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Abstract

This paper is an attempt to provide a connection between qualitative matrix theory and linear
programming. A linear program max{cx | Ax = b, x ≥ 0} is said to be sign-solvable if the set of
sign patterns of the optimal solutions is uniquely determined by the sign patterns of A, b, and c.
It turns out to be NP-complete to decide whether a given linear program is not sign-solvable. We
then introduce a class of sign-solvable linear programs in terms of totally sign-nonsingular matrices,
which can be recognized in polynomial time. For a linear program in this class, we devise an efficient
combinatorial algorithm to obtain the sign pattern of an optimal solution from the sign patterns of A,
b, and c. The algorithm runs in O(mγ) time, where m is the number of rows of A and γ is the number
of all nonzero entries in A, b, and c.

1 Introduction

This paper deals with a linear program in the standard form:

maximize cx
subject to Ax = b,

x ≥ 0,

denoted by LP(A, b, c). When we formulate a linear programming model, we need to specify entries in
A, b, and c. However, there are many situations in which it is hard to estimate the exact quantities of
these entries, while their signs are obvious. This paper aims at analyzing linear programs only from the
combinatorial arrangements of the positive and negative entries in A, b, and c.

The sign of a real number a, denoted by sgn a, is defined to be +1 for a > 0, −1 for a < 0, and 0
for a = 0. The sign pattern of a real matrix A is the {+1, 0,−1}-matrix obtained from A by replacing
each entry by its sign. For a matrix A, we denote by Q(A) the set of all matrices having the same sign
pattern as A, called the qualitative class of A. The qualitative class of a vector is defined similarly. A
linear program LP(A, b, c) is said to be sign-solvable if there exists a set S of sign patterns of vectors such
that the set of sign patterns of all the optimal solutions of LP(Ã, b̃, c̃) coincides with S for any Ã ∈ Q(A),
b̃ ∈ Q(b), and c̃ ∈ Q(c).

Matrix analysis by sign patterns is often called qualitative matrix theory, which was originated in
economics by Samuelson [17]. Since then, qualitative matrix theory and its applications have been studied.
Various results are compiled in the book of Brualdi and Shader [3]. A matrix A is said to be an L-matrix
if Ã has row-full rank for any Ã ∈ Q(A). A square matrix A is called sign-nonsingular if all matrices in
Q(A) are nonsingular. Klee, Radner, and Manber [10] showed that it is NP-complete to discern whether
a given rectangular matrix is not an L-matrix. However, it can be decided in polynomial time whether
a given square matrix is sign-nonsingular or not. The problem of recognizing sign-nonsingular matrices
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has many equivalent problems in combinatorics [12, 15, 19, 20]. In particular, it is equivalent to testing
whether a given bipartite graph has a Pfaffian orientation, which problem was suggested by Pólya [15]
in 1913. In 1999, Robertson, Seymour and Thomas [16] presented an algorithm for solving this problem
in polynomial time. Their algorithm is based on a structural theorem for the special bipartite graphs
called braces, which was also proved independently by McCuaig [13, 14]. See [14] for a survey on these
equivalent problems.

In this paper, we investigate sign-solvable linear programs in terms of qualitative matrix theory. We
first show that recognizing sign-solvability of a given linear program is co-NP-complete (Theorem 3.2).
We then introduce a class of sign-solvable linear programs.

An m × n matrix with m ≤ n is said to be totally sign-nonsingular if the sign of the determinant
of each submatrix of order m is determined uniquely by the sign pattern. Totally sign-nonsingular
matrices were investigated in the context of sign-solvability of linear systems [3, 8, 9, 18]. Totally sign-
nonsingular matrices can be recognized in polynomial time by testing sign-nonsingularity of related square
matrices (Theorem 4.2).

A linear program LP(A, b, c) is totally sign-nonsingular if A has row-full rank and both Ap = (A − b)

and Ad =
(

−c
A

)
are totally sign-nonsingular. This condition can be tested in polynomial time. The

total sign-nonsingularity of Ap implies that the set of sign patterns of the feasible solutions is uniquely
determined by the sign patterns of A and b. Moreover, a totally sign-nonsingular linear program is
sign-solvable (Theorem 5.1).

If a linear program is sign-solvable, we can obtain the sign pattern of an optimal solution in strongly
polynomial time. Indeed, since the magnitudes of the nonzero entries of A, b, and c do not affect the
sign patterns of optimal solutions, it suffices to solve a linear program LP(Ã, b̃, c̃) for some Ã ∈ Q(A),
b̃ ∈ Q(b), and c̃ ∈ Q(c). By replacing all the nonzero entries with their signs, the sign pattern of an
optimal solution can be found in polynomial time by means of the ellipsoid method [7] or the interior
point method [6]. Since the sizes of the numbers in Ã, b̃, and c̃ are constant, this algorithm is in fact
strongly polynomial.

In this paper, we present a more efficient combinatorial algorithm to solve a totally sign-nonsingular
linear program from the sign patterns. In order to measure the complexity of our algorithm, let m
denote the number of rows of A, and γ denote the number of all nonzero entries in A, b, and c. We
first show that the feasibility can be tested in O(γ) time. The boundedness can be tested by applying
the same procedure to the dual program. For a totally sign-nonsingular linear program that is feasible
and bounded, we devise a recursive algorithm for obtaining the sign pattern of an optimal solution.
The algorithm is based on an optimality criterion in terms of the bipartite graph associated with the

matrix L =
(

1 −c 0
0 A −b

)
. By finding a certain path in this bipartite graph, the linear program can

be reduced to a smaller one. The running time of this recursive algorithm is O(mγ).
This paper is organized as follows. Section 2 provides some notations and preliminaries about matrices

and bipartite graphs. Section 3 is devoted to sign-solvability of linear programs. We show that recognizing
sign-solvability is co-NP-complete. Section 4 introduces totally sign-nonsingular matrices. In Section 5,
we show that totally sign-nonsingular linear programs are sign-solvable. In Sections 6 to 8, we discuss
totally sign-nonsingular linear programs. In Section 6, we investigate the bipartite graph associated with
totally sign-nonsingular matrices to give a combinatorial optimality condition. We show in Section 7 that
the feasibility can be tested in polynomial time. Finally, in Section 8, we devise an efficient combinatorial
algorithm to obtain the sign pattern of an optimal solution.

2 Matrices and Bipartite Graphs

Throughout this paper, we deal with a real matrix A with row set U and column set V . The (i, j)-entry
of a matrix A is denoted by aij . For I ⊆ U and J ⊆ V , we denote by A[I, J ] the submatrix in A with

2



row set I and column set J . The submatrix A[U, J ] is abbreviated as A[J ]. For a vector x, we mean by
x[J ] the subvector with support J .

We say that a square matrix A is term-nonsingular if the determinant of A contains at least one
nonvanishing term, that is, if aiπ(i) 6= 0 for each i ∈ U for some bijection π : U → V . A square matrix
is said to be term-singular if it is not term-nonsingular. For a nonsingular matrix A, at least one of the
expansion terms of det A must be distinct from zero. Thus the nonsingularity implies term-nonsingularity.
For a matrix A, the term-rank of A, denoted by t-rankA, is defined to be the maximum size of a term-
nonsingular submatrix in A. It is easily deduced that t-rankA ≥ rankA holds. A matrix A is said to
have row-full term-rank if t-rankA = |U |.

We say that a square matrix A is sign-nonsingular if all matrices in Q(A) are nonsingular. A square
matrix A is sign-nonsingular if and only if A is term-nonsingular and every nonvanishing term of the
determinant of A has the same sign [3]. Thus, if A is sign-nonsingular, the determinant of every matrix
in Q(A) has the same sign.

Let G = (U, V ; E) be a bipartite graph with vertex sets U, V and edge set E ⊆ U × V . For an
edge subset F ⊆ E, we denote the set of end vertices of F by U(F ) = {i ∈ U | (i, j) ∈ F} and
V (F ) = {j ∈ V | (i, j) ∈ F}. A path P ⊆ E is a sequence of consecutive edges in a graph. In this paper,
we deal with only elementary paths, in which edges and vertices are all distinct. An i-j path means a
path from vertex i to vertex j. We call a path of even length an even path, and odd length an odd path.
A cycle C ⊆ E is a path which ends at the vertex it begins with.

An edge subset M ⊆ E is said to be a matching if |M | = |U(M)| = |V (M)|. We call a matching M
perfect if it satisfies |M | = min{|U |, |V |}. For an edge subset M , we say a path P of G is M -alternating
if the elements of P alternate between elements of M and E \ M along P . For edge subsets F1 and F2,
we denote by F14F2 the symmetric difference between F1 and F2, that is, F14F2 = (F1 \F2)∪ (F2 \F1).
Notice that for a matching M and an M -alternating path P , the symmetric difference M4P is also a
matching in G.

For X ⊆ U , ΓG(X) means the set of neighbors of X, that is, ΓG(X) = {v ∈ V | ∃u ∈ X, (u, v) ∈ E}.
If there is no ambiguity, we simply use Γ(X). The following proposition is known as Hall’s theorem for
bipartite graphs.

Proposition 2.1. For a bipartite graph G = (U, V ; E) with |U | ≤ |V |, there exists a perfect matching in
G if and only if |Γ(X)| ≥ |X| for all X ⊆ U .

