (ValSeq) = {I |(I , O) ∈ anno(ValSeq)}
for I = id or I = x

annoO(ValSeq) = {id |(id ,O) ∈ anno(ValSeq)}
for O ∈ {mod, del, ins, non}

annochn(ValSeq) = annomod(ValSeq) ] annodel(ValSeq)
] annoins(ValSeq).

Based on an identifier id, we can get the tag or the string annotated with
id in a value ValSeq by using the operator index(ValSeq, id). This operator
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is defined as follows:

index((), id) = ()
index(strO

id , id) = str
index(strO

id ′ , id) = (), if id′ 6= id
index(<tagO

id>[ValSeq ], id) = tag
index(<tagO

id ′>[ValSeq ], id) = (), if id′ 6= id

index(Val1, ...,Valn, id) =


index(Val i, id),

if index(Val i, id) 6= ()
index(Val2, ...,Valn, id)

otherwise

When an element is deleted, all its contents are thought to be removed,
too; and when an element is inserted, all its contents should be also newly
inserted. Hence, when an element has annotation del or ins in its tag, all
elements and string values in it should also have the same O annotations.
These annotation requirements can be checked using the following two op-
erators: checkO(ValSeq) holds if annonon(ValSeq)=φ and annoO(ValSeq)=
annochn(ValSeq), where O ∈ {del, ins}.

We can check whether a value ValSeq′ is properly updated or changed
with respect to another value ValSeq, written ValSeq ≡ ValSeq′. Intuitively,
if ValSeq ′ is properly updated or changed, then all changes are correctly
annotated, and the structure of ValSeq ′ is still same as that of except the
inserted values ValSeq. In the following, str and str ′ are different values,
also for tag and tag ′.

strnonI ≡ strnonI

strnonI ≡ str ′modI

strnonI ≡ str ′delI

ValSeq ≡ ValSeq ′

<tagnonI >[ValSeq ] ≡<tagnonI >[ValSeq ′]

ValSeq ≡ ValSeq ′

<tagnonI >[ValSeq ] ≡<tag ′modI >[ValSeq ′]

ValSeq ≡ ValSeq ′ checkdel(ValSeq) holds

<tagnonI >[ValSeq ] ≡<tag ′delI >[ValSeq ′]

Val ′′1, ...,Val ′′n = rc(Val ′1, ...,Val ′m)
Val i ≡ Val ′′i (1 ≤ i ≤ n)

Val1, ...,Valn ≡ Val ′1, ...,Val ′m (n ≤ m)
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The above relation depends on the operator rc, which removes all in-
serted values from a sequence value, and also checks whether they are prop-
erly annotated.

rc(()) = ()
rc(strinsI ) = ()
rc(strO

I ) = strO
I , if O 6= ins

rc(<taginsI >[ValSeq ]) = (), if checkins(ValSeq) holds
rc(<tagO

I >[ValSeq ]) = <tagO
I >[ValSeq ],

ifO 6= ins
rc(Val1, ...,Valn) = rc(Val1), ..., rc(Valn)

A value ValSeq is said to have no conflict changes provided that annochn(ValSeq)
does not contain repeated identifiers, that is, it is a set. A value ValSeq is
said to a proper initial source value, if annochn(V alSeq)=φ, annox(V alSeq)
= φ and annoid (V alSeq) does not contain repeated identifiers.

For a bidirectional transformation X, [[X]]F (S) indicates the forward
transformation, which means to transform source value S into some view,
while [[X]]B(S, V ′) indicates the backward transformation, which takes as
input the original source data S and the changed view V ′, and returns the
updated source data S′.

Definition 1 (Consistent View Updating Semantics) Suppose S is a
proper initial document, and

[[X]]F (S ) = V
[[X]]B(S ,V ′) = S′.

Then, X has a consistent view updating semantics, if V ≡ V ′ and V ′ contains
no conflict changes, then the following conditions hold.

1) S ≡ S′;

2) annomod(S) = annomod(S′);

3) annodel(S) = annodel(S′);

4) annoins(S) = annoins(S′);

5) ∀id ∈ annochn(S′).index(S′, id) = index(S, id).

2
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3 Merging Updated Values

In this section, we consider how to merge two XML values, which are sup-
posed to be two replicas of one source value, and probably contain differ-
ent changes. The merge operation will be used to define the bidirectional
transformation language in next section, where some parts of the source are
duplicated in view, and changes in each copy are required to be reflected
back into the source.

The merge operation combines two values into a new value. It is defined
as follows.

merge(Val1, ...,Valn,Val ′1, ...,Val ′m) =
if isIns(Val1) and isIns(Val ′1) then

Val1,Val ′1, merge(ValSeq ,ValSeq ′)
else if isNotIns(Val1) and isIns(Val ′1) then

Val ′1, merge(Val1,ValSeq ,ValSeq ′)
else if isIns(Val1) and isNotIns(Val ′1) then

Val1, merge(ValSeq ,Val ′1,ValSeq ′)
else mergeS(Val1,Val ′1), merge(ValSeq ,ValSeq ′)

where ValSeq = Val2, ...,Valn
ValSeq ′ = Val ′2, ...,Val ′m

Here, mergeS is to merge two single basic values.

mergeS(strO , str ′O
′
) = if O 6= non then strO else str ′O

′

mergeS(<tagO>[ValSeq ], <tag ′O
′
>[ValSeq ′]) =

if O 6= non then <tagO>[merge(ValSeq ,ValSeq ′)]
else <tagO ′

>[merge(ValSeq ,ValSeq ′)]

In the above definition, the predicate isIns(Val) is true if Val is anno-
tated with ins, otherwise isNotIns(Val) is true. Note that a sequence
of values is marked with an underline for clear separation between two se-
quences.

For two properly updated replicas of one source value, the merge operator
can reflect all changes among them into one new updated source value, if
there is no conflict changes. This property is described by the following
proposition.

Proposition 1 Suppose that there are three values S, S1 and S2, satisfying
S ≡ S1 and S ≡ S2. Let S′ = merge(S1, S2). If annochn(S1)∩annochn(S2)=φ,
and both S1 and S2 contain no conflict changes, then the following conditions
hold.

1) S ≡ S′;

2) annomod(S′) = annomod(S1)]annomod(S2);
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X ::= BX | XC | EM | FC
BX ::= <xid>[] | <xconst>[Val ] | <xchild>[]
XC ::= <xseq>[X1, ..., Xn] | <xchcont>[X1, ..., Xn]

| <xmap>[X] | <xif>[P , X1, X2]
| <xrename>[X] | <xlt>[X1, X2]

EM ::= <xstore>[Var ] | <xload>[Var ] | <xfree>[Var ]
FC ::= <funname>[X1, ..., Xn]

P ::= <xwithtag>[str ] | <xistext>[] | X

Figure 2: Syntax of the Target Language

3) annodel(S′) = annodel(S1)]annodel(S2);

4) annoins(S′) = annoins(S1)]annoins(S2);

5) ∀I ∈ annochn(S1).index(S1, I) = index(S′, I);

6) ∀I ∈ annochn(S2).index(S2, I) = index(S′, I).

2

4 The Bidirectional Transformational Language

This section introduce the bidirectional transformational language which will
be used to interpret XQuery. To simplify our presentation, the semantics of
the language in this section does not take account of inserted values in the
view. Insertion will be discussed in Section 6 with the help of types.