For a bipartite graph G, an orientation ~G of G is a directed graph obtained from G by orienting its
edges. For an orientation ~G of G, an even path P of G is said to be oddly oriented (evenly oriented) in
~G if an odd (even) number of its edges are directed in the same direction along P . A path P is central
if the subgraph obtained from G by deleting the vertices in P has a perfect matching. For a bipartite
graph G = (U, V ; E) with |U | = |V |, we say that an orientation of G is Pfaffian if every central cycle of
even length is oddly oriented. As mentioned in Section 1, it can be decided in polynomial time whether
a given directed bipartite graph is Pfaffian or not.

With a matrix A, we associate a directed bipartite graph G(A) = (U, V ; E). The vertex sets U and
V correspond to the row and column sets, respectively. The edge set E is defined by E = {(i, j) | aij 6=
0, i ∈ U, j ∈ V }. An edge in G(A) represents a nonzero entry in A. An edge (i, j) ∈ E is oriented from
i ∈ U to j ∈ V if aij is positive, and from j ∈ V to i ∈ U if aij is negative. We simplify ΓG(A)(X) by
Γ(X), which means the column subset having nonzero entries in A[X,V ].

For a square matrix A, a perfect matching in G(A) corresponds to a nonzero expansion term of det A.
Hence A is term-nonsingular if and only if G(A) has a perfect matching. The term-rank of a matrix A is
equal to the maximum size of a matching in G(A). It is known that a square matrix A is sign-nonsingular
if and only if G(A) is Pfaffian.
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3 Sign-Solvability of Linear Programs

Consider a linear program in the standard form LP(A, b, c), where b is a column vector, c is a row vector,
and A is a matrix with row set U and column set V . In this section, we simply denote AJ = A[J ],
cJ = c[J ] and xJ = x[J ] for J ⊆ V .

We say that x is a feasible solution if x satisfies all the constraints. A linear program is said to be
feasible if it has feasible solutions, and infeasible otherwise. A feasible linear program is unbounded if, for
any λ ∈ R, there exists a feasible solution x such that cx ≥ λ. A linear program which is not unbounded
is called bounded. For a feasible and bounded linear program, a feasible solution that maximizes the
objective function is said to be an optimal solution. The objective value of an optimal solution is called
the optimal value.

Proposition 3.1. A feasible linear program LP(A, b, c) is unbounded if and only if the linear system(
c
A

)
x =

(
1
0

)
has nonnegative solutions.

A basis B of a linear program LP(A, b, c) is the column subset such that |B| = |U | and AB is
nonsingular. The remaining column subset V \ B is denoted by N . The basic solution x for a basis B is
defined by xB = A−1

B b and xN = 0. If a basic solution is nonnegative, the corresponding basis is called
feasible. A basis is optimal if the basic solution is optimal. The relative weight vector z for a basis B is
defined by zB = 0 and zN = cN − cBA−1

B AN . It is known that a basis B is optimal if and only if a basis
B is feasible and the relative weight vector is nonpositive.

We say that a linear program LP(A, b, c) is sign-solvable if there exists a set S of sign patterns of
vectors such that the set of sign patterns of all the optimal solutions of LP(Ã, b̃, c̃) coincides with S for
any Ã ∈ Q(A), b̃ ∈ Q(b), and c̃ ∈ Q(c). If a linear program is infeasible or unbounded, the set of the
optimal solutions is defined to be empty. Note that the definition of sign-solvability does not require the
uniqueness of the sign of the optimal value.

We give examples of sign-solvable linear programs.

Example 1. Consider the following linear program of two linear equations in four unknowns:

maximize ( 0 0 −c1 −c2) x

subject to
(

a1 0 −a2 −a3

0 a4 −a5 −a6

)
x =

(
b1

b2

)
,

x ≥ 0,

where ci (i = 1, 2), ai (i = 1, . . . , 6), and bi (i = 1, 2) are all positive constants. The sign patterns imply
that the first two columns form an optimal basis, and the others not. Thus this linear program is
sign-solvable.

Example 2. Consider the following linear program of three linear equations in six unknowns:

maximize ( 0 0 c1 0 0 −c2 ) x

subject to

 a1 0 0 a2 0 0
−a3 a4 0 a5 a6 0
0 a7 −a8 0 −a9 −a10

 x =

 b1

0
0

 ,

x ≥ 0,

where ci (i = 1, 2), ai (i = 1, . . . , 10), and b1 are all positive constants. Then the first three columns form
an optimal basis B. Indeed, the basic solution x for B is

x =
b1

a1
(1

a3

a4

a3a7

a4a8
0 0 0)> ≥ 0,
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and the relative weight vector z is

zN = − 1
a1a4a8

 c1a7(a2a3 + a1a5)
a1(a6a7 + a4a9)c1

a1a4a10c1 + a1a4a8c2

>

≤ 0.

Therefore, B is optimal independently of the magnitudes of the given constants. Similarly, the basic
solutions and the relative weight vectors for the other bases imply that the other bases are not optimal
independently of the magnitudes of the given constants. Thus this linear program is sign-solvable. Since
the optimal value is

a3a7b1c1

a1a4a8
> 0,

the sign of the optimal value is positive independently of the magnitudes of the given constants.

We now discuss the complexity of recognizing sign-solvability of a linear program. A matrix A is
sign-central if Ãx = 0 has a nonzero, nonnegative solution for any Ã ∈ Q(A). It is NP-complete to decide
whether A is not sign-central [1]. On the other side, we call A sign-extreme if Ãx = 0 does not have such
a solution for any Ã ∈ Q(A). It can be decided in polynomial time whether Ã is sign-extreme [11].

Theorem 3.2. It is NP-complete to decide whether a given linear program LP(A, b, c) is not sign-solvable.

Proof. We first show that the problem is in NP. If the linear program is not sign-solvable, then there
exist Ã, Â ∈ Q(A), b̃, b̂ ∈ Q(b), and c̃, ĉ ∈ Q(c) such that the linear program LP(Ã, b̃, c̃) has an optimal
solution x∗, but LP(Â, b̂, ĉ) has no optimal solutions with the same sign pattern as x∗. If LP(Â, b̂, ĉ) is
infeasible or unbounded, then we know LP(A, b, c) is not sign-solvable. Suppose that LP(Â, b̂, ĉ) has an
optimal solution x̂. Let S be the set of the optimal solutions of LP(Â, b̂, ĉ), that is, S = {x | Âx = b̂, ĉx =
ĉx̂, x ≥ 0}. Then we have Q(x∗)∩S = ∅, which implies that there exists a separating hyperplane wx = 0
between the convex cone Q(x∗) and the polytope S. The hyperplane serves as a polynomial certificate
that LP(A, b, c) is not sign-solvable. Indeed, we can verify in polynomial time that the hyperplane
separates Q(x∗) and S by solving the linear programs max{wx | x ∈ S} and min{wx | xZ = 0, x ≥ 0},
where Z = {j | x∗

j = 0}.
We next show that the problem of recognizing sign-central matrices can be polynomially reduced to

that of recognizing sign-solvable linear programs. Let A be an m × n matrix, and consider the linear
program LP(A, 0,1), where 1 is the row vector whose entries are all one. Note that zero is a feasible
solution of LP(A, 0,1). Proposition 3.1 implies that LP(A, 0,1) is unbounded or zero is the unique feasible
solution of LP(A, 0,1). Therefore, LP(A, 0,1) is sign-solvable if and only if A is either sign-central or
sign-extreme. If there were a polynomial time algorithm for testing sign-solvability of LP(A, 0,1), then
one could decide whether A is sign-central or not in polynomial time with the aid of the algorithm for
recognizing sign-extreme matrices. Thus it is NP-complete to decide whether a given linear program is
not sign-solvable.

4 Totally Sign-Nonsingular Matrices

We say that an m × n matrix (m ≤ n) is totally sign-nonsingular if all term-nonsingular submatrices of
order m are sign-nonsingular, namely, if the sign of the determinant of each submatrix of order m is
determined uniquely by the sign pattern of the matrix.

A matrix A is said to have signed null space if there exists a set S of sign patterns of vectors such
that the set of sign patterns of all the solutions in Ãx = 0 coincides with S for any Ã ∈ Q(A). A matrix
A has signed row space if there exists a set S of sign patterns such that the set of sign patterns of all the
vectors in {yÃ | y ∈ Rm} coincides with S for any Ã ∈ Q(A). Equivalence among these three concepts
has been established as follows.
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Theorem 4.1 (Kim and Shader [8], Shao and Ren [18]). Let A be a matrix with row-full term-rank. Then
the following three conditions are equivalent.

(i) The matrix A is totally sign-nonsingular.

(ii) The matrix A has signed null space.

(iii) The matrix A has signed row space.

This theorem can also be derived in terms of oriented matroid theory. See [2] for the terminology
in the theory of oriented matroids. Let M(A) be the oriented matroid represented by a matrix A. The
condition (i) of Theorem 4.1 means that, for any Ã ∈ Q(A), the oriented matroid M(Ã) has the same
chirotope as M(A). The condition (ii) means that M(Ã) has the same vector family as M(A) for any
Ã ∈ Q(A). And the condition (iii) means that M(Ã) has the same covector family as M(A) for any
Ã ∈ Q(A). Therefore, each of these three conditions is equivalent to that M(Ã) is the same oriented
matroid as M(A) for any Ã ∈ Q(A).

We now discuss the computational complexity of recognizing totally sign-nonsingular matrices. A
matrix which does not have row-full term-rank is totally sign-nonsingular. The following theorem shows
that testing total sign-nonsingularity of an m×n matrix with row-full term-rank can be reduced to recog-
nizing a sign-nonsingular matrix of order m + n. By the result of Robertson, Seymour, and Thomas [16],
this can be done in O(n3) time.