4.1 Syntax

The syntax of this language is defined in Figure 2, where each expression
is represented as an XML element. It is a functional language. We choose
XML to represent our language for two reasons. First, we implemented
the language in Java, and the XML representation save us from writing
its parser, Second, this language serves mainly as an intermediate language
rather than as a language for users to write programs, so verbose notation
is not a problem.

There are two main syntax categories: transformation X and predicate
P . Transformations are divided into four kinds: BX for basic transforma-
tions, XC for transformation combinators, EM for transformation environ-
ment management and FC for function calls. Unlike the language FOCAL
[7] or X [8], our language works on forest, not just on tree. A transformation

10



can be used as a predicate, but not vice versa. In addition, each transfor-
mation in this language can be checked upon the conditions required by
consistent view updating semantics.

This language supports variable bindings, which is essential to interpret
XQuery, since XQuery can bind variables using let or for expressions,
and then use them in subexpressions. All transformations in this language
execute with a transformation environment E , which is used to store all
bindings. For the transformation X, its bidirectional semantics is defined
with the following two functions.

• Forward-Direction Semantics: [[X]]EF (S ) = (V, E ′) means transforming
the source data S using X in the environment E , and generating the
view V as well as a new environment E ′.

• Backward-direction Semantics: [[X]]E
′′

B (S , V ′) = (S′, E ′′′) means trans-
forming the source data S and the changed view V ′ using X in the
environment E ′′, and generating the updated source data S′ and a new
environment E ′′′.

Most transformations neither change nor use the environment directly, so we
will omit the environment when defining transformations except for those
needing this environment.

4.2 Basic Transformations

A basic transformation transforms the input data in one particular way.
There are three basic transformations defined here. Others can be added to
the language according to the domain-specific requirements.

xid: Let X = <xid>[].
[[X]]F (S ) = S
[[X]]B(S ,V ′) = V ′

xid is the identify transformation, where the view is identical to the
source document, and also the updated source document is identical
to the changed view.

xconst: Let X = <xconst>[Val ], where annoid (Val) = φ and annochn(Val)
= φ.

[[X]]F (S ) = Val
[[X]]B(S ,Val ′) = S

xconst transforms any source document into a constant value Val,
which is the argument of xconst. Val is required to have I annotation x
and O annotation non. Backward transformation abandons all changes
on view.
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xchild: Let X = <xchild>[].

[[X]]F (<tagO
I >[ValSeq ]) = ValSeq

[[X]]B(<tagO
I >[ValSeq ],ValSeq ′) = <tagO

I >[ValSeq ′]

xchild corresponds to the child axis in XPath. This transformation
returns the contents of the input XML value. If we need to get the
contents of a sequence value, we can pass xchild as the argument of
xmap, a transformation combinator, which will be discussed later.

4.3 Transformation Combinators

Transformation combinators are used to build complex transformations by
gluing simpler transformations together.

xseq: Let X = <xseq>[X1, ..., Xn].

[[X]]F (SV 0) = SV n

[[X]]B(SV 0, SV ′
n) = SV ′

0

where
SV i = [[Xi]]F (S) (1 ≤ i ≤ n)
SV ′

j−1 = [[Xj ]]B(SV j−1,SV ′
j) (1 ≤ j ≤ n)

xseq takes as arguments a sequence of transformations, which are
applied in sequence. In the intermediate states, SV ′

i is the result of
updating SV i (1 ≤ i ≤ n− 1), which is the view for transformation Xi

and the source data for transformation Xi+1.

xchcont: Let X = <xchcont>[X1, ..., Xn] and S = <tagO
I >[ValSeq ].

[[X]]F (S) = <tagO
I >[NC ]

[[X]]B(S, <tag ′O
′

I >[NC ′]) = <tag ′O
′

I >[ValSeq ]
where
NC = V1, ..., Vn

Vi = [[Xi]]F (()) (1 ≤ i ≤ n)
V ′

1 , ... , V ′
n = split(NC ′, [|V1|, ..., |Vn|])

S′
i = [[Xi]]B((), V ′

i ) (1 ≤ i ≤ n)

xchcont creates the new contents NC of the source document by ex-
ecuting each argument transformation Xi(1 ≤ i ≤ n). In backward
transformation, the result of executing Xi does not be used, but it
is still be executed for possible effect on the transformation environ-
ment. For a sequence value NC′ and a list with n integers, operator
split(NC ′, [|V1|, ..., |Vn|]) returns n subsequences V ′

i (1 ≤ i ≤ n), such
that V ′

1 , ..., V
′
n = NC ′ and |V ′

i | = |Vi| (1≤ i ≤ n), where |Vi| denotes
the length of the sequence value Vi.
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xmap: Let X = <xmap>[X ′] and S = Val1 , ...,Valn .

[[X]]F (S ) = V
[[X]]B(S ,V ′) = V al′1, ..., V al′n
where
V = V1 ... Vn

Vi = [[X ′]]F (V ali)(1 ≤ i ≤ n)
V ′

1 , ..., V
′
n = split(V ′, [|V1|, ..., |Vn|])

Val ′i = [[X ′]]B(Val i, V ′
i )(1 ≤ i ≤ n)

xmap applies its argument transformation X ′ to each simple value
V ali(1 ≤ i ≤ n) in the source value S, and puts each result Vi to-
gether as the view. Note that the number of simple values in view
V is probably different from n, the number of simple values in the
source value S. Hence, in backward transformation, we need to divide
the changed view V ′ into a list of subsequences V ′

i (1 ≤ i ≤ n) us-
ing operator split, where V ′

i is the changed view of the source value
V ali(1 ≤ i ≤ n). When inserted elements are considered, this way of
splitting a sequence value used in xchcont and xmap will be different.

xif: Let X = <xif>[P , X1, X2].

[[X]]F (S ) =
{

[[X1]]F (S) if [[P ]](S) 6= ()
[[X2]]F (S), otherwise

[[X]]B(S , V ′) =
{

[[X1]]B(S, V ′), if [[P ]](S) 6= ()
[[X2]]B(S, V ′), otherwise

xif chooses X1 or X2 based on the result of applying predicate P to
the source data S. Here, the unit value () is regarded as false (same as
XQuery). Note that the result of [[P ]](S) does not appear in the view
of xif.

xrename: Let X = <xrename>[X ′] and S = <tagO
I >[ValSeq ].

[[X]]F (S ) = <newtagO′
I′ >[ValSeq ]

[[X]]B(S , V ′) = <tagO′′′
I >[ValSeq ′′′]

where

newtagO′
I′ = [[X ′]]F (S)

V ′ = <newtag ′O
′′

I′ >[ValSeq ′]
<tag ′O

′′′

I >[ValSeq ′′] = [[X ′]]B(S,newtag ′O
′′

I′ )
ValSeq ′′′ = merge(ValSeq ′,ValSeq ′′)

xrename changes the tag of the source value S from tagO
I to newtagO′

I′ ,
which is the result of applying the argument X ′ to S. In the backward
transformation, the changed tag newtag ′O

′′

I′ is first used to compute
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an intermediate updated source < tag ′O
′′′

I > [ValSeq ′′], and then the
final updated source is constructed by using the tag tag ′O

′′′

I and the
contents ValSeq ′′′ obtained by merging ValSeq ′′ and ValSeq ′ in the
changed view.

xlt: Let X = <xlt>[X1, X2].

[[X]]F (S) =


“true”nonx ,

if [[X1]]F (S) < [[X2]]F (S)
(), otherwise

[[X]]B(S , strO
x ) = S

In the backward direction, like xconst, xlt just returns the original
source value since the changes in view cannot be reflected back in a
meaningful way. Other functions, such as count in XQuery, can be
implemented in such way if they do not concern about changes on their
views.

4.4 Transformation Environment

The environment E behaves like a stack (not exactly a like). There are
several operators generating a new E by changing an old one. The operator
push(E , [Var 7→ ValSeq ]) pushes a new binding to the top of E ; pop(E ,Var)
removes the least recent binding of variable Var from E ; update(E , [Var 7→
ValSeq ]) changes the least recent mapping of variable Var such that it is
mapped to the new value ValSeq.

There are three transformation constructs xstore, xload and xfree for
changing or using the environment explicitly. To use a variable Var, there
should be a pair of xstore and xfree to specify a scope, in which xload
can be used to access the value of this variable.

xstore: Let X = <xstore>[Var ].

[[X]]EF (S ) = (S, push(E , [V ar 7→ S]))
[[X]]E

′
B (S , V ′) = (merge(V ′, E ′(Var)), pop(E ′,Var))

In the forward direction, xstore behaves just like the identity trans-
formation, and besides the transformation, it also pushes a new bind-
ing of Var into the environment E . In the backward direction, the
updated source data is the result of merging the changed view V ′

and the value of Var, and after transformation, the binding of Var is
popped off from the environment E . The notation E(Var) denotes the
value of Var in E .
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xload: Let X = <xload>[Var ].

[[X]]EF (S ) = (E(Var), E)
[[X]]E

′
B (S , V ′) = (S, update(E ′, [Var 7→ ValSeq ])

where
ValSeq = merge(V ′, E ′(Var))])

xload helps to use the value of a bound variable. In the forward
direction, the value of Var is returned as the view. In the backward
direction, the source value S is not to be updated, but the value of
Var is updated.

xfree: Let X = <xfree>[Var ].

[[X]]EF (S ) = (S, E ′)
[[X]]E

′′
B (S , V ′) = (V ′, push(E ′′, [Var 7→ S′])

where
S′ = E(Var)
E ′ = pop(E ,Var)

In the forward direction, xfree removes the binding of Var from E ,
while in the backward direction, this removed binding is put back onto
E again.

4.5 Function Calls

Our language allows users to define transformation functions, which abstract
common transformation patterns. A function is declared in the following
form.

function declaration:

<function name = “funname”
arg1 = “Var1” ... argn = “Varn”>[X ′]

A function is represented as a function element, in which the name
attribute specifies the function name funname, the attribute argi(1 ≤ i ≤ n)
specifies the ith formal parameter Vari(1 ≤ i ≤ n), and transformation X ′

is the function body.
The semantics of functional calls are defined using the existing transfor-

mations. For a call to the function with the above form, we can define it as
follows.
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function call: Let X = <funname>[X1, ..., Xn].

X = <seq>[ X1, <xstore>[Var1],
...,
Xn, <xstore>[Varn],
<xconst>[],
X ′,
<xfree>[Varn],
...,
<xfree>[Var1] ]

That is, we first build the activation record on the stack before executing
the function body, and after that, the activation record is removed. Note
that the function body begins with the source data (), so it must get other
nontrivial values to transform through xload(Var i)(1 ≤ i ≤ n). In a func-
tion call, all actual parameters are regarded as source data. So each of them
may be updated after backward transformation.

4.6 Predicates

Predicates are used as the condition of the transformation xif. [[P ]](S) is to
judge whether P holds on S. In this work, the unit value () is regarded as a
false value, and other XML value is regarded as a true value. Since the result
of [[P ]](S) does not appear in the view generated by xif, the predicate P is
not essential to the expressiveness of our language, and it can be extended
to include any other predicate, such as the type condition in typeswitch in
XQuery, without affecting the view updating semantics of our language. In
this section, we give the following predicates to be used in later sections.

xwithtag: Let P = <xwithtag>[strnonx ].

[[P ]](S) =
{

S, if tag(S ) = str
(), otherwise

xwithtag judges whether the source value S has tag str. The operator
tag returns the tag of an XML element.

xiselement: Let P = <xiselement>[].

[[P ]](S) =
{

S, if S is an element
(), otherwise

xiselement holds if the source value S is an element.
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xistext: Let P = <xistext>[].

[[P ]](S) =
{

S, if S is a string
(), otherwise

xistext holds if the source document S is a string value.

Note that any transformation X can be used as a predicate, and in this
case, only its forward transformation is used. Let P = X.

[[P ]](S) = [[X]]F (S)

4.7 A Programming Example

To help understand this language, we show how to use it to implement the
transformation done by XQuery in Section 1. The program is given in Figure
3. In the main expression, the construct input returns the root element in
file “book.xml”. For brevity, we sometimes omit I and O annotations in
this program and other examples in later sections. In this example, all
variable names and function names are same as the XQuery example, so
it is convenient to compare this program with the XQuery example and
make sure that they have the same query result. The difference is that this
program allows users to make changes on view, and reflect these changes
back into the source data.

5 Interpreting XQuery

In the implementation of XQuery, a query is first normalized to the equiv-
alent expression in XQuery Core. XQuery Core is a subset of XQuery, in
which some complex language constructs have been resolved into simpler
ones. For example, an XPath expression is mapped into a list of navigation
steps in XQuery Core. Our work of bidirectionalizing XQuery is based on
XQuery Core, since its syntax is simpler.

5.1 Syntax of XQuery Core

The syntax of the XQuery Core used in this work is given in Figure 4, which
includes two main categories: expressions and function declarations. The
syntax of expressions contains: string values String, unit value (), sequence
expressions, for and let expressions, XPath steps, less-than comparison <,
conditional expressions, element constructor, and function calls. In the syn-
tax, the meta-variable NCName represents a function name or an element
tag. An XPath step consists of an Axis and a NodeTest. Here, the Axis has
only child and self, and other axes can be supported if we provide the cor-
responding basic transformations in our underlying language. For example,
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<function name="toc" arg1="$book-or-section">[
<xseq>[<xload>[$book-or-section], <xchild>[],

<xmap>[<xif>[<xwithtag>[section],
X, <xconst>[] ] ]

]
]

X =
<xseq>[

<xstore>[$section], <xconst>[<section>[]],
<xchcont>[

<xseq>[<xload>[$section], <xchild>[],
<xif>[<xwithtag>[title],

<xid>[],<xconst>[]]],
<toc>[<xload>[$section]]],

<xfree>[$section]
]

MAIN =
<xseq>[
<input>[<source>[book.xml]],
<xmap>[
<xseq>[<xstore>[$s], <xconst>[<toc>[]],

<xchcont>[<toc>[<xload>[$s]]],
<xfree>[$s] ]

]
]

Figure 3: A Programming Example
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Var ::= NCName
Expr ::= String | () | Expr ,Expr | $Var

| for $Var in Expr return Expr
| let $Var := Expr return Expr
| if (Expr) then Expr else Expr
| Expr < Expr | Axis NodeTest
| element (NCName|{Expr}) {Expr}
| NCName (Expr1, ...,Exprn)

Axis ::= child :: | self ::
NodeTest ::= NCName | ∗ | text() | node()
FunDec ::= function NCName(ArgList) as Ty

{Expr}
ArgList ::= $Var1 as Ty1, ..., $Varn as Tyn

Figure 4: Syntax of XQuery Core

to interpret the descendant axis, we implement a new basic transformation
xdescendant for this language. In a function declaration, Ty denotes the
type of each argument or the result, which is specified using XSchema.