Theorem 4.2. Let A be an m × n matrix with row-full term-rank, and U and V the row and column

sets of A. Then A is totally sign-nonsingular if and only if T =
(

O A
A> D

)
is sign-nonsingular, where

D is a diagonal matrix with positive diagonal entries.

Proof. Suppose that A is totally sign-nonsingular. Let T̃ ∈ Q(T ) be a matrix in the form of T̃ =(
O Ã

Â> D̃

)
, where Ã and Â are matrices in Q(A), and D̃ is a matrix in Q(D). Since the sign of det T̃

is invariant under multiplying any positive scalar to a column, we assume without loss of generality that
D̃ is the identity matrix. Then it holds that

det T̃ = det(−ÃÂ>) = (−1)m
∑
J⊆V,

|J|=|U|

(det Ã[J ])(det Â[J ]),

where the last equality follows from the Binet-Cauchy formula. Since A[J ] is sign-nonsingular for any
J ⊆ V such that det A[J ] 6= 0, the signs of det Ã[J ] and det Â[J ] are the same. Hence the sign of det T̃
equals to (−1)m. Thus T is sign-nonsingular.

Conversely, suppose that A is not totally sign-nonsingular. Then there exists Ã ∈ Q(A) such that
Ã[J ] is term-nonsingular but not sign-nonsingular for some J ⊆ V . This implies that det Ã[J ] has at least
two nonzero expansion terms with different signs. We denote these two terms by sgn π

∏
i∈U aiπ(i) and

sgn π′ ∏
i∈U aiπ′(i), where π and π′ are the bijections from U to J . Choose the matrix T̃ =

(
O Ã

Ã> D̃

)
in Q(T ), where D̃ is the identity matrix of order n. Suppose that the rows and columns of T̃ are indexed
by U ∪ V . Define a bijection σ over U ∪ V by σ(i) = π(i) for i ∈ U , σ(i) = π−1(i) for i ∈ J , and σ(i) = i
for i ∈ V \ J . Another bijection σ′ is defined by σ′(i) = π′(i) for i ∈ U , and σ′(i) = σ(i) for the other
indices i ∈ V . Then sgn σ

∏
i∈U∪V aiσ(i) and sgnσ′ ∏

i∈U∪V aiσ′(i) are both nonzero expansion terms in
det T̃ , but they have the opposite signs. Thus T is not sign-nonsingular.
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5 Totally Sign-Nonsingular Linear Programs

We have shown in Theorem 3.2 that recognizing sign-solvability of a given linear program is co-NP-
complete. In contrast, Theorem 4.2 implies that there is a strongly polynomial-time algorithm for rec-
ognizing totally sign-nonsingular matrices. In this section, we introduce a class of sign-solvable linear
programs using totally sign-nonsingular matrices.

For the linear program LP(A, b, c), we denote by Ap the matrix in the form of

Ap =
(

A −b
)
, (1)

where the column vector −b is indexed by g. Then the linear program LP(A, b, c) can be represented as
max{cx | Ap

(
x
xg

)
= 0, xg = 1, x ≥ 0}.

The dual program of LP(A, b, c) is min{yb | yA ≥ c}. Let Ad be the matrix defined by

Ad =
(

−c
A

)
, (2)

where the row vector −c is indexed by r. Then the dual program can be represented as min{yb |
(yr y)Ad = z, yr = 1, z ≥ 0}.

A basic solution and a relative weight vector can be rewritten by using the determinants of submatrices
of Ap and Ad. Let B be a basis. Cramer’s rule implies that the basic solution x for B is obtained by

xi = −detAp[B − i + g]
detAp[B]

, ∀i ∈ B, (3)

where B − i + g means B \ {i} ∪ {g} with g being put at the position of i in B. Similarly, the relative
weight vector z for B is obtained by

zj = cj − cBA−1
B Aj = −detAd[B + j]

detAB
, ∀j ∈ N, (4)

where B + j means B ∪ {j} with j being inserted into the first position and Aj is the column vector of
A indexed by j.

A linear program LP(A, b, c) is said to be totally sign-nonsingular if A has row-full term-rank and both
Ap and Ad are totally sign-nonsingular. If LP(A, b, c) is totally sign-nonsingular, then Ap has signed null
space by Theorem 4.1, which means that the set of the sign patterns of the feasible solutions is determined
independently of the magnitudes of nonzero entries in Ap. Moreover, the total sign-nonsingularity of

LP(A, b, c) implies that A and K =
(

1 −c
0 A

)
are both totally sign-nonsingular matrices with row-full

term-rank. The following theorem asserts that the total sign-nonsingularity implies sign-solvability.

Theorem 5.1. A totally sign-nonsingular linear program LP(A, b, c) is sign-solvable.

Proof. Suppose that the totally sign-nonsingular linear program LP(A, b, c) is infeasible, which implies
that max{cx | Ap

(
x
xg

)
= 0, xg = 1, x ≥ 0} is infeasible. Since Ap has signed null space, a linear program

LP(Ã, b̃, c̃) is infeasible for any Ã ∈ Q(A), b̃ ∈ Q(b), and c̃ ∈ Q(c). Thus the linear program LP(A, b, c)
is sign-solvable.

Suppose that LP(A, b, c) is feasible and unbounded. Since K is a totally sign-nonsingular matrix
with row-full term-rank, Theorem 4.1 implies that K has signed null space. Hence the existence of
a nonnegative solution of the linear system Adx = −

(
1
0

)
is independent of the magnitudes of nonzero

entries in K. Therefore, by Proposition 3.1, a linear program LP(Ã, b̃, c̃) is unbounded for any Ã ∈ Q(A),
b̃ ∈ Q(b), and c̃ ∈ Q(c), which shows that LP(A, b, c) is sign-solvable.

Suppose that LP(A, b, c) is feasible and bounded. Let Ã, b̃, and c̃ be a matrix and vectors in Q(A),
Q(b), and Q(c), respectively. The total sign-nonsingularity of LP(A, b, c) implies that a column subset J
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is a basis of LP(A, b, c) if and only if J is a basis of LP(Ã, b̃, c̃). Let B be a basis of LP(A, b, c). Since the
basic solution is represented by (3), the total sign-nonsingularity of Ap implies that the basic solution
for B of LP(A, b, c) has the same sign pattern as that of LP(Ã, b̃, c̃). Similarly, the relative weight vector
is represented by (4). Since Ad and A are totally sign-nonsingular, the relative weight vector for B
of LP(A, b, c) has the same sign pattern as that of LP(Ã, b̃, c̃). Therefore, the basic solution for B of
LP(A, b, c) is optimal if and only if so is that for B of LP(Ã, b̃, c̃).

Let xi for i = 1, . . . , p be all the optimal basic solutions of LP(A, b, c). An optimal solution is
represented as

∑p
i=1 λixi for some λi ≥ 0 (i = 1, . . . , p) with

∑p
i=1 λi = 1. Since LP(Ã, b̃, c̃) has an

optimal basic solution whose sign pattern is sgn xi for i = 1, . . . , p, LP(Ã, b̃, c̃) also has an optimal
solution with the same sign pattern as sgn

∑p
i=1 λixi. Similarly, an optimal solution of LP(Ã, b̃, c̃) has

the same sign pattern as some optimal solution of LP(A, b, c). Thus LP(A, b, c) is sign-solvable.

Sign-solvable linear programs are not necessarily totally sign-nonsingular. Indeed, the sign-solvable
linear program of Example 1 is not totally sign-nonsingular, whereas the linear program of Example 2 is
totally sign-nonsingular.

The sign of the optimal value may not be determined uniquely by the sign patterns, even if a given
linear program is totally sign-nonsingular. Let B∗ be an optimal basis. The optimal value equals to

cB∗A−1
B∗b, that is, the determinant of

(
0 cB∗

−b AB∗

)
. Hence the sign of the optimal value is uniquely

determined by the sign pattern if and only if this matrix is sign-nonsingular.

6 Combinatorial Optimality Criterion

This section provides an optimality condition for a totally sign-nonsingular linear program LP(A, b, c).
Let L be the matrix in the form of

L =
( f V g

r 1 −c 0
U 0 A −b

)
, (5)

where the row and column sets are indexed by {r} ∪U and {f} ∪ V ∪ {g} as above. Notice that, even if
both Ap and Ad are totally sign-nonsingular, L may fail to be totally sign-nonsingular.

The optimality criterion is given by the following theorem.

Theorem 6.1. For a totally sign-nonsingular linear program LP(A, b, c), let B be a basis and MB be a
perfect matching in G(L[B ∪ {f}]). Then the following statements hold.

• The basis B is feasible if and only if all i-g MB-alternating paths in G(L) are evenly oriented for
any i ∈ B.

• The basis B is optimal if and only if B is feasible and all f -j MB-alternating paths in G(L) are
oddly oriented for any j ∈ V \ B.

In order to prove Theorem 6.1, we investigate combinatorial aspects of totally sign-nonsingular matrices.
Let A be a totally sign-nonsingular matrix with row set U and column set V . Suppose that A has

row-full term-rank. The total sign-nonsingularity of A implies that, if A[J ] is term-nonsingular, then
J ⊆ V is a basis. Let B be a basis in A, and N denote the remaining column subset V \ B. We denote
by M a perfect matching in G(A[B]).

Lemma 6.2. For any u ∈ B and v ∈ N , the column subset B \ {u} ∪ {v} is a basis if and only if there
exists an M -alternating path P from u to v in G(A).