5.2 The Translation

In this section, we will interpret XQuery Core by translating it to the
target language defined in Section 4. Since the target language describes
bidirectional transformations and has well-defined view updating semantics,
XQuery Core with such interpretation hence gains this ability of querying
source XML documents and reflecting the changes on view back into the
source documents.

The translation rules for expressions are defined in Figure 5. A string
value String and unit value () is translated into xconst with String and
() as argument, and String is annotated with x and non. For a sequence
expression Expr1,Expr2, we first construct a virtual element with empty
content, and then use xchcont, taking as arguments the translation results of
Expr1 and Expr2, to build the contents of virtual element, and finally return
these contents by using xchild.

In XQeury Core, a bound variable $Var is referred by its name, while in
the target language, it is referred by using xload($Var). In the translation
of for expression, Expr1 is first translated, and the translation result is fol-
lowed by a xmap, which takes as the argument a sequence of transformations
xstore($Var), the translation result of Expr2 and xfree($Var). That is, the
variable Var is bound to each value in a sequence returned by transforma-
tion [[Expr1]]I , and valid in transformation [[Expr2]]I . The translation of let
expression is similar, where the xmap is removed since the variable $Var is
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[[String ]]I = <xconst>[Stringnonx ]
[[()]]I = <xconst>[]
[[Expr1,Expr2]]I = <xseq>[<xconst>[<virtualnonx >[]],

<xchcont>[[[Expr1]]I , [[Expr2]]]I , <xchild>[]]
[[$Var ]]I = <xload>[$Var ]
[[for $Var in Expr1 return Expr2]]I = <xseq>[[[Expr1]]I , <xmap>[<xseq>[<xstore>[$Var ],

[[Expr2]]I , <xfree>[$Var ]]]]
[[let $Var = Expr1 in Expr2 ]]I = <xseq>[[[Expr1]]I , <xstore>[$Var ],

[[Expr2]]I , <xfree>[$Var ]]
[[if (Expr) then Expr1 else Expr2]]I = <xif>[[[Expr ]]I , [[Expr1]]I , [[Expr2]]I ]
[[Expr1 < Expr2]]I = <xlt>[[[Expr1]]I , [[Expr2]]I ]
[[Axis NodeTest ]]I = <xseq>[[[Axis]]I , [[NodeTest ]]I ]
[[child ::]]I = <xchild>[]
[[self ::]]I = <xid>[]
[[NCName]]I = <xmap>[<xif>[<xwithtag>[NCName],

<xid>[], <xconst>[]]]
[[∗]]I = <xmap>[<xif>[<xiselement>[],

<xid>[], <xconst>[]]]
[[text()]]I = <xmap>[<xif>[<xistext>[], <xid>[], <xconst>[]]]
[[node()]]I = <xid>[]
[[element NCName {Expr}]]I = <xseq>[<xconst>[<NCNamenonx >[]],

<xchcont>[[[Expr ]]I ]]
[[element {Expr1} {Expr2}]]I = <xseq>[<xconst>[<virtualnonx >[]],

<xchcont>[[[Expr2]]I ], <xrename>[[[Expr1]]I ]]
[[NCName (Expr1, ...,Exprn)]]I = <NCName>[[[Expr1]]I , ..., [[Exprn]]I ]

Figure 5: Translation of XQuery Core Expression
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bound to the whole value returned by [[Expr1]]I .
The if expression is translated into xif with each subexpression trans-

lated into the corresponding subexpression. Similarly, the less-than compar-
ison is translated into xlt.

The child:: axis is translated into xchild directly. That is, we have
to implement both the forward and backward transformations of child::
in the underlying language. It is the same for some other axes, such as
descendant:: and descendant-or-self::. The self:: axis is simply
translated into xid. The node test is to filter the sequence value returned by
an path axis. The node test node() chooses all values, so it is translated into
xid; the translation results of NCName, ∗ and text() are the same except
for the conditional in xif. Generally speaking, these translation results
filer values that do not satisfy the specified conditionals. For example, the
translation result of NCName filters all those elements that do not have the
tag NCName.

The element constructor element NCName {Expr} constructs an ele-
ments with tag NCName and contents computed by Expr. In the trans-
lation, we first build en element with tag NCName, and build it contents
using xchcont with the translation result of Expr2 as the argument. There
is another element constructor element {Expr1} {Expr2}, which build an
element with the tag computed by Expr1. So the translation result of Expr1

is used by xrename to change the tag of the virtual element after its content
is built.

The function call NCName(Expr1, ...,Exprn) is translated into an ele-
ment with the function name NCName as tag and the translation results of
arguments Expr i(1 ≤ i ≤ n) as contents. At last, the function declaration
of the following form:

function NCName($Var1 as Ty1, ..., $Varn as Tyn) as Ty
{Expr}

is translated into a function declaration in the target language, as follows:

<function name = “NCName”
arg1 = “Var1” ... argn = “Varn”>[[[Expr]]I ]

Now we can prove that the above translation preserve the semantics of
XQuery Core.

Theorem 2 (Correctness of Translation) Let E be an environment that
maps variables to XML values. If an XQeury Core expression Expr is evalu-
ated to a value under E , then the expression [[Expr ]]I is also evaluated to the
same value under the same environment without considering annotations.
Proof Sketch: By induction on each translation rule. Some cases are given
below.
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• String is already a value, and <xconst>[Stringnonx ] also returns the
value String.

• If Expr1 and Expr2 have the values Val1 and Val2, then the sequence
expression Expr1,Expr2 has value Val1,Val2. Assume the semantics
of Expr1 and Expr2 is preserved. That is, [[Expr1]]I and [[Expr1]]I
have the same values Val1 and Val2. Then [[Expr1,Expr2]]I generates
values <virtualnonx >[Val1,Val2] after using xchcont, and returns the
same value after using xchild.

• $Var and <xload>[$Var ] have the same value E($Var).

• If Expr1 has the value Val1, ...,Valn, then the for expression has the
value ValSeq1, ...,ValSeqn, where ValSeq i(1 ≤ i ≤ n) is the value of
Expr2 under the environment E extended with [Var i 7→ Val i]. Assume
the semantics of Expr1 and Expr2 is preserved. That is, [[Expr1]]I has
the value Val1, ...,Valn, and [[Expr2]]I has the same value as Expr2

under the same environment. In the translation of for expression,
xmap will deal with Val i(1 ≤ i ≤ n) one by one, and for each Val i,
[[Expr2]]I is evaluated under the environment E extended with [Var i 7→
Val i] because of xload and xfree before and after it. Therefor, the
for expression and its translation are evaluated to the same value.

• Assume the semantics of the body of the function NCName and the ar-
gument expressions Expr i(1 ≤ i ≤ n) is preserved. Then, the function
call NCName(Expr1,...,Exprn) and its translation have the same value
because their bodies are both evaluated under the environment E ex-
tended with the mapping from Var i to the value of Expr i or [[Expr i]]I .

2

5.3 A Translation Example

As an example, we consider translation of the following XQuery Core ex-
pression:

for $section in
let $sequence := $book-or-section return

for $dot in $sequence
return child::section

return
element section {

let $sequence := $section return
for $dot in $sequence
return child::title,

let $v4 := $section return toc($v4)
}
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which corresponds to the body of the function toc in Section 1 and is
adapted from the the normalized function generated by Galax [9]. The
above expression is translated into the target language code in Figure 6. To
help read, the translated code is divided into several pieces. X1 corresponds
to the XQuery Core subexpression from the second line to the fourth line,
X2 the seventh line to the ninth line, and X3 corresponds to the last line.
Obviously, this code from the translation rules is verbose, but it has much
room for optimization, which will be one of our future work.