Proof. Assume that B\{u}∪{v} is a basis. Then there exists a perfect matching M ′ in G(A[B\{u}∪{v}]).
The union M ∪ M ′ consists of M -alternating cycles and a u-v M -alternating path. Conversely, assume
that there exists a u-v M -alternating path P . The symmetric difference M4P is a matching with
V (M4P ) = B \ {u} ∪ {v}. Thus B \ {u} ∪ {v} is a basis.
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The next lemma says that the difference between the signs of det A[B] and detA[B−u+v] is obtained
by the sign of a u-v path, where B − u + v means B \ {u} ∪ {v} with v being put at the position of u in
B.

Lemma 6.3. Let P be an M -alternating path from u ∈ B to v ∈ N . Then P is oddly (evenly) oriented
if and only if detA[B] and detA[B − u + v] have the same (opposite) signs.

Proof. By Lemma 6.2, B − u + v is also a basis in A, and M ′ = M4P is a perfect matching in
G(A[B − u + v]). Let π : U → B be the bijection corresponding to M , and π′ : U → B − u + v
corresponding to M ′. Since both A[B] and A[B − u + v] are sign-nonsingular, in order to compare
the signs of det A[B] and det A[B − u + v], it suffices to compare the signs of sgn π

∏
i∈U aiπ(i) and

sgn π′ ∏
i∈U aiπ′(i), namely, sgnπ

∏
(i,j)∈M∩P aij and sgnπ′ ∏

(i,j)∈M ′∩P aij .
Let 2p be the length of P with an integer p ≥ 1, and let u1, u2, . . . , up be the vertices in U(P ) along P .

Then the bijection π′ is represented as π′(us) = π(us+1) for s = 1, . . . , p− 1, π′(up) = v, and π′(t) = π(t)
for the other vertices t ∈ U \ U(P ). This implies that π′ is a product of π and the cyclic permutation
of length p + 1. Hence, if p is even, then the signs of π and π′ are different, and if p is odd, then these
signs are the same. Examples of M -alternating paths and the corresponding submatrices are depicted in
Figures 1 and 2.

In traversing P from u to v, the number of edges in the direction of traversal is the sum of the
numbers of negative edges in M ∩ P and positive edges in M ′ ∩ P . Suppose that p is even. Then the
numbers of positive and negative edges in M ′∩P have the same parity. Hence, P is oddly oriented if and
only if the number of negative edges in P is odd, that is,

∏
(i,j)∈P aij is negative. Thus

∏
(i,j)∈M∩P aij

and
∏

(i,j)∈M ′∩P aij have the opposite signs. Next suppose that p is odd. The parity of the numbers of
positive and negative edges in M ′∩P is different. Hence, P is oddly oriented if and only if

∏
(i,j)∈P aij is

positive, namely,
∏

(i,j)∈M∩P aij and
∏

(i,j)∈M ′∩P aij have the same signs. Therefore, P is oddly oriented
if and only if sgnπ

∏
(i,j)∈M∩P aij and sgnπ′ ∏

(i,j)∈M ′∩P aij have the same signs.

u ∈ B

v ∈ N

P
* *

* *

* *

* *

M

M
B︷ ︸︸ ︷

Figure 1: An M -alternating path of length 2p with an even integer p ≥ 2.
u ∈ B

v ∈ N

P
* *

* *

* *M

B︷ ︸︸ ︷M

v
Figure 2: An M -alternating path of length 2p with an odd integer p ≥ 1.

Corollary 6.4. For any u ∈ B and v ∈ N , all u-v M -alternating paths have the same sign.
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Proof. This directly follows from Lemma 6.3.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. For a basis B, the basic solution can be represented by (3). Since Ap is totally
sign-nonsingular, it follows from Lemma 6.3 and Corollary 6.4 that the basic solution is nonnegative if
and only if all i-g M -alternating paths in G(Ap) are evenly oriented for any i ∈ B. Thus the first part of
this theorem holds.

By (4), the sign pattern of the relative weight vector is obtained from the signs of det Ad[B + j] and
detA[B] for all j ∈ N . Since both Ap and Ad are totally sign-nonsingular, K = L[V ∪{f}] is also totally
sign-nonsingular. Moreover, it holds that detA[B] = detK[B + f ] and det Ad[B + j] = detK[B + j].
Then Lemma 6.3 and Corollary 6.4 imply that the relative weight vector is nonpositive if and only if all
f -j MB-alternating paths in G(K) are oddly oriented for any j ∈ N . Thus the second part holds.

7 Feasibility of Totally Sign-Nonsingular Linear Programs

This section is devoted to testing feasibility of a totally sign-nonsingular linear program LP(A, b, c), and
to finding a feasible basis if LP(A, b, c) is feasible. Recall that A has row-full term-rank and Ap in the
form of (1) is totally sign-nonsingular.

7.1 Testing Feasibility

We say that a row of a matrix is unisigned if it has a nonzero entry and all nonzero entries have the
same sign. A row of a matrix is mixed if it has both positive and negative entries. A matrix is said to be
row-mixed if every row is mixed.

We first show that we can reduce the feasibility problem of LP(A, b, c) to the one with row-mixed
Ap. Assume that Ap (6= O) is not row-mixed. Then there exists a row u ∈ U such that A[{u}, V ] is
nonnegative and −bu ≥ 0. If bu < 0, then A[{u}, V ] ≥ 0 implies that LP(A, b, c) is infeasible. If bu = 0,
then any feasible solution satisfies that xv = 0 for all v ∈ Γ({u}). Thus Ax = b has nonnegative solutions
if and only if so does A[U \ {u}, V \ Γ({u})]x[V \ Γ({u})] = b[U \ {u}].

More concretely, an algorithm for the reduction works as follows. Set A0
p = Ap. Assume that Al−1

p

is not row-mixed for a positive integer l. Let Ul be the set of rows that are not mixed in Al−1
p . Define

Vl = Γ(Ul) \ Γ(Ul−1), where Γ(U0) = ∅. Let Al
p be the submatrix obtained from Al−1

p by deleting Ul and
Vl. Repeat this for l = 1, 2, . . . until Al

p is row-mixed. Let k be the number of iterations. We denote
Uh =

⋃h
l=1 Ul and V h =

⋃h
l=1 Vl for h = 1, . . . , k, and U∞ = U \ Uk and V∞ = V ∪ {g} \ V k.

The obtained partition of row and column sets into U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞ is called the
unisigned partition of Ap. The unisigned partition satisfies that Ap[Ul, Vh] = O for 1 ≤ l < h ≤ k.
Moreover, each row in Ap[Uh, Vh] is unisigned or zero, and Ap[U \ Uh, V ∪ {g} \ V h−1] is row-mixed for
h = 1, . . . , k, where V 0 = ∅. Therefore, by row and column permutations, the unisigned partition derives
a staircase structure of Ap. An example of the unisigned partition is depicted in Figure 3.

If g ∈ V k, then we know the linear program LP(A, b, c) is infeasible. If g ∈ V∞, then any feasible
solution x satisfies that x[V k] = 0, and the feasibility of Ap is reduced to that of Ap[U∞, V∞] that is
row-mixed. The following lemma implies that Ap[U∞, V∞] is totally sign-nonsingular and A[U∞, V∞\{g}]
has row-full term-rank.

Lemma 7.1. If Ap is totally sign-nonsingular, then Ap[U∞, V∞] is also totally sign-nonsingular and
Ap[U∞, V∞ \ {j}] has row-full term-rank for any j ∈ V∞.

Proof. By Theorem 4.1, Ap has signed null space. Since Ap[Uk, V∞] = O, this implies that Ap[U∞, V∞]
also has signed null space.
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Figure 3: The unisigned partition of a matrix.

We then claim that the submatrix Ap[U∞, V∞ \ {j}] has row-full term-rank for any j ∈ V∞. Assume
that t-rankAp[U∞, V∞ \ {j}] < |U∞| for some j ∈ V∞. Then Proposition 2.1 implies that there exists
X ⊆ U∞ such that |Y | ≤ |X| holds for Y = Γ(X) ∩ V∞. We choose X such that |Y | − |X| is minimum.
Then we have t-rankAp[X,Y ] = |Y |. Since Ap[U∞, V∞] is row-mixed, there exists Ãp ∈ Q(Ap) such that
the sum of the columns of Ãp[U∞, V∞] is zero, that is, Ãp[U∞, V∞]x = 0 has a solution x = 1, where
1 is the column vector whose entries are all one. Since t-rankAp[X,Y ] = |Y |, there exists Âp ∈ Q(Ap)
such that the columns indexed by Y are linearly independent, which means that Âp[U∞, V∞]x = 0 has
no positive solution. This contradicts that Ap[U∞, V∞] has signed null space. Thus Ap[U∞, V∞ \{j}] has
row-full term-rank for any j ∈ V∞.

Therefore, the submatrix Ap[U∞, V∞] also has row-full term-rank. Since Ap[U∞, V∞] has signed null
space, it follows from Theorem 4.1 that Ap[U∞, V∞] is totally sign-nonsingular.

For the feasibility of a linear program LP(A, b, c) with row-mixed Ap, we have the following lemma.
Shao and Ren [18] proved this to derive Theorem 4.1. Conversely, we describe a simple proof based on
Theorem 4.1.

Lemma 7.2. A totally sign-nonsingular linear program LP(A, b, c) has a positive solution if Ap is row-
mixed.

Proof. Theorem 4.1 implies that Ap has signed null space. Hence it suffices to find some matrix Ãp in
Q(Ap) such that the corresponding linear system Ãx = b̃ has positive solutions. Since Ap is row-mixed,
there exists Ãp ∈ Q(Ap) such that the sum of the columns of Ãp is zero, which implies that the linear
system Ãpx = 0 has a solution x = 1, where 1 is the column vector whose entries are all one. This means
that the corresponding linear system Ãpx = b̃ also has a solution x = 1. Thus LP(A, b, c) has a positive
solution.

These results naturally suggest an efficient algorithm for testing feasibility of a totally sign-nonsingular
linear program LP(A, b, c). The algorithm starts with finding the unisigned partition U1, . . . , Uk, U∞ and
V1, . . . , Vk, V∞ of Ap. If g ∈ V k, then LP(A, b, c) is infeasible. Otherwise, LP(A, b, c) is feasible by
Lemmas 7.1 and 7.2.

The running time bound of this algorithm is now given as follows. To obtain the unisigned partition,
we check in each iteration whether each row remains row-mixed or not. Hence the lth iteration for
l = 1, . . . , k requires O(γl) time, where γl is the number of nonzero entries in Ap[Vl]. Therefore, it takes
O(γ) time to find the unisigned partition. Thus we have the following theorem.

Theorem 7.3. For a totally sign-nonsingular linear program LP(A, b, c), the feasibility of LP(A, b, c) can
be decided in O(γ) time, where γ is the number of nonzero entries in Ap.
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7.2 Row-Mixed Totally Sign-Nonsingular Matrices

Kim and Shader gave a characterization on row-mixed totally sign-nonsingular matrices. We say that a
path P in a directed bipartite graph G = (U, V ; E) is mixed if, for each inner vertex u in U(P ), the two
edges incident to u have different signs. A signing D of an m× n matrix is a {1,−1}-diagonal matrix of
order n. Notice that total sign-nonsingularity is preserved by multiplying −1 to some columns and rows.

Theorem 7.4 (Kim and Shader [8]). Let A be a row-mixed matrix. Then A is a totally sign-nonsingular
matrix with row-full term-rank if and only if G(AD) has no mixed cycles for any signing D such that
AD is row-mixed.

It follows from Lemma 7.1 that, for a row-mixed totally sign-nonsingular matrix A, A[V \ {j}] has
row-full term-rank for any j ∈ V . Theorem 7.4 and the following lemma imply that, for a row-mixed
submatrix A[I, J ] in A, the submatrix A[I, J \ {j}] has row-full term-rank for any j ∈ J .

Lemma 7.5. Let A be a row-mixed matrix such that G(A) = (U, V ; E) has no mixed cycles. Then
A[V \ {j}] has row-full term-rank for any j ∈ V .

Proof. We first show that |Γ(X)| ≥ |X| + 1 holds for any nonempty subset X ⊆ U . Since A[X, Γ(X)] is
row-mixed, each vertex in X of G(A[X, Γ(X)]) has at least two edges with positive and negative signs.
The number of these edges is 2|X|. Since G(A[X, Γ(X)]) has no mixed cycles, these 2|X| edges form a
forest covering all vertices in X, and hence G(A[X, Γ(X)]) has at least 2|X| + 1 vertices. This implies
that |Γ(X)| is at least |X| + 1. Therefore, it follows from Proposition 2.1 that A[V \ {j}] has row-full
term-rank for any j ∈ V .

7.3 Primal Contraction

We introduce an operation, called primal contraction, on a row-mixed totally sign-nonsingular matrix
Ap. We say that a square submatrix A[I, J ] in A is primal contractible if Ap[I, J ∪ {g}] is row-mixed.

Let H = A[I, J ] be a primal contractible submatrix in A. Since Ap[I, J ∪ {g}] is row-mixed and
G(Ap[I, J ∪ {g}]) has no mixed cycles by Theorem 7.4, it follows from Lemma 7.5 that G(H) has a
perfect matching MH .

Lemma 7.6. For a primal contractible submatrix H = A[I, J ] in A, the following (a) and (b) hold.

(a) For any v ∈ J , the bipartite graph G(Ap) has a g-v MH-alternating mixed path.

(b) For any two distinct vertices u, v ∈ J , the bipartite graph G(Ap) has a u-v mixed path in G(H).

Proof. (a) Since Ap[I, J ∪ {g}] is row-mixed and G(Ap[I, J ∪ {g}]) has no mixed cycles, there exists an
MH -alternating mixed path in G(Ap[I, J ∪ {g}]) from g to any vertex v in J .
(b) For any two distinct vertices u, v ∈ J , (a) implies that G(Ap[I, J ∪ {g}]) has two MH -alternating
mixed paths Pu and Pv from g to u and v, respectively. Then Pu4Pv includes one mixed path, which
implies (b).

Suppose that Ap is in the form of

Ap =
(

H Ap[I, V ′] −b[I]
Ap[U ′, J ] A′ −b[U ′]

)
,

where U ′ = U \ I, V ′ = V \ (J ∪ {g}), and A′ = Ap[U ′, V ′]. We then construct a new matrix

A′
p =

(
A′ −b′

)
(6)

with row set U ′ and column set V ′ ∪ {g}, where the last column vector −b′ is indexed by g. The vector
−b′ is obtained by adding all column vectors in Ap[U ′, J ] to −b[U ′]. Since G(Ap) has no mixed cycles,
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Lemma 7.6 (b) implies that each row in Ap[U ′, J ∪ {g}] is unisigned or zero. Hence the sign pattern of
−b′ is uniquely determined by the sign pattern of Ap. Such a new matrix A′

p is said to be the primal
contraction of Ap by H.

Theorem 7.7. Let Ap be a row-mixed totally sign-nonsingular matrix, and H = Ap[I, J ] a primal con-
tractible submatrix in A. Then the primal contraction A′

p by H is row-mixed and totally sign-nonsingular.

Proof. Since Ap[U ′, V ] is row-mixed and the vector −b′ has the same sign pattern as the sum of columns
of Ap[U ′, J ∪ {g}], A′

p is row-mixed.
We will show that A′

p is totally sign-nonsingular. Assume that A′
p is not totally sign-nonsingular.

Then Theorem 7.4 implies that there exists a signing D′ of A′
p such that A′

pD
′ is row-mixed and G(A′

pD
′)

has a mixed cycle C ′. Let d′i be the diagonal entry of D′ indexed by i ∈ V ′∪{g}. Define the signing D of
Ap from D′ as follows. Each diagonal entry di of D is defined by dj = d′g for j ∈ J ∪ {g} and dj = d′j for
j ∈ V ′. Then ApD is row-mixed. If V (C ′) does not contain the vertex g, then C ′ is also a mixed cycle in
G(ApD), which contradicts that Ap is row-mixed and totally sign-nonsingular by Theorem 7.4. Hence we
assume that V (C ′) contains the vertex g. Let i, j ∈ U ′ be vertices with (i, g), (j, g) ∈ C ′. Since (i, g) and
(j, g) are edges in G(A′

p), there exist s, t ∈ J such that sgn ais = −sgn b′i and sgn ajt = −sgn b′j . Moreover,
Lemma 7.6 (b) implies that G(H) has a mixed path P from s to t. Then C ′\{(i, g), (j, g)}∪P∪{(i, s), (j, t)}
is a mixed cycle in G(ApD). This contradicts that Ap is row-mixed and totally sign-nonsingular. Thus
A′

p is totally sign-nonsingular.

Kim and Shader [8] introduced a similar operation preserving total sign-nonsingularity on row-mixed
matrices. If a primal contractible submatrix A[I, J ] satisfies |I| = 1 and Ap[I, V ′] = O, then the primal
contraction corresponds to their conformal contraction. Theorem 7.7 implies that if Ap is totally sign-
nonsingular, then the conformal contraction is totally sign-nonsingular. Kim and Shader showed that
the converse also holds for conformal contractions.

7.4 Finding a Feasible Basis

We now describe an algorithm for finding a feasible basis of a totally sign-nonsingular feasible linear
program LP(A, b, c).

We first assume that Ap is row-mixed. Then we find a feasible basis recursively as follows. If b = 0,
then any basis is feasible. If b has a nonzero entry bu, then there exists v ∈ V such that sgn auv = sgn bu.
The submatrix H = A[{u}, {v}] is primal contractible. The primal contraction A′

p by H is row-mixed and
totally sign-nonsingular by Theorem 7.7. Moreover, Lemma 7.1 implies that A′ has row-full term-rank.
We apply this algorithm recursively to the smaller linear system A′x = b′, and obtain a feasible basis B′

of A′x = b′. The following lemma implies that B′ ∪ {v} is a feasible basis of LP(A, b, c).

Lemma 7.8. For a totally sign-nonsingular linear program LP(A, b, c) with row-mixed Ap, let H = A[I, J ]
be a primal contractible submatrix, and B′ a feasible basis of the primal contraction by H. Then B′ ∪ J
is a feasible basis of LP(A, b, c).

Proof. Let M ′ be a perfect matching in G(A′
p[B

′]), and MH a perfect matching in G(H). Since M =
M ′ ∪ MH is a perfect matching in G(A), B′ ∪ J is a basis of LP(A, b, c).