6 Insertion

In this section, we discuss the view updating problems caused by insertion
on view, and show our approach of using a type system to solve them.

6.1 Problems of Insertion

Insertion causes several problems for updating source data. We will use
examples to explain these problems. In these examples, only ins annotations
are given, and others are omitted. Suppose that we have the following source
data:

<book>[<title>[Network],
<author>[Tom]],

<book>[<title>[Algorithm],
<author>[Peter],
<author>[Kevin]]

where each book may contain a title and one or more authors. Consider the
following transformation (i.e. equivalent to child::title in XQuery):

<xmap>[<xseq>[<xchild>[],
<xmap>[<xif>[<xwithtag>[title],

<xid>[],
<xconst>[]]]]]

When applying this transformation to the above source document, we
get a view including two title elements from the source document. Now
inserting a new title to the view yields the following view.

<title>[Network],
<title>[Algorithm],
<titleins>[Databaseins]

Some problems come when we update the source data with this changed
view and the above transformation, and they are caused by the fact that
the inserted title element does not have its corresponding value of book
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<xseq>[ X1,
<xmap>[
<xseq>[
<xstore>[$section],
<xseq>[
<xconst>[<section>[]],
<xchcont>[<xseq>[<xconst>[<virtual>[]],

<xchcont>[X2,X3],
<xchild>[]]]],

<xfree>[$section]]
]

]

X1:
<xseq>[<xload>[$book-or-section],
<xstore>[$sequence],
<xseq>[<xload>[$sequence],
<xmap>[
<xseq>[
<xstore>[$dot],
<xseq>[<xchild>[],

<xmap>[<xif>[<xwithtag>[section],
<xid>[],<xconst>[]]]],

<xfree>[$dot]]]],
<xfree>[$sequence]

]

X2:
<xseq>[<xload>[$section],
<xstore>[$sequence],
<xseq>[<xload>[$sequence],
<xmap>[
<xseq>[
<xstore>[$dot],
<xseq>[<xchild>[],

<xmap>[<xif>[<xwithtag>[title],
<xid>[],<xconst>[]]]],

<xfree>[$dot]]]],
<xfree>[$sequence]

]

X3:
<xseq>[
<xload>[$section],
<xstore>[$v4],<toc>[<xload>[$v4]],<xfree>[$v4]

]

Figure 6: Translation of the Body of Function toc
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element in the source. In the backward transformation, the inserted title
element is first transformed (in the backward direction) by xif. However,
we do not know which branch of xif should be chosen, since its conditional
is evaluated on the original source. And then, after xif, its result will be
used by xchild to put back the removed tag. xchild needs to know the tag
of the original source is, but it cannot get this information in this example
because no source value is available.

For another example, consider a variant of the above transformation.

<xmap>[<xseq>[<xchild>[],
<xmap>[<xif>[<xwithtag>[author],

<xid>[],
<xconst>[]]]]]

After this transformation is applied, the generated view includes three author
elements from two books. Suppose we insert a new author element in the
second place. Then, the changed view is the following one:

<author>[Tom],
<authorins>[Aliceins],
<author>[Peter],
<author>[Kevin]

In this example, it is reasonable to put the inserted author back into the
first book as a new author or into the second book, or even construct a new
book element containing only this author. That is, the way of updating the
source document is not unique. Choosing which way is determined by the
operator split in xmap, which divides a sequence value into subsequences
to transform. In Section 4, the operator split divides a sequence value
according to a list of integers for the length of each subsequence. This
does not work when we consider insertion, and it needs extension. A naive
method is to assign the inserted values always into a subsequence with the
values before it (or after it), or a independent subsequence. But this is not
a good approach as shown by the following transformation:

<xmap>[<xchild>[]]

The view from this transformation is a sequence including the title
and author elements of each book. Suppose we the following changed view,
where a new author, a new title, and another new author are inserted in the
third place.

<title>[Network], <author>[Tom],
<authorins>[Aliceins], <titleins>[Databaseins],
<authorins>[Paulins], <title>[Algorithm],
<author>[Peter], <author>[Kevin]
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ValTy ::= t | () | string | str | <tag>[Ty ] | Ty∗
| Ty ,Ty | Ty |Ty | | Rec t .Ty

Figure 7: Syntax of Types

In this example, according to the above naive approach, the three in-
serted values will be assigned into a subsequence with the first two values in
view by operator split. After backward transformation, the first book el-
ement will include one title, two authors, another title and another author.
This is not a reasonable update for this book. Actually, if the operator
split assigns the inserted title element as well as its following inserted
author element into a independent subsequence, and then after backward
transformation, the updated source data will include three book elements
(with assumption that xchild knowing the removed tag for an inserted ele-
ment) and the second is a newly inserted one including the inserted title and
the second inserted author. That is, we need a more clever split operator.

In summary, in backward transformation, the following constructs in the
target language encounter problems: the transformation xchild lacks infor-
mation of the removed tag for building a source value; the transformation
combinator xif does not know which branch transformation should be cho-
sen without the original source data; the transformation combinator xmap
and xchcont do not know how to split a sequence value into subsequences
such that the updated source data is more reasonable.

6.2 Our Approach with Types

In this section, we explain how to use type-annotated transformations to
solve problems caused by insertion on view. The general idea is that some
problematic transformations will be annotated with types, and these types
can provide information of how to perform the backward transformation
when the original source value is missing. For example, if the source element
type of xchild is known, then the tag of new source data can be gotten from
this type when an inserted value is transformed by xchild in backward
direction.

The types used by our work are given in Figure 7, which are almost
same as the regular expression types in [11] except that a string str is also
regarded as a type. Hence, an annotated value can be regard as a type
if all annotations are removed. The recursive type Rec t.Ty is regarded as
equivalent to its unfolded form Ty[t/Rec t.Ty]. The types string, str and
the element type <tag>[Ty ] are called basic types.

The semantics of the types is defined in Figure 8. ValSeq∈ Ty means
the value ValSeq has type Ty. This semantics is weaker than the usual
semantics of regular expression types in [11] because of the last rule, since
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()∈()

strO∈string

strO∈str

ValSeq ∈ Ty tag = tag ′ or tag = any

<tag ′O>[ValSeq ]∈ <tag>[Ty ]

ValSeq i∈Ty (1 ≤ i ≤ n)
ValSeq1, ...,ValSeqn∈Ty∗

ValSeq1∈Ty1 ValSeq2∈Ty2

ValSeq1,ValSeq2∈Ty1,Ty2

ValSeq∈Ty i (i = 1 or i = 2)
ValSeq∈Ty1|Ty2

ValSeq∈Ty [Rec t .Ty/t]
ValSeq∈Rec t .Ty

ValSeq = Val1, ...,Valn checkins(ValSeq) holds
Ty = Ty1•1...•m−1Tym•m

where • ∈ {∗, ,, ∗,} and Ty i is a basic type(1 ≤ i ≤ m).
∀j : 1 ≤ j ≤ n.∃i : 1 ≤ i ≤ m.Val j∈Ty i

ValSeq∈Ty

Figure 8: Semantics of Types

split((), [0], ()) = ()
split(str , [1], string) = str
split(str , [1], str) = str
split(<tag>[ValSeq ], [1], <tag>[Ty ]) =<tag>[ValSeq ]
split(ValSeq , [l1, ..., ln],Ty1,Ty2) = split(ValSeq1, [l1, ..., lk],Ty1),

split(ValSeq1, [lk+1, ..., ln],Ty2)
where ValSeq1 ∈ Ty1;ValSeq2 ∈ Ty2 len(V alSeq1) = l1 + ... + lk;

len(V alSeq2) = lk+1 + ... + ln (1 ≤ k ≤ n)
split(ValSeq , [l1, ..., ln],Ty1|Ty2) = split(ValSeq , [l1, ..., ln],Ty i)

where ValSeq ∈ Tyi(i = 1 or i = 2)
split(ValSeq , [l1, ..., ln],Ty∗) = ValSeq1, ...,ValSeqm(n ≤ m)

where
∀ i : 1 ≤ i ≤ m.ValSeq i ∈ Ty
and if ValSeq i is the kth subsequence including not only inserted values,

then len(ValSeq i) = lk

Figure 9: The Operator split
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this rule allows a type to include probably some inserted values that are not
in the type according to the usual semantics. For example, a type requires
a book to have a title and a price element, our weaker semantics allows a
newly inserted book to contain only a title. In the case where the usual
semantics is expected, the notation ValSeq ∈ Ty is used and the last rule is
not included.

The problematic transformations are annotated with types in the fol-
lowing way: < xchild> []<tag1>[Ty1]|...|<tagn>[Tyn] is annotated by its source
type, required to be a choice type consisting only element types; <xif>
[P , X1, X2]

Ty2
Ty1

is annotated both the view type Ty1 of the true brach X1 and
the view type Ty2 of the false branch X2; both <xchcont>[X1, ..., Xn]Ty

and <xmap>[X ′]Ty are annotated by their view types.
It is boring to annotate transformations with types, and moreover, the

types annotated by people is not necessarily correct. In our work, we have
designed a sound type system. Given an transformation and the type of
the source data, this type system can infer the view type and generate a
type-annotated transformation. Due to space limitation, this type system
is given in Appendix B.

With annotated types, the backward transformations of xchild, xif,
xchcont, xmap need to be revised to deal with insertion. In the following
definition, the inserted values or the changed views are required to have the
corresponding view types.

xchild: Let X = <xchild>[]<tag1>[Ty1]|...|<tagn>[Tyn].

[[X]]B((), V ′) =<tagi
ins
I >[V ′]

if V ′∈Tyi(1 ≤ i ≤ n) and I is a fresh id

The unit value () is used for the missing source. If the inserted value
V ′ has the type Ty i(1 ≤ i ≤ n), then the tag in the ith source type
will be chosen for the new source. Note that the new source is also
annotated as an inserted value. And we ask I is fresh just for checking
the view updating semantics of xchild, and it can be removed without
affecting transformation behavior. If V ′ can belong to several types
Ty i, then any one can be chosen.

xif: Let X = <xif>[P , X1, X2]
Ty2
Ty1

.

[[X]]B((), V ′)

=


[[X1]]B((), V ′), if V ′ ∈ Ty1

[[X2]]B((), V ′), if V ′ ∈ Ty2

[[X1]]B((), V ′), if V ′ ∈ Ty1

[[X2]]B((), V ′), if V ′ ∈ Ty2

xif chooses the most precise view type for V ′, which is then trans-
formed by the corresponding branch. xif determines the type of V ′
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by first using the usual semantics, and if both view types can not
be matched, then the weaker semantics of regular expression types is
applied.

xchcont: Let X = <xchcont>[X1, ..., Xn]Ty , and S = <tagO
I >[ValSeq ].

[[X]]B(S, <tag ′O
′

I >[NC ′]) =<tag ′O
′

I >[ValSeq ]
where
Vi = [[Xi]]F (())(1 ≤ i ≤ n)
V ′

1 , ... , V ′
n = split(NC ′, [|V1|, ..., |Vn|],Ty)

S′
i = [[Xi]]B((), V ′

i )(1 ≤ i ≤ n)

For xchcont, the problem is how to split the changed contents NC ′

when it includes inserted values. Here, we design a new operator split
to do this work. Compared with the old split, this new one divides
NC ′ into subsequences using the type information about NC ′. Note
that the number of subsequences V ′

i (1 ≤ i ≤ n) is still n, the length of
the second argument of the split operator, even if there are inserted
values. This means that the inserted values must belong to the view
type of one transformation Xi if the changed view is well typed.

xmap: Let X = <xmap>[X ′]Ty , and S = Val1 , ...,Valn .

[[X]]B(S ,V ′) = V al′1, ..., V al′n
where
V = V1 ... Vn

Vi = [[X ′]]F (V ali)(1 ≤ i ≤ n)
V ′

1 , ..., V
′
m = split(V ′, [|V1|, ..., |Vn|],Ty)(n ≤ m)

Val ′i = [[X ′]]B(Val i, V ′
i )(1 ≤ i ≤ m)

This revision of xmap also uses the new split operator. Unlike xchcont,
the number of subsequences can be greater than n, the length of the
second argument of the split operator. That is, some new inserted
values will create independent subsequences to be transformed by X ′

if the changed view is well typed. Note that if Val i includes only
inserted values, then a unit value for missing source data is used in
[[X ′]]B((), V ′

i ), and the Val i will be paired with V ′
i+1 to do backward

transformation if Val ′i+1 contains not only inserted values, otherwise
Val i will be paired with the remaining subsequences of V ′, and so on.

The new split operator is defined in Figure 9. It takes three arguments:
the first is the sequence to be divided; the second is a list of integers, each
of which indicates the expecting length of a subsequence; the third one is
the type of the first argument. In the definition, len is to compute the
length of a sequence without considering inserted values. As an example
for illustration, the last rule says that a sequence ValSeq with type Ty∗ is
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split into a list of subsequences ValSeq i(1 ≤ i ≤ m), and each subsequence
ValSeq i is required to have type Ty, and if it is the kth subsequence that
contains not only inserted values, then its length without counting inserted
values should be lk.

Following the above idea of annotating those problematic transforma-
tions with types, if they appear in a function declaration, we should also
annotate the function body, and if this function is applied with different
types, then we have to annotate it with each type, and hence, get several
copies of the same function with different type annotations. Obviously, an-
notating function body is not a good idea. Our approach is to annotate the
function call <funname>[X1, ..., Xn]Ty1,...,Tyn

with its argument types. And
then, we can type check the function body at runtime using the type system
in Appendix B, and thus, a type-annotated version of function body can be
obtained dynamically with context sensitivity. Suppose X ′ is the body of
the function funname. The revised function call is defined as follows:

function call: Let X = <funname>[X1, ..., Xn]Ty1,...,Tyn
.

X = <seq>[ X1, <xstore>[Var1],
...,
Xn, <xstore>[Varn],
<xconst>[],
X ′′,
<xfree>[Varn],
...,
<xfree>[Var1] ]

where X ′′ is obtained by the following judgement:[
Var1 7→ Ty1, ...,Varn 7→ Tyn,
funname(Ty1, ...,Tyn) 7→ t

]
; () ` X ′ : Ty ′ ⇒ Γ, X ′′

6.3 Revisit the Insertion Problems

For the source data used in Section 6.1, it is supposed to have the following
type.

<book>[<title>[string],<author>[string]*]*

In the following, we will use Book for the above book element type, Title and
Author for the title element type and the author element type respecitvely,
and Ty for the sequence type Title, Author∗. The changed views in Section
6.1 are still used here.

For the first transformation, which returns a sequence of title elements,
it can be annotated with the following type annotations.