It follows from Corollary 6.4 and Lemma 7.6 (a) that, for any i ∈ J , all g-i MH -alternating paths
are evenly oriented. Let P be a g-i M -alternating path in G(Ap) for i ∈ B′. Suppose that P has no
vertices in J . Then P is also a g-i M ′-alternating path in G(A′

p). Since B′ is a feasible basis of the primal
contraction, P is evenly oriented by Theorem 6.1. Next suppose that P has a vertex in J , namely, that P
has some edge (u, v) with u ∈ U ′ and v ∈ J . Then P is partitioned into the g-v MH -alternating path Pv

in G(H) and the v-i M ′-alternating path Pi in G(Ap). The path Pv is evenly oriented. Since Pi appears
in G(A′

p) as a g-i M ′-alternating path, Theorem 6.1 implies that Pi is also evenly oriented. Hence P is
evenly oriented. Thus all g-i M -alternating paths are evenly oriented for any i ∈ B, which implies that
B is feasible by Theorem 6.1.
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In each recursive step, we obtain the primal contraction in O(γv) time, where γv is the number of
nonzero entries in column v. Hence it takes O(γ) time until the recursion terminates, where γ is the
number of nonzero entries in Ap. If b = 0, then we obtain a feasible basis with the aid of an efficient
maximum bipartite matching algorithm [5], which runs in O(

√
mγ) time, where m is the number of rows

of A. Thus it requires O(
√

mγ) time to find a feasible basis of LP(A, b, c) with row-mixed Ap.
Even if Ap is not row-mixed, we find a feasible basis efficiently as follows. We first obtain the unisigned

partition of Ap into U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞, which requires O(γ) time. The feasibility of
LP(A, b, c) implies g ∈ V∞. Let B∞ be a feasible basis of the remaining linear system A[U∞, V∞ \{g}]x =
b[U∞]. Since A[Uk, V k] has row-full term-rank, A[Uk, V k] has a basis, denoted by B∗. Then B = B∞∪B∗
is a feasible basis of LP(A, b, c). Since Ap[U∞, V∞] is row-mixed and totally sign-nonsingular, we can find
B∞ as described above in O(

√
mγ) time. The basis B∗ can be obtained by finding a perfect matching in

G(A[Uk, V k]), which takes O(
√

mγ) time. Thus we have the following theorem.

Theorem 7.9. For a totally sign-nonsingular linear program LP(A, b, c) that is feasible, we can find a
feasible basis in O(

√
mγ) time, where m is the number of rows of A and γ is the number of nonzero

entries in Ap.

8 Solving Totally Sign-Nonsingular Linear Programs

This section discusses how to obtain the sign pattern of an optimal solution of a totally sign-nonsingular
linear program LP(A, b, c). Recall that Ap, Ad, and L are in the forms of (1), (2), and (5), respectively.

8.1 Algorithm Outline

We first describe the outline of an algorithm for finding the sign pattern of an optimal solution of the
totally sign-nonsingular linear program LP(A, b, c).

The algorithm starts with testing the feasibility of LP(A, b, c). Let U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞
be the unisigned partition of Ap. If g ∈ V \ V∞, then LP(A, b, c) is infeasible, and if g ∈ V∞, then it is
feasible.

Suppose that LP(A, b, c) is feasible. Then any feasible solution x satisfies that x[V \ V∞] = 0. By
Lemma 7.1, Ap[U∞, V∞] is totally sign-nonsingular, and A[U∞, V∞ \ {g}] has row-full term-rank. Since
Ad[U \ U∞, V \ V∞] has row-full term-rank, the total sign-nonsingularity of Ad implies that Ad[U∞ ∪
{r}, V∞ \ {g}] is also totally sign-nonsingular. Therefore, we can reduce the totally sign-nonsingular
linear program LP(A, b, c) to the smaller one LP(A[U∞, V∞ \ {g}], b[U∞], c[V∞]) such that Ap[U∞, V∞] is
row-mixed.

For a totally sign-nonsingular linear program LP(A, b, c) with row-mixed Ap, Procedure OptBasis(A, b, c)
is defined to be a procedure which returns an optimal basis of LP(A, b, c) or that LP(A, b, c) is unbounded.
Note that, since Ap is row-mixed, LP(A, b, c) is feasible by Lemma 7.2. Using Procedure OptBasis, Al-
gorithm OptSign(A, b, c) finds the sign pattern of an optimal solution of a totally sign-nonsingular linear
program LP(A, b, c) as follows.

Algorithm: OptSign(A, b, c)

Step 1: (Testing feasibility) Obtain the unisigned partition of Ap into U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞.
If g 6∈ V∞, then return that LP(A, b, c) is not feasible. Otherwise, put A′ = A[U∞, V∞ \ {g}],
b′ = b[U∞], and c′ = c[V∞], and set x[V \ V∞] = 0.

Step 2: Call Procedure OptBasis(A′, b′, c′) to obtain an optimal basis B of LP(A′, b′, c′). If LP(A′, b′, c′)
turns out to be unbounded, then return that LP(A, b, c) is unbounded.

Step 3: Obtain the sign pattern x[V∞ \ {g}] of the optimal basic solution for B of LP(A′, b′, c′), and
return x.
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Even if LP(A, b, c) is not totally sign-nonsingular, any feasible solution x satisfies that x[V \V∞] = 0.
Therefore, for a linear program LP(A, b, c) that is not totally sign-nonsingular, if LP(A′, b′, c′) in Step 2 is
totally sign-nonsingular, then this algorithm returns the sign pattern of an optimal solution of LP(A, b, c).

Applying Algorithm OptSign(A, b, c), we can compute an optimal solution of LP(A, b, c) as well as the
sign pattern of an optimal solution. Indeed, since we have an optimal basis B of LP(A′, b′, c′), we can
compute the optimal basic solution for B of LP(A′, b′, c′) by performing Gaussian elimination only once.
By extending this optimal basic solution with zero entries in V \ V∞, we obtain an optimal solution of
LP(A, b, c).

In Section 8.4, we will present Procedure OptBasis(A, b, c) for finding an optimal basis of a totally
sign-nonsingular linear program LP(A, b, c) with row-mixed Ap.

8.2 Dual Contraction

In this section, we introduce another type of operations on totally sign-nonsingular matrices, called dual
contraction. Let H = A[I, J ] be a term-nonsingular submatrix in A. Suppose that Ad is in the form of

Ad =

 −c[J ] −c[V ′]
H Ad[I, V ′]

Ad[U ′, J ] A′

 ,

where U ′ = U \ I, V ′ = V \ J , and A′ = Ad[U ′, V ′]. Then we construct a new matrix

A′
d =

(
−c′

A′

)
(7)

with row set {r}∪U ′ and column set V ′, where the first row −c′ is indexed by r. The vector −c′ is defined

as follows. Let K be the matrix in the form of K =
(

1 −c
0 A

)
, where the first column is indexed by f .

We denote by Mf the matching in G(K) consisting of a perfect matching in G(H) and the edge (r, f).
Each entry −c′j for j ∈ V ′ is defined by

−c′j =


+1 if some f -j Mf -alternating path in G(K) is oddly oriented,
−1 if all f -j Mf -alternating paths in G(K) are evenly oriented,
0 if there are no f -j Mf -alternating paths in G(K).

The matrix A′
d obtained by this operation is called the dual contraction of Ad by H.

Theorem 8.1. Let Ad be a totally sign-nonsingular matrix, and H = A[I, J ] a term-nonsingular sub-
matrix in A. Then the dual contraction A′

d by H is totally sign-nonsingular.

Proof. If A′
d does not have row-full term-rank, then A′

d is totally sign-nonsingular. Hence we may assume
that A′

d has row-full term-rank.
Assume that A′

d is not totally sign-nonsingular. This implies that there exists B′ ⊆ V ′ such that
A′

d[B
′] is term-nonsingular but not sign-nonsingular. Then there exists a central cycle C ′ in G(A′

d[B
′])

which is evenly oriented. Let M ′ be a perfect matching in G(A′
d[B

′]) such that C ′ is M ′-alternating, and
let s ∈ V ′ denote the vertex with (r, s) ∈ M ′. The existence of the edge (r, s) implies that G(K) has
an f -s Mf -alternating path Ps whose sign equals to the sign of the path {(r, f), (r, s)} in G(K ′), where

K ′ =
(

1 −c′

0 A′

)
. Then M = M ′ \ {(r, s)} ∪ (Mf4Ps) is a perfect matching in G(Ad[B′ ∪ J ]).

If C ′ is contained in G(A′), then C ′ is an M -alternating cycle in G(Ad) which is evenly oriented. This
contradicts the total sign-nonsingularity of Ad. Next suppose that C ′ has the edges (r, s) ∈ M ′ ∩C ′ and
(r, t) ∈ C ′ \ M ′ in G(A′

d). We denote by Pt an f -t Mf -alternating path in G(K) with the same sign
as the path {(r, f), (r, t)} in G(K ′). Then the symmetric difference Ps4Pt includes the even path P in
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G(Ad) with the same sign as the path {(r, s), (r, t)} in G(A′
d). Hence G(Ad) has an evenly oriented cycle

C = (C ′ \ {(r, s), (r, t)}) ∪ P , and C is M -alternating. This contradicts the total sign-nonsingularity of
Ad. Thus A′

d is totally sign-nonsingular.

Notice that it is not easy to obtain the dual contraction, that is, to decide whether all f -j Mf -
alternating paths in G(K) are evenly oriented or not for j ∈ V \ J . However, for a term-nonsingular
submatrix H that arises in Procedure OptBasis, we can obtain the dual contraction in polynomial time.

8.3 Contraction of Totally Sign-Nonsingular Linear Programs

We introduce an operation on a totally sign-nonsingular bounded linear program LP(A, b, c) with row-
mixed Ap, using primal and dual contractions.

Let H be a primal contractible submatrix in Ap. Note that H is term-nonsingular. Consider the
primal contraction A′

p of Ap by H in the form of (6), and the dual contraction A′
d of Ad by H in the

form of (7). Then we define a new linear program LP(A′, b′, c′), called the LP-contraction of LP(A, b, c)
by H. We denote by L′ the matrix in the form of

L′ =
( f V ′ g

r 1 −c′ 0
U ′ 0 A′ −b′

)
, (8)

where the row and column sets are indexed by {r} ∪ U ′ and {f} ∪ V ′ ∪ {g} as above. Theorems 7.7
and 8.1 imply that the LP-contraction is a totally sign-nonsingular linear program. Moreover, since A′

p

is row-mixed, the LP-contraction has feasible solutions by Lemma 7.2. However, it is not necessarily
bounded.