<xmap>[<xseq>[<xchild>[]Book,
<xmap>[<xif> [<xwithtag>[title],
<xid>[], <xconst>[]]()Title]

Title|()]]Title∗
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In this example, when the changed view is transformed, the inserted title
element is first transformed by xif, and it is sent to the xid branch, since
it is in the view type of xid. And then, it is transformed by xchild, which
now knows the book tag should be put on the inserted title according to the
annotated source type Book.

In the third example, the transformation is annotated as the following.

<xmap>[<xseq>[<xchild>[]Book]]Ty∗

In this example, we are interested in how to split the changed view into
subsequences, such that each subsequence will be transformed by xchild.
This work is done by using the split operator with three arguments: the
changed view, the integer list [2,3] for the length of two originally exist-
ing subsequences (i.e., the contents of the first book and the second book,
respectively), and the annotated type Ty∗ of xmap. According to the last
case in Figure 9, the changed view is divided into three subsequences: the
first includes the first three elements, the second includes the fourth and the
fifth inserted elements, and the third includes the remaining elements. All
these subsequences have type Ty, and moreover, the first and the third sub-
sequence have length of 2 and 3 (without considering the inserted values),
respectively.

7 Related Work

Our bidirectional transformation language learns a lot from the existing
ones. In [7], a semantic foundation and a domain-specific programming
language FOCAL for bidirectional transformations are given. They form
the core of the data synchronisation system Harmony [12]. Another related
language was given by Meertens [13] to specify constraints in the design of
user-interfaces. In the work of implementing the programmable XML editor
[8], a domain-specific XML processing language, called X, is developed,
which is a point-free functional language closely related to the languages in
[13] and [7].

Our work is motived by many useful applications of view updating.
View-updating, which is to correctly reflect the modifications on view back
to the database [2, 3, 4, 5], is an old problem in the database community. In
recent years, however, the need to synchronize data related by some trans-
formations starts to be recognized by researchers from different fields. In
tools for aspect-oriented programming it is helpful to have multiple views
of the same program [14]. In editors such as [15] the user edits a view com-
puted from the source by a transformation. Recent research on code clone
[16] argues that a certain proportion of code in a software resembles each
other, and it may help to develop software maintenance tools that keep the
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resembling pieces of code updated when one of them is altered. It is ar-
gued in [17] that such coupled transformation problems are widespread and
diverse.

8 Conclusion

In this paper, we have done the work of bidirectionalize XQuery, that is,
making XQuery to support view updating just like its counterpart SQL
in relational database. The result is that changes on XQuery view can
be reflected back into the source XML data just by executing the XQuery
expressions in backward direction. This feature makes XQuery more useful
in the scenario of exchanging data on web.

During this work, we first give a more flexible view updating seman-
tics, and based on this semantics, we design the underlying language that is
expressive enough to interpret XQuery. And then, we give the translation
rules from XQuery Core to this underlying language, and we have proved
that this translation preserves the semantics of XQuery. Insertion on view
causes much trouble because it lacks enough information about what the
source data should like after updated, so the backward transformation of
inserted values probably produces unreasonable results. We provide a type
system to the underlying language, and after type checking, this expres-
sion will be annotated with types. This type information can help put the
inserted values back into the source data in a more sensible way. Our pro-
totype implementation confirms our idea in this paper to solve the view
updating problem of XQuery.
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A The Source Data File book.xml

<book>
<title>Data on the Web</title>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>
<section>
<title>Introsuction</title>
<p>Text ... </p>
<section>
<title>Audience</title>
<p>Text ... </p>

</section>
<section>
<title>Web Data and the Two Cultures</title>
<p>Text ... </p>
<figure>

<title>
Traditional client/server architecture

</title>
<image/>

</figure>
<p>Text ... </p>

</section>
</section>
<section>
<title>A Syntax For Data</title>
<p>Text ... </p>
<figure>
<title>

Graph representations of structures
</title>
<image/>

</figure>
<p>Text ... </p>
<section>
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<title>Base Tupes</title>
<p>Text ... </p>

</section>
<section>
<title>

Representing Relational Databases
</title>
<p>Text ... </p>
<figure>

<title>Examples of Relations</title>
<image/>

</figure>
</section>
<section>
<title>

Representing Object Databases
</title>
<p>Text ... </p>

</section>
</section>

</book>

B The Type System

The typing rules for the bidirectional transformation language is defined
in Figure 10. A judgment has the form Γ;Ty ` X : Ty ′ ⇒ Γ′, X ′, which
means that if the source type is Ty, the transformation X will generate a
view having type Ty’ under the typing context Γ, and after type checking,
a new typing context Γ′ and a new transformation X ′ are generated. The
new transformation X ′ is the result of annotating X with types. This type
system annotates only five transformations xchild, xchcont, xmap, xif and
function calls. The typing context Γ maps a variable to a type or a function
name with the types of its arguments to its view type.

In the typing rule for xseq, the last typing context Γnis required to be
equal to Γ, which means that the variables bound in a xseq can only be
accessed by transformations inside this xseq. To meet this requirement,
if there is a xstore(Var) to bind Var in a xseq, then there must be a
following xfree(Var) to release Var. This requirement is also required on
the transformation arguments of other transformation combinators, such as
xchcont and xmap, and function calls.

The view type of the true branch in xif can be inferred more accurately
if the predicate is xwithtag, which help restrict the type of the source data,
that is, this type system is path sensitive.
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There are two typing rules for function calls. If a function and the types
of its arguments is not mapped by Γ, then the first rule is used, otherwise the
second is taken. In the first rule, the function body X is checked under the
typing context, where the function arguments Var i(1 ≤ i ≤ n) is mapped
to the types Ty i(1 ≤ i ≤ n), and the function name funname together
with these argument types is mapped to a fresh type variable t. The type
Ty ′ of function body X probably contains the free type variable t for the
function calls with same argument types (due to using the second typing rule
for function calls). So the view type of the first typing rule is a recursive
type Rec t.Ty ′. In the second rule, the function body will not be checked
since its resulting type is already available. In this case, the function is a
recurse function. Note that the type-annotated function body is abandoned,
and the function declaration does not be changed in type checking. This
does not mean that we do not need the type annotation in function body,
but because we want to avoid the trouble of managing different versions of
the same function with different types. Our approach is to recompute the
type-annotated function body when needed at runtime. On the other hand,
our type checking for a function call is context sensitive since its body is
checked with its argument types determined at the program point of the
function call. This kind of type checking can help annotate the function
body accurately. But the accuracy is not gotten for free, and the cost is
that it will fail to type check some recursive functions if the structure of the
type variable t is needed by other transformation in the function body.

This type system is sound with respect to the transformation semantics
of the target language.

Theorem 3 (Soundness) For a transformation X and a source value S,
if φ;Ty ` X : Ty ′ ⇒ φ,X ′, and S ∈ Ty, then [[X ′]]F (S ) = V , and V ∈ Ty ′;
and moreover, if V ′ ∈ Ty ′ and V ≡ V ′, then [[X ′]]B(S , V ′) = S′ and S′∈Ty .

Proof . By induction on the typing rules. Two sample cases are given
below.

• Let X = <xchild>[] and Ty =<tag1>[Ty1]|...| <tagn>[Tyn]. Hence,
X ′ = <xchild>[]Ty ′

Ty and Ty ′ = Ty1|...|Tyn according to the typing
rule for xchild. If S is an element < tag i > [ValSeq ] with the type
<tag i>[Ty i](1 ≤ i ≤ n), then [[X ′]]F (S ) returns ValSeq, which has type
Ty i, a substype of Ty ′; [[X ′]]B(S ,ValSeq ′) returns < tag i > [ValSeq ′].
On the other hand, if S is missing, and ValSeq ′ ∈ Ty i(1 ≤ i ≤ n),
[[X ′]]B((),ValSeq ′) returns <tag i>[ValSeq ′].