We say that a submatrix H in A is LP-contractible if H is primal contractible in Ap and the LP-
contraction is bounded. This implies that the LP-contraction by an LP-contractible submatrix has an
optimal basis. Moreover, the following lemma guarantees that, if we have an LP-contractible submatrix,
then the totally sign-nonsingular linear program LP(A, b, c) can be reduced to the LP-contraction.

Lemma 8.2. Suppose that a totally sign-nonsingular linear program LP(A, b, c) is bounded, and that
Ap is row-mixed. Let H = A[I, J ] be an LP-contractible submatrix, and B′ an optimal basis of the
LP-contraction. Then B = B′ ∪ J is an optimal basis of LP(A, b, c).

Proof. Let M ′ be a perfect matching in G(L′[B′ ∪ {f}]), and MH a perfect matching in G(H). Then
M = M ′ ∪ MH is a perfect matching in G(L), and hence B is a basis of LP(A, b, c). It follows from
Lemma 7.8 that B is feasible.

We will show that B is optimal. Let j be a vertex in V \ B, and P an f -j M -alternating path.
Suppose that P uses no vertices in B′. This means that c′j is nonzero. Since B′ is an optimal basis
of the LP-contraction, −c′j is positive by Theorem 6.1. Hence there exists an f -j MH -alternating path
in G(L) which is oddly oriented, which implies that P is also oddly oriented by Corollary 6.4. Next
suppose that P has a vertex v in B′. Then P is partitioned into the f -v MH -alternating path and the
v-j M ′-alternating path Pj . Since B′ is an optimal basis of the LP-contraction, Theorem 6.1 implies that
the f -j M ′-alternating path {(r, f), (r, v)}∪Pj in G(L′) is oddly oriented. The bipartite graph G(L) has
an f -v MH -alternating path Pv with the same sign as the path {(r, f), (r, v)} in G(L′). Hence the f -j
M -alternating path Pv ∪Pj in G(L) is oddly oriented, which implies that so is P by Corollary 6.4. Thus
all f -j M -alternating paths are oddly oriented, and hence B is optimal by Theorem 6.1.

8.4 Finding an Optimal Basis

In this section, we present Procedure OptBasis(A, b, c) for a totally sign-nonsingular linear program
LP(A, b, c) with row-mixed Ap. Lemma 7.2 implies that LP(A, b, c) is feasible. It follows from Lemma
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8.2 that, if LP(A, b, c) is bounded, then we can reduce LP(A, b, c) to a smaller one by finding an LP-
contractible submatrix. We now describe how to test the boundedness of LP(A, b, c) and how to find an
LP-contractible submatrix if LP(A, b, c) is bounded. We consider two cases, that is, the case where c has
a positive entry and the case where c is nonpositive.

In the Case of c 6≤ 0

Suppose that c has a positive entry. We first test whether LP(A, b, c) is bounded or not. Proposition 3.1
implies that testing boundedness is equivalent to deciding whether Adx = −

(
1
0

)
has a nonnegative solution

or not. Since L[V ∪{f}] is a totally sign-nonsingular matrix with row-full term-rank, Theorem 7.3 implies
that we can test the boundedness by the unisigned partition of L[V ∪ {f}], denoted by U1, . . . , Uk, U∞
and V1, . . . , Vk, V∞. Let Uh =

⋃h
l=1 Ul and V h =

⋃h
l=1 Vl for h = 1, . . . , k.

If f ∈ V∞, then the linear system Adx = −
(
1
0

)
has a nonnegative solution, and hence LP(A, b, c) is

unbounded by Proposition 3.1.
Next suppose that f 6∈ V∞. Then Adx = −

(
1
0

)
has no nonnegative solutions, which implies that the

linear program is bounded. We denote by F the union of the edge sets of G(L[Ul, Vl]) for all l = 1, . . . , k.
A path P is admissible if P is mixed and F -alternating. Let Pfg be an f -g admissible path in G(L).
As we shall show in Lemma 8.4, the submatrix H = A[U(Pfg) \ {r}, V (Pfg) \ {f, g}] is LP-contractible.
Therefore, by Lemma 8.2, we can reduce the linear program LP(A, b, c) to the LP-contraction by H that
is feasible and bounded.

We can find an f -g admissible path Pfg in G(L) as follows. Since c has a positive entry, the vertex
f is not in V1. Let f be in Vp for some 1 < p ≤ k, and set vp = f . Repeat the following for l = p, . . . , 1.
As vl ∈ Vl, there exists ul ∈ Ul with e2l = (ul, vl) ∈ F . Suppose that l = 1. Since Ap is row-
mixed, e1 = (u1, g) has the different sign from e2. Next suppose that l ≥ 2. Then the submatrix
L[(U ∪ {r}) \ U l−1, (V ∪ {f}) \ V l−2] is row-mixed, where V 0 = ∅. Hence there exists vl−1 ∈ Vl−1 such
that e2l−1 = (ul, vl−1) is not in F and e2l−1 has the different sign from e2l. At the end of the repetition,
we obtain the f -g admissible path Pfg = {e2p, e2p−1, . . . , e1} in G(L).

In the Case of c ≤ 0

We next suppose that c is nonpositive. Let W = {j ∈ V | cj < 0}. As c ≤ 0, the objective value of any
feasible solution is not greater than zero, and hence LP(A, b, c) is bounded. We then decide whether the
optimal value is equal to zero or less than zero. This is equivalent to testing whether the linear system
A[V \ W ]x = b has nonnegative solutions or not. Consider the unisigned partition of L[V ∪ {g}] into
U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞. Let Uh =

⋃h
l=1 Ul and V h =

⋃h
l=1 Vl for h = 1, . . . , k. Note that

U1 = {r} and V1 = W . Hence the linear system L[V ]x =
(
0
b

)
has nonnegative solutions if and only if so

does A[V \ W ]x = b.
Suppose that g ∈ V∞. The submatrix Ap[U∞, V∞] is row-mixed, and G(Ap[U∞, V∞]) has no mixed cy-

cles. Hence it follows from Lemma 7.5 that Ap[U∞, V∞] has row-full term-rank. Since Ap[Uk\{r}, V k] has
row-full term-rank, the total sign-nonsingularity of Ap implies that Ap[U∞, V∞] is totally sign-nonsingular.
Therefore, it follows from Lemma 7.2 that the linear system A[U∞, V∞ \ {g}]x = b[U∞] has nonnegative
solutions, and hence so does A[V \ W ]x = b. Thus the optimal value equals to zero.

An optimal basis can be found as follows. We first obtain a feasible basis B∞ of A[U∞, V∞ \ {g}]x =
b[U∞]. We denote by M∞ a matching in G(A[U∞, V∞ \ {g}]) corresponding to B∞. Obtain a basis B∗ of
A[Uk \{r}, V k] such that |B∗∩W | is minimum. Let M∗ be the matching consisting of a perfect matching
in G(A[Uk \ {r}, B∗]) and the edge (r, f). Then the following lemma holds.

Lemma 8.3. The column subset B = B∞ ∪ B∗ is an optimal basis of LP(A, b, c).

Proof. We denote M = M∗ ∪ M∞. Since G(A[B]) has the perfect matching M \ {(r, f)}, B is a basis.
For a vertex i in B∗, there exist no M -alternating paths from g to i. Since B∞ is a feasible basis of
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A[U∞, V∞ \ {g}]x = b[U∞], Theorem 6.1 implies that all M∞-alternating paths from g to i are evenly
oriented for any i ∈ B∞. Thus B is a feasible basis of LP(A, b, c) by Theorem 6.1.

We next show that B is optimal. Since c[W ] < 0, all f -j M -alternating paths are oddly oriented for
any j ∈ W \ B by Corollary 6.4. Suppose that j is in V \ (B ∪ W ). We claim that there exist no f -j
M -alternating paths. Indeed, assume that there exists an f -j M -alternating path P . As L[Uk, V∞] = O,
the path P uses no edges in M∞. The vertex set V (P ) contains the vertex v in W . Let P ′ be the v-j
M∗-alternating path along P . Then M ′ = M∗4P ′ is a perfect matching in G(L[Uk, V k ∪{f}]). However,
it holds that |V (M ′) ∩ W | < |V (M∗) ∩ W |, which contradicts that |B∗ ∩ W | is minimum. Hence there
exist no f -j M -alternating paths for any j ∈ V \ (B ∪ W ). Thus B is an optimal basis by Theorem
6.1.

Next suppose that g ∈ V k, that is, A[V \W ]x = b has no nonnegative solutions. This means that the
optimal value is less than zero. We then find an LP-contractible submatrix in a similar way to the case
where c has a positive entry.

We denote by F the union of the edge sets of G(L[Ul, Vl]) for all l = 1, . . . , k. A path P is said to
be admissible if P is F -alternating and, for each inner vertex u ∈ U(P ) \ {r}, the two edges incident
to u in P have the different signs. Notice that, since c ≤ 0, the two edges incident to r have the
same signs. We find an f -g admissible path in G(L) as follows. As V1 = W , let g be in Vp for some
1 < p ≤ k. Set vp = g. Repeat the following for l = p, . . . , 1. If l = 1, then set u1 = r, e2 = (r, v1),
and e1 = (r, f). Suppose that l ≥ 2. As vl ∈ Vl, there exists ul ∈ Ul with e2l = (ul, vl) ∈ F .
The submatrix L[(U ∪ {r}) \ U l−1, (V ∪ {g}) \ V l−2] is row-mixed, where V 0 = ∅. Hence there exists
vl−1 ∈ Vl−1 such that e2l−1 = (ul, vl−1) is not in F and e2l−1 has the different sign from e2l. Then the
path Pfg = {e1, e2, . . . , e2p} is an f -g admissible path in G(L). By Lemma 8.4 below, the submatrix
H = A[U(Pfg) \ {r}, V (Pfg) \ {f, g}] is LP-contractible. Therefore, Lemma 8.2 implies that we can
reduce LP(A, b, c) to the LP-contraction by H that is feasible and bounded.

Contractibility

Let Pfg be an f -g admissible path in either of the above two cases, and let us denote I = U(Pfg) and
J = V (Pfg). We will show that the submatrix H = A[I \ {r}, J \ {f, g}] is LP-contractible. In either
case, an f -g admissible path Pfg satisfies that, for any edge e = (u, v) ∈ F with u ∈ I and v ∈ Γ(I) \ J ,
the f -v path along Pfg and e is oddly oriented. We denote by Mf a perfect matching in G(L[I, J \ {g}])
such that Mf ⊆ Pfg.

Lemma 8.4. For an f -g admissible path Pfg, the submatrix H = A[I \ {r}, J \ {f, g}] in A is LP-
contractible, where I = U(Pfg) and J = V (Pfg).

Proof. Since Pfg is admissible, Ap[I \ {r}, J \ {f}] is row-mixed, and hence H is primal contractible. Let
LP(A′, b′, c′) be the LP-contraction by the submatrix H. Suppose that A′

p, A′
d, and L′ are in the forms

of (6), (7), and (8), respectively.
Assume that LP(A′, b′, c′) is unbounded. Then, by Proposition 3.1, L′[V ′]x = −

(
1
0

)
has nonnegative

solutions. Let U ′
1, . . . , U

′
k′ , U ′

∞ and V ′
1 , . . . , V

′
k′ , V ′

∞ be the unisigned partition of L′[V ′ ∪ {f}]. The un-
boundedness implies that f ∈ V ′

∞ and r ∈ U ′
∞. Since L′[V ′ ∪ {f}] is a totally sign-nonsingular matrix

with row-full term-rank, Lemma 7.1 implies that the row-mixed submatrix L′[U ′
∞, V ′

∞] is also a totally
sign-nonsingular matrix with row-full term-rank.

We show that G(L′[U ′
∞, V ′

∞]) has a mixed cycle. Consider the submatrix T = L[UT , VT ] in L, where
UT = Uk ∩ (U ′

∞ \ {r}) and VT = V k ∩ (V ′
∞ \ {f}). Since L′[U ′

∞, V ′
∞] is row-mixed and L[Uk, V∞] = O,

the submatrix T is row-mixed. As r ∈ U ′
∞, there exists s ∈ V ′

∞ such that (r, s) in G(L′) is negative. This
implies that G(L) has an f -s Mf -alternating path. Since no Mf -alternating paths from f use a vertex
in V∞, the vertex s is in V k, and hence s ∈ VT holds. Let P be the longest path from s in G(T ) which
is F -alternating and mixed. Since T is row-mixed, we may assume that P is even. We denote by t ∈ VT

the end vertex of P . As t ∈ V k, there exists a vertex u ∈ Uk with (u, t) ∈ F . By t ∈ V ′
∞, the vertex u
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is in I or U∞. Since P is the longest path in G(T ), u is not in UT , and hence u ∈ I holds. Since Pfg is
admissible, the f -t Mf -alternating path along Pfg and (u, t) is oddly oriented, which implies that (r, t)
in G(L′) is positive. Hence P ∪ {(r, s), (r, t)} is a mixed cycle in G(L′[U ′

∞, V ′
∞]).

Therefore, L′[U ′
∞, V ′

∞] is row-mixed and totally sign-nonsingular, but G(L′[U ′
∞, V ′

∞]) has a mixed
cycle, which contradicts Theorem 7.4. Thus LP(A′, b′, c′) is bounded, which means that H is LP-
contractible.

The dual contraction by the submatrix H in either case can be obtained as follows. Find the vertex
u ∈ J closest to f along Pfg such that the f -u path P along Pfg and some edge incident to u is oddly
oriented. We denote by Pu the u-g path along Pfg. Since Pu is mixed, the f -i Mf -alternating path along
P and Pu is oddly oriented for any i ∈ V (Pu). Therefore, for j ∈ V \ J , if there exists s ∈ U(Pu) such
that the path {(s, t), (s, j)} with (s, t) ∈ Mf is evenly oriented, then G(L) has an f -j Mf -alternating
path which is oddly oriented, which implies that −c′j is positive. Similarly, let v ∈ J be the vertex closest
to f such that the f -v path along Pfg and some edge incident to v is evenly oriented, and let Pv be
the v-g path along Pfg. Then, for j ∈ V \ J , if there exists s ∈ U(Pv) such that the path {(s, t), (s, j)}
with (s, t) ∈ Mf is oddly oriented, then −c′j is positive. The submatrix L[I, J \ {g}] forms an upper
triangular matrix. Hence, if j has a nonzero entry but satisfies neither the above two conditions, then
−c′j is negative.

Procedure Description

We now describe Procedure OptBasis(A, b, c) for finding an optimal basis.

Procedure: OptBasis(A, b, c)

Input: A totally sign-nonsingular linear program LP(A, b, c) with row-mixed Ap.

Output: An optimal basis or that LP(A, b, c) is unbounded.

In the case of c 6≤ 0: Obtain the unisigned partition of L[V ∪{f}] into U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞.

(Unboundedness) If f ∈ V∞, then return that LP(A, b, c) is unbounded.

(Contraction) If f 6∈ V∞, then find an f -g admissible path Pfg. Let LP(A′, b′, c′) be the LP-contraction
by A[U(Pfg) \ {r}, V (Pfg) \ {f, g}]. Call OptBasis(A′, b′, c′) to obtain an optimal basis B′ of
LP(A′, b′, c′). Return B′ ∪ V (Pfg) \ {f, g}.

In the case of c ≤ 0: Obtain the unisigned partition of L[V ∪{g}] into U1, . . . , Uk, U∞ and V1, . . . , Vk, V∞.
Let W = {j | cj < 0}.

(The optimal value is zero) If g ∈ V∞, then find a feasible basis B∞ of the linear system A[U∞, V∞ \
{g}]x = b[U∞] by Theorem 7.9, and find a basis B∗ of A[Uk \ {r}, V k] such that |B∗ ∩ W | is
minimum. Return B∗ ∪ B∞.

(Contraction) If g 6∈ V∞, then find an f -g admissible path Pfg. Let LP(A′, b′, c′) be the LP-contraction
by A[U(Pfg) \ {r}, V (Pfg) \ {f, g}]. Call OptBasis(A′, b′, c′) to obtain an optimal basis B′ of
LP(A′, b′, c′). Return B′ ∪ V (Pfg) \ {f, g}.

8.5 Complexity Analysis

In this section, we analyze the complexity of Procedure OptBasis and Algorithm OptSign. For a linear
program LP(A, b, c), let m denote the number of rows of A, and γ the number of all the nonzero entries
in A, b, and c.
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Lemma 8.5. For a totally sign-nonsingular linear program LP(A, b, c) with row-mixed Ap, Procedure
OptBasis(A, b, c) finds an optimal basis in O(mγ) time.

Proof. In each recursive step, it takes O(γ) time to obtain the unisigned partition, and O(m) time to find
an f -g admissible path Pfg. We can obtain the LP-contraction in O(γ) time. Since the linear program
is reduced to the LP-contraction smaller by at least one, the number of iterations is at most m times.
Hence it takes O(mγ) time until the recursion terminates.

Suppose that c ≤ 0 and the optimal value is zero. Then we can find an optimal basis with the aid
of an efficient maximum weight bipartite matching algorithm. The column subset B∞ can be found in
O(

√
mγ) time by Theorem 7.9. In order to find the basis B∗, define the {0, 1}-weight function w on

the edge set of G(L[Uk, V k]) by we = 0 if the end vertex of e is in W and we = 1 otherwise. Then a
maximum weight perfect matching M∗ in G(L[Uk, V k]) with respect to w corresponds to the basis B∗,
namely, B∗ = V (M∗). Since the weight is 0 or 1, the weighted bipartite matching algorithm due to
Gabow and Tarjan [4] runs in O(

√
mγ log m) time. Thus we can find an optimal basis in O(

√
mγ log m).

Therefore, the complexity of Procedure OptBasis is O(mγ).

The running time bound of Algorithm OptSign(A, b, c) is now given as follows.

Theorem 8.6. Algorithm OptSign(A, b, c) finds the sign pattern of an optimal solution of a totally sign-
nonsingular linear program LP(A, b, c) in O(mγ) time.

Proof. Step 1 requires O(γ) time by Theorem 7.3. In Step 2, Procedure OptBasis finds an optimal basis
B of LP(A′, b′, c′) in O(mγ) time by Lemma 8.5. We have a perfect matching M in G(L[B ∪ {f}])
by Procedure OptBasis. In Step 3, we can obtain the sign pattern of the basic solution by finding M -
alternating paths from g to vertices in B by Lemma 6.3 and (3). Hence Step 3 takes O(γ) time. Thus
the complexity of Algorithm OptSign is O(mγ).
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