• Let X = < xmap > [X ′′] and Ty = Ty1∗ (Other cases of Ty are
similar). Hence, X ′ = < xmap> []Ty ′

1∗ and φ;Ty ` X ′′ : Ty ′
1, X

′′′

according to the typing rule for xmap. If S = Val1, ...,Valn, and
S ∈ Ty1∗, that is each Val i(1 ≤ i ≤ n) has type Ty1, then [[X ′]]F (S )
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= [[X ′′′]]F (Val1), ..., [[X ′′′]]F (Valn), which has type Ty ′
1∗ according to

the inductive hypothesis that X ′′ satisfies the above property; simi-
larly, if V is split into ValSeq ′1, ...,ValSeq ′m (n ≤ m), and V ∈ Ty ′

1∗,
that is each Val ′i(1 ≤ i ≤ m) has type Ty1, then [[X ′]]B(S , V ) =
[[X ′′′]]B(Val1,Val ′1), ..., [[X

′′′]]B(Val1,Valm), which returns an updated
source value since each X ′′′ returns one according to the inductive
hypothesis that X ′′ satisfies the above property.

2
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Γ;Ty `<xid>[] : Ty ⇒ Γ, <xid>[]

Ty =<tag1>[Ty1]|...| <tagn>[Tyn]
Γ;Ty `<xchild>[] : Ty1|...|Tyn ⇒ Γ, <xchild>[]Ty

Γ;Ty `<xconst>[Val ] : rmanno(Val) ⇒ Γ, <xconst>[Val ]

Γ;Ty ` X1 : Ty1 ⇒ Γ1, X
′
1 ... Γn−1;Tyn−1 ` Xn : Tyn ⇒ Γn, X ′

n Γn = Γ
Γ;Ty `<xseq>[X1, ..., Xn] : Tyn ⇒ Γ, <xseq>[X ′

1, ..., X
′
n]

Ty =<tag1>[Ty1]|...| <tagn>[Tyn] Γ; () ` X1 : Ty ′
1 ⇒ Γ1, X

′
1 Γ1 = Γ ...

Γ; () ` Xn : Ty ′
n ⇒ Γn, X ′

n Γn = Γ
Ty ′ =<tag1>[Ty ′

1, ...,Ty ′
n]|...| <tagn>[Ty ′

1, ...,Ty ′
n]

Γ;Ty `<xchcont>[X1, ..., Xn] : Ty ′ ⇒ Γ, <xchcont>[X ′
1, ..., X

′
n]Ty ′

Ty = Ty1•1...•n−1Tyn, where • ∈ {∗, |, ,, ∗|, ∗,} and Ty i is a basic type(1 ≤ i ≤ n).
Γ;Ty1 ` X : Ty ′

1 ⇒ Γ1, X1 Γ1 = Γ ... Γ;Tyn ` X : Ty ′
n ⇒ Γn, Xn Γn = Γ

Γ;Ty1|...|Tyn ` X : Ty ′ ⇒ Γ′, X ′ Γ′ = Γ

Γ;Ty `<xmap>[X] : Ty ′
1•1...•nTy ′

n ⇒ Γ, <xmap>[X ′]Ty ′
1•1...•nTy ′

n

P =<xwithtag>[strnon] Γ;Ty ` P : Ty ′
P |() ⇒ ΓP , P ′ ΓP = Γ

Γ;Ty ′
P ` X1 : Ty1 ⇒ Γ1, X

′
1 Γ1 = Γ Γ;Ty ` X2 : Ty2 ⇒ Γ2, X

′
2 Γ2 = Γ

Γ;Ty `<xif>[P , X1, X2] : Ty1|Ty2 ⇒ Γ, <xif>[P ′ X ′
1 X ′

2]
Ty2
Ty1

Γ;Ty ` P : TyP ⇒ ΓP , P ′ ΓP = Γ Γ;Ty ` X1 : Ty1 ⇒ Γ1, X
′
1 Γ1 = Γ

Γ;Ty ` X2 : Ty2 ⇒ Γ2, X
′
2 Γ2 = Γ

Γ;Ty `<xif>[P , X1, X2] : Ty1|Ty2 ⇒ Γ, <xif>[P ′ X ′
1 X ′

2]
Ty2
Ty1

Ty =<tag1>[Ty1]|...| <tagn>[Tyn] Γ;Ty ` X : string⇒ Γ1, X
′ Γ1 = Γ

Γ;Ty `<xrename>[X ] :<any>[Ty1]|...| <any>[Tyn] ⇒ Γ, <xrename>[X ′]

Γ;Ty `<xstore>[Var ] : Ty ⇒ Γ[Var 7→ Ty ], <xstore>[Var ]

Γ;Ty `<xload>[Var ] : Γ(Var) ⇒ Γ, <xload>[Var ]

Γ;Ty `<xfree>[Var ] : Ty ⇒ pop(Γ,Var), <xfree>[Var ]

Figure 10: Typing Rule
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<function name = “funname” arg1 = “V ar1” ... argn = “V arn”>[X] is defined.
Γ;Ty ` X1 : Ty1 ⇒ Γ1, X

′
1 Γ1 = Γ ... Γ;Tyn−1 ` Xn : Tyn ⇒ Γn, X ′

n Γn = Γ
funname(Ty1, ...,Tyn) 6∈ dom(Γ)
[Var1 7→ Ty1, ...,Varn 7→ Tyn, funname(Ty1, ...,Tyn) 7→ t]; () ` X : Ty ′ ⇒ Γ′, X ′

Γ′ = Γ t is fresh.

Γ;Ty `<funname>[X1, ..., Xn] : Rec t.Ty ′ ⇒ Γ, <funname>[X1, ..., Xn]Ty1,...,Tyn

<function name = “funname” arg1 = “V ar1” ... argn = “V arn”>[X] is defined.
Γ;Ty ` X1 : Ty1 ⇒ Γ1, X

′
1 Γ1 = Γ ... Γ;Tyn−1 ` Xn : Tyn ⇒ Γn, X ′

n

Γn = Γ Γ(funname(Ty1, ...,Tyn)) = Ty ′

Γ;Ty `<funname>[X1, ..., Xn] : Ty ′ ⇒ Γ, <funname>[X1, ..., Xn]Ty1,...,Tyn

Ty =<tag1>[Ty1]|...| <tagn>[Tyn]
Ty ′ is a choice type consisting of <tag i>[Ty i](1 ≤ i ≤ n), if tag i = str

Γ;Ty `<xwithtag>[strnon] : Ty ′|() ⇒ Γ, <xwithtag>[strnon]

Γ;Ty `<xiselement>[] : Ty |() ⇒ Γ, <xiselement>[]

Γ;Ty `<xistext>[] : Ty |() ⇒ Γ, <xistext>[]

Γ;Ty ` X1 : Ty1 ⇒ Γ1, X
′
1 Γ1 = Γ Γ;Ty ` X2 : Ty2 ⇒ Γ2, X

′
2 Γ2 = Γ

Γ;Ty `<xlt>[X1, X2] : string|() ⇒ Γ, <xlt>[X ′
1, X

′
2]

Figure 11: Typing Rule (Continue)
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